
This is a repository copy of The Community Land Model version 5 : description of new 
features, benchmarking, and impact of forcing uncertainty.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/154850/

Version: Published Version

Article:

Lawrence, DM, Fisher, RA, Koven, CD et al. (53 more authors) (2019) The Community 
Land Model version 5 : description of new features, benchmarking, and impact of forcing 
uncertainty. Journal of Advances in Modeling Earth Systems. ISSN 1942-2466 

https://doi.org/10.1029/2018ms001583

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


The Community Land Model Version 5: Description

of New Features, Benchmarking, and Impact of
Forcing Uncertainty

David M. Lawrence1 , Rosie A. Fisher1 , Charles D. Koven2 , Keith W. Oleson1 ,

Sean C. Swenson1 , Gordon Bonan1 , Nathan Collier3 , Bardan Ghimire2,

Leo van Kampenhout4 , Daniel Kennedy5 , Erik Kluzek1, Peter J. Lawrence1 , Fang Li6 ,

Hongyi Li7, Danica Lombardozzi1 , William J. Riley2 , William J. Sacks1, Mingjie Shi8,9 ,

Mariana Vertenstein1 , William R. Wieder1,18 , Chonggang Xu10, Ashehad A. Ali11 ,

Andrew M. Badger12 , Gautam Bisht2 , Michiel van den Broeke4, Michael A. Brunke13 ,

Sean P. Burns14,35, Jonathan Buzan15 , Martyn Clark1 , Anthony Craig1, Kyla Dahlin16,

Beth Drewniak17 , Joshua B. Fisher8,9 , Mark Flanner19 , Andrew M. Fox20 ,

Pierre Gentine5 , Forrest Hoffman3 , Gretchen Keppel‐Aleks21 , Ryan Knox2,

Sanjiv Kumar22 , Jan Lenaerts23 , L. Ruby Leung24 , WilliamH. Lipscomb1 , Yaqiong Lu25,

Ashutosh Pandey22, Jon D. Pelletier26 , Justin Perket1,27 , James T. Randerson28 ,

Daniel M. Ricciuto29 , Benjamin M. Sanderson30 , Andrew Slater31 , Zachary M. Subin32,

Jinyun Tang2 , R. Quinn Thomas33 , Maria Val Martin34 , and Xubin Zeng13

1Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA, 2Climate and

Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 3Computer Science and

Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 4Institute for Marine and Atmospheric

Research Utrecht, Utrecht University, Utrecht, The Netherlands, 5Department of Earth and Environmental Engineering,

Columbia University, New York, NY, USA, 6International Center for Climate and Environmental Sciences, Institute of

Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 7Department of Civil & Environmental Engineering,

University of Houston, Houston, TX, USA, 8Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA,

USA, 9Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA, USA,
10Los Alamos National Laboratory, Los Alamos, NM, USA, 11Department of Organismic and Evolutionary Biology,

Harvard University, Cambridge, MA, USA, 12Cooperative Institute for Research in Environmental Sciences, Boulder, CO,

USA, 13Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA, 14Department of

Geography, University of Colorado Boulder, Boulder, CO, USA, 15Department of Earth, Atmospheric, and Planetary

Sciences, Purdue University, West Lafayette, IN, USA, 16Department of Geography, Environment, and Spatial Sciences,

Michigan State University, East Lansing, MI, USA, 17Environmental Science Division, Argonne National Laboratory,

Argonne, IL, USA, 18Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA,
19Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA, 20School of

Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA, 21Climate and Space Sciences and

Engineering, University ofMichigan, AnnArbor, CA, USA, 22School of Forestry andWildlife Sciences, AuburnUniversity,

Auburn, AL, USA, 23Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO,

USA, 24Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA,
25Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China, 26Department of

Geosciences, University of Arizona, Tucson, AZ, USA, 27NASA Goddard Space Flight Center, Greenbelt, MD, USA,
28Department of Earth System Science, University of California, Irvine, CA, USA, 29Environmental Sciences Division, Oak

Ridge National Laboratory, Oak Ridge, TN, USA, 30CERFACS, Toulouse, France, 31National Snow and Ice Data Center,

Boulder, CO,USA, 32Energy&Environmental Economics, San Francisco, CA,USA, 33Department of Forest Resources and

Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 34Leverhulme

Centre for Climate Change Mitigation, Animal and Plant Sciences Department, University of Sheffield, Sheffield, UK,
35Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, Boulder, CO, USA

Abstract The Community Land Model (CLM) is the land component of the Community Earth System

Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce

model developments included in CLM version 5 (CLM5), which is the default land component for CESM2.

We assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing

data sets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International Land

Model Benchmarking (ILAMBv2) package. CLM5 includes new and updated processes and
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parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and

snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy intercep-

tion and canopy snow processes, updated fresh snow density, simple firn model, and Model for Scale

Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen cycling

(flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen

uptake), (5) global cropmodel with six crop types and time‐evolving irrigated areas and fertilization rates, (6)

updated urban building energy, (7) carbon isotopes, and (8) updated stomatal physiology. New optional

features include demographically structured dynamic vegetation model (Functionally Assembled Terrestrial

Ecosystem Simulator), ozone damage to plants, and fire trace gas emissions coupling to the atmosphere.

Conclusive establishment of improvement or degradation of individual variables or metrics is challenged by

forcing uncertainty, parametric uncertainty, and model structural complexity, but the multivariate metrics

presented here suggest a general broad improvement from CLM4 to CLM5.

Plain Language Summary The Community Land Model (CLM) is the land component of the

widely used Community Earth System Model (CESM). Here, we introduce model developments included

in CLM version 5 (CLM5), the default land component for CESM2which will be used for the CoupledModel

Intercomparison Project (CMIP6). CLM5 includes many new and updated processes including (1) hydrology

and snow features such as spatially explicit soil depth, canopy snow processes, a simple firn model, and a

more mechanistic river model, (2) plant hydraulics and hydraulic redistribution, (3) revised nitrogen cycling

with flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen

uptake, (4) expansion to six crop types (global) and time‐evolving irrigated areas and fertilization rates, (5)

improved urban building energy model, and (6) carbon isotopes. New optional features include a

demographically structured dynamic vegetation model, ozone damage to plants, and fire trace gas emissions

coupling to the atmosphere. Model performance is generally improved for most assessed variables and

metrics, though clear establishment of improvement or degradation is challenging due to model complexity

as well as observational data limitations. Nonetheless, CLM5 is increasingly suited for research into a broad

range of societally relevant scientific questions related to the terrestrial system.

1. Introduction

Land models are classically used as tools to integrate terrestrial contributions and responses to weather, cli-

mate variability, and climate change. In addition, modern land models are increasingly expected to provide

insight into weather and climate impacts of societally relevant quantities such as water availability, crop and

timber yields, wildfire risk, human heat stress, and other ecosystem services (Bonan & Doney, 2018). The

Community Land Model (CLM), which is the land component of the Community Earth System Model

(CESM), has been developed and expanded over the last decade to provide an increasingly comprehensive

platform that researchers can use to address these types of questions. More explicitly, CLM has been

developed in accordance with two central themes: (1) Terrestrial ecosystems, through their cycling of

energy, water, momentum, carbon, nitrogen, and other trace gases, are important determinants of weather

and climate, and (2) the land is a critical interface through which climate variability and climate change

influence humans and ecosystems and through which humans and ecosystems can affect global

environmental change.

Here, we introduce the Community Land Model version 5 (CLM5, http://www.cesm.ucar.edu/models/

cesm2.0/land/), which builds on progress made in CLM4 (Lawrence et al., 2011) and CLM4.5 (Oleson

et al., 2013). CLM is a community‐developed model with CLM5 representing the outcome of model develop-

ment and analysis efforts by a diverse group of scientists and software engineers from many institutions.

Priorities for model development are set collectively by the CLM research and development community

and are broadly focused on the enhancement of the capacity of the model to be applied to emerging ques-

tions that lie at the intersection of weather and climate with terrestrial processes. Examples of scientific

topics that have driven CLM5 development include the following:

• improved understanding of carbon and nitrogen cycle interactions and their influence on the long‐term

trajectory of the terrestrial carbon sink;
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• assessment of the response and vulnerability of ecosystems to climate change and disturbances (human

and natural) and the possibility for ecosystem management to mitigate climate change;

• quantification of the role of terrestrial processes in diurnal to interannual weather and climate variability

including influence on droughts, floods, and extremes;

• establishment of the availability of water resources under climate variability and climate change;

• quantification of key land feedbacks to climate change including the permafrost climate‐carbon feedback

and snow‐ and vegetation‐albedo feedbacks;

• representation and quantification of impacts of anthropogenic land cover and land use change on climate

and the carbon cycle;

• assessment of how land surface heterogeneity affects land‐atmosphere interactions and carbon cycling;

and

• examination of the impact of model structural and parameter uncertainty and exploration of parameter

optimization techniques.

The overarching development philosophy also rests on the notion that terrestrial systems are highly coupled

and that development in one set of model processes can modify, and often improve, the simulation of other

model processes (e.g., improvements in the representation of soil hydrology is likely to improve carbon cycle

simulations and vice versa) and can also expose problems in other parts of the model. Core biogeophysical

and biogeochemical parameterization development has been complemented with expansions tomodel func-

tionality (e.g., introduction of a global interactive crop model with fertilization and irrigation and introduc-

tion of an embedded ice sheet model) and model structural updates (e.g., increased soil vertical resolution

and spatially variable soil depth). Many of the improvements adopted for CLM5 were independently devel-

oped by separate research groups for a range of reasons and applications. Therefore, a principal goal of this

manuscript is to catalog and describe the full set of CLM5model developments so that model users are aware

of the new features of the model, including known strengths and limitations (section 2). The model simula-

tions and meteorological forcing data sets employed are described in section 3. We include a high‐level

assessment of the integrated impact of these developments on the overall performance of themodel, utilizing

the International Land Model Benchmarking package (ILAMB, Collier et al., 2018), ecosystem experiment

data, and other metrics (section 4). A summary and discussion are provided in section 5. A full technical

description of the model is available online (http://www.cesm.ucar.edu/models/cesm2/land/CLM50_

Tech_Note.pdf).

2. Model Description

2.1. CLM4

CLM4 was released in June 2010 along with the Community Climate System Model version 4 (CCSM4).

CLM4 has been used in CCSM4 (Gent et al., 2011) and CESM1 (Hurrell et al., 2013). CLM4 is described in

Lawrence et al. (2011), and a full technical description is available in Oleson et al. (2010; http://www.

cesm.ucar.edu/models/cesm1.2/clm/CLM4_Tech_Note.pdf). Briefly, CLM4 included more sophisticated

representations of soil hydrology and snow processes than its predecessor, CLM3.5 (Oleson et al., 2008).

In particular, new treatments of soil column‐groundwater interactions, soil evaporation, aerodynamic para-

meters for sparse/dense canopies, vertical burial of vegetation by snow (Wang & Zeng, 2009), snow cover

fraction (Niu & Yang, 2007), and aging, black carbon and dust deposition, and vertical distribution of solar

energy for snow were implemented (Flanner et al., 2007). CLM4 was the first version in the CLM series to

include a prognostic aboveground and belowground carbon‐nitrogen cycle (CLM4CN, Thornton et al.,

2007) as well as the ability to represent transient land cover change (Lawrence et al., 2012). CLM4 added

a representation of organic soil and deep ground into the existing mineral soil treatment (Lawrence et al.,

2008; Lawrence & Slater, 2008) to enable more realistic modeling of permafrost and active layer dynamics.

An urban canyon model, to contrast rural and urban energy balance and climate, was also introduced

(Oleson et al., 2008).

2.2. CLM4.5

CLM4.5 was released in June 2013 along with the Community Earth SystemModel version 1.2 (CESM1.2). A

full technical description is available online (http://www.cesm.ucar.edu/models/cesm1.2/clm/CLM45_

Tech_Note.pdf; Oleson et al., 2013). The main modifications in CLM4.5 included updates to canopy
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processes including a revised canopy radiation scheme and canopy scaling of leaf processes, colimitations on

photosynthesis (Bonan et al., 2011; Bonan et al., 2012), and temperature acclimation of photosynthesis

(Lombardozzi et al., 2015). Hydrology updates included modifications such that hydraulic properties of fro-

zen soils are determined by liquid water content only rather than total water content, introduction of an ice

impedance function and allows for a perched water table above icy permafrost ground (Swenson et al., 2012).

The snow cover fraction parameterization was revised to reflect hysteresis in fractional snow cover, for a

given snow depth, between accumulation and melt phases (Swenson & Lawrence, 2012). The lake model

was thoroughly revised (Subin et al., 2012). A surface water store was introduced, replacing the wetland land

unit. The surface energy flux calculation was modified to separately simulate snow‐covered, water‐covered,

and snow/water‐free portions of vegetated and crop land units, and snow‐covered and snow‐free portions of

glacier land units (Swenson & Lawrence, 2012). Globally constant river flow velocity was replaced with

variable flow velocity based on mean grid cell slope. A vertically resolved soil biogeochemistry scheme

was introduced with base decomposition rates varying with depth and modified by soil temperature, water,

and oxygen limitation and also including vertical mixing of soil carbon and nitrogen due to bioturbation,

cryoturbation, and diffusion (Koven et al., 2013). Litter and soil carbon and nitrogen pool structure as well

as nitrification and denitrification were modified to reflect the Century model (Koven et al., 2013). The fire

model was replaced with a model that includes representations of natural and anthropogenic ignition

sources and suppression as well as agricultural, deforestation, and peat fires (Li et al., 2012; Li et al.,

2013). The biogenic volatile organic compounds model was updated to MEGAN2.1 (Guenther et al., 2012).

Further additions to CLM4.5 included a methane production, oxidation, and emissions model (Riley et al.,

2011) and an extension of the crop model to include interactive fertilization, organ pools (Drewniak et al.,

2013), and irrigation (Sacks et al., 2009). Multiple urban density classes, rather than the single dominant

urban density class used in CLM4, were modeled in the urban land unit. Carbon 13C and 14C isotopes for

natural vegetation were introduced (Koven et al., 2013). A summary of the changes included in CLM4.5 rela-

tive to CLM4 is listed in Table 1.

2.3. CLM5

CLM5 is the default land model for CESM2 (http://www.cesm.ucar.edu/models/cesm2/). Developments for

CLM5 build on the progress made in CLM4.5. Most major components of the model have been updated with

notable changes made to soil and plant hydrology, snow density, river modeling, carbon and nitrogen

cycling and coupling, crop modeling as well as new surface characterization and transient land use data

sets and increased flexibility to represent landscape dynamics through specified or prognostic transitions

in land unit weights. Much of the development reflects a push toward more mechanistic treatment of key

hydrologic and ecological processes and more comprehensive and explicit representation of anthropogenic

land management.

Prior versions of CLMmainly included a single option for most parameterizations. With our new CLM code-

base management philosophy, where new parameterizations or model structural decisions were defined for

CLM5, we also maintained the CLM4.5 parameterization or configuration, thereby allowing users to switch

back and forth between alternative parameterizations via namelist control. In this section, we briefly

describe the full set of model developments. Except where explicitly noted, all described new parameteriza-

tions or features are active by default in CLM5. For full details of new and old CLM5 parameterizations,

including equations and parameter values, we refer the reader to the cited papers and to the full technical

description of CLM5 (http://www.cesm.ucar.edu/models/cesm2/land/CLM50_Tech_Note.pdf). Additional

documentation including information about how to access the code, tutorials about how to run the model,

developer's guides, and model output diagnostics can be found online (http://www.cesm.ucar.edu/models/

cesm2/land/). A schematic representation of the primary processes and functionality represented in CLM5 is

shown in Figure 1. A summary of the changes in CLM5 relative to CLM4.5 is listed in Table 1 for reference.

2.3.1. Dynamic Land Unit Weights and Plant Functional Type Distribution

CLM5 includes a new capacity update land unit weights during a simulation either through a data set or

prognostically, a technical feature that was previously not possible which prevented representation of impor-

tant specified or dynamic transitions. Spatial land surface heterogeneity in CLM is represented as a nested

subgrid hierarchy in which grid cells are composed of multiple land units, columns, and patches

(Figure 2). Each grid cell can have a different number of land units, each land unit can have a different
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Table 1

List of Changes in CLM4.5 and CLM5 (Relative to Previous Versions of the Model)

Component CLM4.5 CLM5

Hydrology • Ice impedance function; hydraulic properties for frozen soil

determined by liquid water only; perched water table above

icy permafrost soil

• Surface water store replaces wetland land unit

• Dry surface layer for ground evap

• Spatially variable soil depth (0.4 to 8.5 m)

• Increased soil vertical resolution (20 soil layers + 5

bedrock layers)

• Remove unconfined aquifer, no flux lower boundary

condition

• Adaptive time‐stepping solution of Richard's equation
Snow • SCF parameterization accounting for hysteresis in

accumulation and ablation

• Surface energy fluxes calculated separately for snow‐covered

and snow‐free portions of each land unit

• Separate liquid and ice canopy water stores and radiative

treatment, snow unloading due to T or wind

• Wind and T effects on fresh snow density

• Increase maximum snow layers from 5 to 12 and max SWE

to 10 m to allow for firn development
Glaciers • Updated bare ice albedos • Multiple elevation classes (10) with downscaling for

glacier land unit
Rivers • Variable flow velocity based on mean grid cell slope in RTM • MOSART—Manning's equation‐based model representing

hillslope to tributary to main channel flow
Vegetation • Revised canopy radiation scheme and canopy scaling of leaf

processes

• Colimitation on photosynthesis among Rubisco‐, light‐, and

export‐limited rates; revised photosynthetic parameters for

Rubisco kinetics and temperature response

• BVOC emissions from MEGAN2.1

• Plant hydraulic stress model of water transport through

vegetation, replaces empirical soil moisture stress

formulation, hydraulic redistribution

• Medlyn stomatal conductance replacing Ball‐Berry

• Consistent Jackson et al. (1996) rooting profile for water

and carbon

• Deepened rooting profile for broadleaf evergreen and

broadleaf deciduous tropical trees

• Add antecedent rain requirement to stress deciduous

phenology trigger
Carbon • Vertically resolved soil C and N

• Vertical mixing of carbon due to bioturbation, cryoturbation,

and diffusion

• Litter and soil carbon and nitrogen pool structure based on

Century model

•
13
C and

14
C carbon isotopes

• CH4 production and emissions from natural wetlands

• Fixed allocation scheme replaces dynamic NPP‐based

allocation scheme

• Weaker intrinsic decrease in decomposition rate with

depth

• Stronger soil moisture controls on decomposition

•
13
C and

14
C carbon isotopes for crops

Nitrogen • Nitrification and denitrification based on Century model

• Biological fixation distributed more realistically over year

• Flexible plant C:N ratios, eliminate instantaneous down‐

regulation of photosynthesis based on mineral N

availability

• Carbon cost for N uptake and fixation (FUN)

• Leaf N optimization for photosynthetic capacity

• Free‐living fixation function of ET
Agriculture • Temperate crop model (optional, not active by default)

• Introduction of organ pools, crop yield

• Global crop model on in BGC default configuration with 8

temperate and tropical crop types

• Updated irrigation trigger based on soil water deficit

• Industrial fertilization from land use file; background

manure

• 1‐year grain product pool
LULCC • Wood harvest by mass rather than area

• Land unit weights can change during simulation

• Updated 1850 and CMIP6 LUMIP transient PFT

distribution
Fire
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number of columns, and each column can have multiple patches each with a specific plant functional type

(PFT) or crop functional type (CFT). The first subgrid level, the land unit, is intended to capture the broadest

spatial patterns of subgrid heterogeneity. The CLM5 land units are vegetated, lake, urban, glacier, and crop.

New within CLM5 is the capacity to adjust the fractional area of each land unit throughout the course of a

simulation either as specified through a land use data set (e.g., deforestation for agriculture and transition of

a fraction of vegetated land unit to crop land unit) or through prognosed initiation or loss of glacier area (e.g.,

initiation of glacier area and transition of fraction of vegetated land unit to glacier land unit; only possible

when two‐way ice sheet interactions are activated). For natural vegetation, CLM operates under the

assumption that all PFTs on the natural vegetation land unit compete for water and nitrogen and that all

PFTs share the same soil column state (temperature, moisture, carbon, and nitrogen). Note that prior

research has shown that for some applications, particularly for studies of land cover change impacts on

climate, it may be preferable for each PFT to operate on its own soil column to avoid implicit energy

transfer from one PFT to another (Chen et al., 2018; Meier et al., 2018; Schultz et al., 2016). On the crop

land unit, each CFT (irrigated and unirrigated) resides on its own soil column and therefore operates

based on its own soil moisture and nitrogen conditions. For CLM5, transitions have only been enabled

between natural vegetation, crop, and glacier land units; full transition capability (i.e., including ability

for transitions to and from urban and lake land units) is under development. The default configuration of

CLM5 (and the other CLM versions assessed here) does not include dynamic vegetation biogeography

(i.e., CLM is not a Dynamic Global Vegetation Model). Instead vegetation distributions (natural and

cropland PFTs and CFTs) are specified through time through a land use time series file (see below), but

vegetation state (leaf area index [LAI], canopy height) is prognostic. Urban and lake land unit areas do

not and cannot change during a simulation. Total grid cell water, energy, carbon, and nitrogen are

conserved for all transitions.

New land cover and land use data have been generated for CLM5 that combine updated versions of current

day satellite land cover descriptions with the Land Use Model Intercomparison Project (LUMIP, Lawrence

et al., 2016) past and future transient land use time series (Land Use Harmonization 2 [LUH2], luh.umd.edu/

data.shtml). The new CLM5 land surface input and time series data describe the distribution of PFTs and

CFTs, soil texture, and wood harvest, industrial N fertilizer application amounts, irrigation‐equipped area,

shifting cultivation (repeated clearing and abandonment of agricultural land), monthly PFT LAI and canopy

height (for simulations using prescribed satellite vegetation phenology—SP in CLM infrastructure nomen-

clature), and several additional required or optional input data sets (see technical description for more detail

on input data sets).

The CLM5 surface data sets are created as in CLM4 and CLM4.5 but with updated methodology as described

here. Present‐day global land cover descriptions are generated at 1‐km resolution using updated versions of

the data and methods used for CLM4 and CLM4.5 (Lawrence & Chase, 2007). The basis for the land cover

description comes from MODIS land cover (MCD12Q1 v5.1), vegetation continuous fields (MOD44B

v5.1), LAI (MCD15A2 v5), and albedo (MCD43B3 v5) products for the years 2001–2015 (https://lpdaac.

usgs.gov/dataset_discovery/modis). Additional information for tree leaf type and longevity are provided

by the AVHRR continuous fields tree cover product (Defries et al., 2000). Global crop distributions are pro-

vided by the monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000) data set of

Portmann et al. (2010). Canopy height data for tree PFTs are provided by the Geoscience Laser Altimeter

System on the ICESat satellite as processed by Simard et al. (2011). The LUH2 historical and future

Table 1 (continued)

Component CLM4.5 CLM5

• New fire model with anthropogenic triggers and suppression;

agricultural, deforestation, and peat fires

• Modified dependence of fire occurrence and spread on fuel

wetness
Lakes • Updated lake model including deep and shallow lakes
Urban • Multiple urban density classes • Building space heating and air conditioning

• Heat stress indices
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scenario data provide annual land use descriptions at 0.25° resolution from the year 850 to 2100. The LUH2

data are generated from the History Database of the Global Environment (HYDE version 3.2, Goldewijk

et al., 2017) for 850–2014 and from Integrated Assessment Model teams for multiple alternative scenarios

of the future for 2015–2100. The LUH2 time series describes annual changes in primary and secondary

forest and nonforest land units, along with five crop groups, managed pasture, rangeland, and urban

areas. The LUH2 data also include information on wood harvest, both in terms of the mass of carbon

extracted and the total harvest areal fraction (CLM5 uses carbon mass). Annual crop management is

specified by crop type through industrial fertilizer application and the fraction of each crop irrigated.

Finally, the CLM surface data sets and transient land use data sets are produced with the CLM Land Use

Data Tool (http://www.cgd.ucar.edu/iam/projects/thesis/thesis‐clm‐landuse‐tool.html). This tool takes the

present‐day land cover distribution and merges it with historical or future LUH2 transitions and

management information and translates them into CLM PFT and CFT distributions and

management information.

2.3.2. Soil Hydrology

CLM5 includes several structural and parameterization improvements that increase the realism of the soil

hydrology representation in the model. To resolve a deficiency in the seasonality of soil evaporation and soil

water storage in semiarid regions, the empirical soil evaporation resistance parameterization is replaced

with a mechanistically based parameterization where soil evaporation is controlled by the rate of diffusion

of water vapor through a dry surface layer (Swenson & Lawrence, 2014). To account for spatial variation in

soil thickness and columnar water holding capacity, CLM is updated so that different soil thicknesses (by

default ranging from 0.4‐ to 8.5‐m depth) can be applied for each soil column (Brunke et al., 2016;

Swenson & Lawrence, 2015). The default spatially explicit soil depths are derived from a spatially explicit soil

thickness data product (Pelletier et al., 2016). The explicit treatment of soil thickness with underlying bed-

rock (currently assumed to be impermeable, i.e., zero flux bottom boundary condition) means that the soil

saturated and unsaturated zones and associated water table depth are modeled explicitly. This allows for the

deprecation of the unconfined aquifer parameterization ((Niu et al., 2007), which was used as part of

the groundwater representation in CLM4 and CLM4.5. Note that an added benefit of the explicit

Figure 1. Schematic representation of primary processes and functionality in CLM5. SCF = snow cover fraction; BVOC=

biogenic volatile organic compounds; C/N = carbon and nitrogen. For biogeochemical cycles, black arrow denotes carbon

flux, and purple arrow denotes nitrogen flux. Note that not all soil levels are shown. Not all processes are depicted.

Optional features that are not active in default configurations are italicized. Updated from figure 1 in Lawrence et al.

(2011).
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representation of spatially varying soil thickness underlain by impermeable bedrock is that it removes a

logical inconsistency between the treatment of soil hydrologic and soil thermal calculations that existed in

CLM4 and CLM4.5. The default model soil layer resolution is increased, especially within the top 3 m, in

part to more accurately simulate active layer thickness (ALT) within the permafrost zone. The default

configuration includes a total of 25 ground layers that extend to a depth of ~50 m. The first five (0.4‐m‐

thick soils) up to 20 (8.5‐m‐thick soils) layers in each column are considered soil and are hydrologically

and biogeochemically active. The number of soil layers is specified independently for each column based

on the imposed soil thickness data set. The remaining ground layers in each column are considered to be

dry bedrock. Note that since the number of active soil layers varies from grid cell to grid cell, users need

to be careful when doing spatial averaging of soil moisture or carbon/nitrogen quantities since bedrock

layers have very small prescribed constant soil moisture and carbon/nitrogen values.

An adaptive time‐stepping solution to the Richard's equation is introduced (Clark & Kavetski, 2010;

Kavetski et al., 2001). This improves the accuracy and stability of the numerical soil water solution

by allowing for multiple substeps within the standard 30‐min model time step when required. In test

simulations, all instances of numerical instability in the Richard's equation solution (i.e., negative soil

moisture updates) were eliminated at a cost of an increase of less than 3% in model runtime.

Substepping is invoked (i.e., instabilities occur in Richard's equation solution) most frequently when

and where the number of soil layers is small, which can be due to frozen soils or shallow bedrock.

The process of subtracting the hydrostatic equilibrium soil moisture distribution from the vertical soil

moisture profile before solving Richard's equation, proposed in Zeng and Decker (2009) and included

in CLM4 and CLM4.5, has been deprecated because it is inconsistent with standard approaches used

in soil hydrology (De Rooij, 2010).

Figure 2. Standard configuration of the CLM5 subgrid hierarchy. Box in upper right shows hypothetical subgrid distribution for a single grid cell. Note that the crop

land unit is only used when the model is run with the crop model active. TBD = tall building district; HD = high density; MD = medium density; G = glacier;

L = lake; U = urban; C = crop; V = vegetated; PFT = plant functional type; Irr = irrigated; Rnfd = rainfed. Red arrows indicate allowed land unit transitions. Purple

arrows indicate allowed patch‐level transitions.
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2.3.3. Atmospheric Surface Layer Stability

In Monin‐Obukhov stability theory (Foken, 2006), atmospheric stability is characterized by a length scale L,

called the Obukhov length, which is used to nondimensionalize the distance to the surface using variable

zeta = (z − d)/L, where z is the reference height and d is the displacement height. In CLM4.5, the stability

variable zeta is constrained to be less than or equal to 2. Using temperature and friction velocity measure-

ments from a subalpine forest flux tower, Burns et al. (2018) showed that CLM4.5 exhibited a large and per-

sistent nighttime low bias of canopy temperature and friction velocity. In that study, they alleviated this bias

by implementing the Handorf et al. (1999) stability function in very stable conditions. For CLM5, we approx-

imate the Handorf et al. (1999) stability function for very stable conditions by setting the maximum zeta

value to 0.5. Ongoing development work since CLM5 was finalized indicates that this need for a maximum

zeta value can be eliminated when a vegetation biomass heat storage capacity is explicitly modeled (Swenson

et al., 2019). Stability corrections and the applicability of Monin‐Obukhov similarity remain active research

topics, which has recently leveraged high‐resolution turbulent simulations such as direct numerical simula-

tions (Li et al., 2018).

CLM4.5 includes an additional modification to undercanopy stability designed to increase aerodynamic

resistance between the canopy and the ground in stable conditions (Sakaguchi & Zeng, 2009). Due to biases

in surface to lowest atmosphere layer temperature profiles, also noted by Burns et al. (2018), it was found

that the undercanopy stability parameterization did not perform as intended. Consequently, this underca-

nopy stability parameterization is inactive in CLM5. Within‐canopy and undercanopy stability remains an

active area of research (e.g., Bonan et al., 2018).

2.3.4. Snow, Glaciers, and Ice Sheets

Several changes are included that are mainly targeted at improving the simulation of surface mass bal-

ance, the difference between annual accumulation and ablation, over ice sheets. New parameterizations

for fresh snow density (updated temperature effects and wind effects), destructive metamorphism (the

change in snow crystals from six‐sided shapes to rounded, bonded ice grains due to disturbance, molecu-

lar motion, and pressure), and compaction by overburden pressure and drifting snow are included (van

Kampenhout et al., 2017). For reference, fresh snow density as a function of temperature and wind speed

is shown in figure 1 of van van Kampenhout et al. (2017). The maximum number of snow layers and

snow amount is increased from five layers and 1‐m snow water equivalent to 12 layers and 10‐m snow

water equivalent, to allow for the formation of firn in regions of persistent snow cover (e.g., glaciers

and ice sheets; van Kampenhout et al., 2017). The snow capping routine, which sets a limit on the max-

imum amount of accumulated snow, has been fixed to correctly allow surface snow density and grain size

to refresh when new snow falls. The grain size of freshly fallen snow has been made a function of air

temperature to address unrealistically high albedos over ice sheets. Instead of applying a fresh snow grain

size of 54 μm at all temperatures, fresh snow grain size is set to 54 μm below −30 °C and to 204.5 μm

above 0 °C, with a linear ramp applied between these temperatures. The parameters for snow grain aging

are maintained.

Multiple elevation classes (10 elevation classes by default) are specified on the glacier land unit to account for

the strong topographic elevation gradients present over many glaciers and ice sheets (Lipscomb et al., 2013).

Atmospheric surface temperature, potential temperature, specific humidity, density, and pressure are

downscaled from the mean grid cell elevation to each glacier column elevation using a specified lapse rate

(6.0 km−1) and an assumption of uniform relative humidity. Longwave radiation is downscaled by assuming

a linear decrease in downwelling longwave radiation with increasing elevation (0.032 W·m−2·m−1, bounded

to 0.5 to 1.5 times the grid cell mean value and then normalized to conserve grid cell total energy; Tricht

et al., 2016). This downscaling allows lower‐elevation columns within a glacier land unit to undergo surface

melting while columns at higher elevations remain frozen.

In typical configurations (e.g., by default in CESM2 and CLM5 land‐only simulations), CLM5 computes ice

sheet surface mass balance, but ice sheets do not evolve. CLM5 can also be coupled bidirectionally to

CISM2.1 (Lipscomb et al., 2019) and thereby simulate an evolving Greenland ice sheet. The introduction

of the capability to adjust land unit weights during a simulation (section 2.3.1) means that a glacier can

incept, grow, shrink, or disappear during a simulation when two‐way coupling between the land and ice

sheet model is active. By default, two‐way coupling is not active in CESM2 or CLM5 land‐only simulations,

including the simulations assessed here.
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Vegetation canopy precipitation interception is updated to track liquid and solid water phases separately,

with intercepted snow subject to unloading events due to wind or above‐freezing temperatures similar to

Roesch et al. (2001). Interception snow mass compares favorably with in situ measurements from Storck

et al. (2002). Additionally, the snow‐covered fraction of the canopy, which is calculated based on the canopy

snow mass and LAI, is used within the canopy radiation and surface albedo calculations.

Finally, CLM5 partitions total precipitation into rain and snow according to a linear temperature ramp. This

partitioning occurs irrespective of what phase precipitation is calculated by the atmosphere model. For most

land units, this ramp generates all snow below 0 °C, all rain above 2 °C, and a mix of rain and snow for inter-

mediate temperatures. For glaciers, the end points of the ramp are −2 and 0 °C, respectively. To ensure

energy conservation, a sensible heat flux correction term is applied when the phase of precipitation coming

from the atmosphere is changed.

2.3.5. Rivers

The River Transport Model (RTM) used in CLM4.5 is replaced with the physically more realistic Model for

Scale Adaptive River Transport (MOSART, Li et al., 2013). Note that the river model is treated as a separate

coupled component in CESM and therefore is not technically part of CLM, but we include it in this manu-

script because of the clear relationship with and dependence on CLM; that is, MOSART receives surface and

subsurface runoff from CLM. MOSART represents an upgrade over RTM in several ways. RTM utilizes a

simple linear reservoir method to calculate streamflow, while MOSART is based on the more physically

based kinematic wave method. MOSART also provides more information on river conditions; that is,

RTM only simulates streamflow whereas MOSART additionally simulates time‐varying channel velocities,

channel water depth, and channel surface water variations. In MOSART, surface runoff is routed across hill-

slopes and then discharged along with subsurface runoff into a tributary subnetwork before entering the

main channel. MOSART assumes that all the tributaries within a spatial unit (either regular lat/lon grid

or watershed) can be treated as a single hypothetical subnetwork channel with a transport capacity equiva-

lent to all the tributaries combined. Correspondingly, three routing processes are represented in MOSART:

(1) hillslope routing: surface runoff is routed as overland flow into the subnetwork channel, while subsurface

runoff directly enters the subnetwork channel; (2) subnetwork channel routing: the subnetwork channel

receives water from the hillslopes, routes water through the channel, and discharges it into the main chan-

nel; and (3) main channel routing: the main channel receives water from the subnetwork channel and/or

inflow, if any, from upstream, and discharges the water downstream or to the ocean. The capability to simu-

late flooding (water transfer from rivers back onto land under flood stages) that was implemented into RTM

for CLM4.5 is retained for MOSART but is not active by default. The representation of wetlands is

unchanged from CLM4.5 wherein wetlands are no longer their own prescribed land unit but instead are

captured through a prognostic surface water storage that accounts for fine spatial‐scale variations in surface

elevation (see technical description for details).

2.3.6. Vegetation Physiology

A plant hydraulic stress (PHS) routine is introduced which explicitly models water transport through the

vegetation according to a simple hydraulic framework (Kennedy et al., 2019). The plant hydraulics routine

solves for vegetation water potentials (root, xylem, and leaf) according to an electric circuit analogy, in which

the flow (current) is the soil‐to‐leaf water supply (sap) which is set to meet the transpiration flux (demand) at

every time step; that is, no storage is assumed. Explicit prognosis of plant tissue water status improves the

physical basis for many processes represented in CLM, such as the dynamics of root water uptake profiles,

and the attenuation of photosynthesis and transpiration with drought, which was exaggerated in previous

model versions (e.g., Powell et al., 2013). In PHS, “unstressed” (atmospheric demand‐driven) stomatal

conductance is modulated for drought stress using a function of leaf water potential, requiring vegetation

to regulate stomatal conductance to avoid excessively negative leaf water potential and thus plant desicca-

tion and embolism in the xylem. This more mechanistic representation of vegetation water stress replaces

the soil moisture stress (SMS) parameterization in prior versions of CLM in which water stress was calcu-

lated through a plant wilting factor that was based on soil water matric potential relative to PFT‐dependent

parameters for fully closed and fully open stomata, weighted by layer root fractions. An emergent feature of

the plant hydraulics scheme (wherein water moves along water potential gradients within the soil‐root‐

stem‐leaf system) is a plant‐mediated vertical hydraulic redistribution of soil water from wet to dry soil

layers, which thus leads to important nighttime and seasonal hydraulic redistribution, physically
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constrained by the plant hydraulic parameterization (Kennedy et al., 2019). To prevent unrealistically high

soil evaporative losses of soil water due to continuous hydraulic redistribution, root water uptake and

hydraulic redistribution is not allowed to occur in the 2‐cm‐thick surface soil layer.

PHS advances the physical and empirical basis of the CLM vegetation hydrodynamics scheme. Previously

used soil moisture stress functions (as in SMS) tend to lack either a strong physical or empirical justification

and are a major source of uncertainty in land models (Trugman et al., 2018). PHS, in adopting a plant

hydraulic framework, incorporates more physical root water uptake, following Darcy's law, and a stress for-

mulation based on avoiding excessive xylem tension. Likewise, PHS opens avenues for better empirical con-

straints on vegetation water use. The model parameters have physical meaning, and new prognostic

vegetation water potential can be validated with field observations and, potentially, satellite remote sensing

products (e.g., Anderegg et al., 2018; Konings et al., 2017; Li et al., 2017).

In CLM5, maximum stomatal conductance is obtained from the Medlyn “empirical‐optimal” conductance

model (Medlyn et al., 2011), rather than the Ball‐Berry stomatal conductance model that was utilized in

CLM4.5 and prior versions of the model. The Ball‐Berry implementation used a single slope parameter for

all C3 plants. In a recent study, Lin et al. (2015) estimated PFT‐dependent slope parameters for the

Medlyn model, which have been successfully used in CABLE (De Kauwe et al., 2015). The slope parameters

used in CLM5 are from CABLE. Note that the slope parameter value is indicative of the plant's water use

strategy—PFTs with a high slope parameter have high stomatal conductance per unit photosynthesis and

therefore a low water use efficiency (WUE). As discussed by Franks et al. (2017) and Franks et al. (2018),

the primary difference between the two stomatal models, after accounting for different slope parameters,

relates to the effects of extreme low and high vapor pressure deficit on stomatal conductance.

Two other relatively minor changes are included in CLM5. (1) The trigger for stress deciduous PFT phenol-

ogy is augmented with an antecedent precipitation requirement (Dahlin et al., 2015). This additional trigger

was implemented to reduce the occurrence of anomalous green‐up during the dry season in many semiarid

regions that was being driven by upwards water movement fromwet to dry soil layers and thereby triggering

unrealistic leaf‐out even in circumstances when there was not any recent rainfall. More recent work has

demonstrated a broad array of stress deciduous phenology strategies that are not possible to resolve in the

current CLM PFT scheme (Adole et al., 2018; Dahlin et al., 2017), but this complexity could potentially be

represented in Functionally Assembled Terrestrial Ecosystem Simulator (FATES; see section 2.3.12). (2)

The rooting profiles, which were inconsistent for water and carbon in CLM4.5, were updated to be consistent

in CLM5. The Jackson et al. (1996) rooting profile is preferred over the Zeng (2001) profile as it produces

more realistic vertical soil C profiles, though the Zeng (2001) profile is retained as an option.

Lastly, ozone damage to vegetation is included as an optional feature in CLM5. The ozone damage parame-

terization is the same as implemented by Lombardozzi et al. (2015) based on ozone damage response data

compiled by Lombardozzi et al. (2013). Ozone damage to vegetation is applied directly and independently

to photosynthesis and stomatal conductance for three broad PFT classes (broadleaf trees and shrubs, needle-

leaf trees and shrubs, and crops and grasses) based on the cumulative uptake of ozone. Cumulative uptake of

ozone is calculated as the ozone concentrationmultiplied by stomatal conductance, integrated through time,

to account for the fact that ozone primarily damages vegetation once it enters the leaf and total damage is

dependent on the time period of exposure. The damage decays over the growing season to account for the

fact that plants acquire new, undamaged leaves throughout the growing season and also decays over the leaf

life span for evergreen plant types.

2.3.7. Carbon Dynamics

CLM5 applies a fixed C allocation scheme for woody vegetation where allocation to aboveground and below-

ground biomass is held constant. The decision not to use the dynamic allocation scheme based on net pri-

mary productivity (NPP), as was used in CLM4 and CLM4.5, was driven by the fact that observations

indicate that plant biomass saturates with increasing productivity, which is inconsistent with the behavior

in CLM4 and CLM4.5 where biomass perpetually increases with increasing productivity (Negrón‐Juárez

et al., 2015). Because the prior allocation rules implicitly led to a saturation of leaf carbon allocation, this

change does lead to a possible trade‐off between accuracy of biomass and accuracy of leaf area and remains

a large uncertainty and an area of active research. Soil carbon decomposition processes are unchanged from

CLM4.5 to CLM5, but assessment with a new metric for the temperature sensitivity of apparent soil carbon
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turnover times (Koven et al., 2017) pointed to the need to adjust the parameter that controls intrinsic depth

limitation on soil carbon turnover toward a weaker depth limitation (rather than the strong depth limitation

in CLM4.5) and to adjust the parameter that controls soil moisture limitation on soil carbon turnover rates in

dry soils to a wetter soil moisture level than that used in CLM4.5. Note that vertical C and N processes are

only calculated for hydrologically active soil layers (see section 2.3.2), which vary in space.

2.3.8. Nutrient Dynamics

Plant nutrient dynamics are substantially updated in CLM5 to resolve several deficiencies with the represen-

tation of nutrient cycling in previous versions of the model. The Fixation and Uptake of Nitrogen (FUN)

model, based on the work of Fisher et al. (2010), Brzostek et al. (2014), and Shi et al. (2016), is incorporated.

The concept of FUN assumes that N uptake requires the expenditure of energy in the form of C (in CLM4.5

there was no C expenditure for N uptake), often a significantly large portion of NPP (Doughty et al., 2018;

Marschner, 1995) and further, that there are numerous potential sources of N in the environment which a

plant may exchange for C: symbiotic biological N fixation, arbuscular‐mycorrhizal and ecto‐mycorrhizal

(two types of root fungus) uptake, direct root uptake, and leaf N retranslocation. The ratio of C expended

to N acquired is therefore the C cost, or exchange rate, of N acquisition. This C is assumed to respire as it

is used for N acquisition. As FUN calculates the rate of symbiotic N fixation, this N is passed straight to

the plant, as opposed to passing through the soil mineral N pool. CLM5 now separately calculates rates of

free‐living N fixation as a function of evapotranspiration (modified from Cleveland et al., 1999), which is

added to the soil inorganic ammonium (NH4
+) pool. Previous versions of CLM added the N fixation flux,

which was calculated as function of NPP (without an associated C cost; Cleveland et al., 1999; Thornton

et al., 2007; Wieder et al., 2015), to the soil mineral N pool.

The static plant carbon:nitrogen (C:N) ratios utilized in CLM4 and CLM4.5 are replaced with variable plant

C:N ratios, as in Zaehle and Friend (2010), which allows plants to adjust their C:N ratio, and therefore their

leaf N content, with the cost of N uptake (Ghimire et al., 2016). The implementation of a flexible C:N ratio

means that the model no longer relies on instantaneous down‐regulation of potential photosynthesis rates

based on soil mineral N availability to represent nutrient limitation. Furthermore, stomatal conductance

in CLM5 is based on the N‐limited photosynthesis rate rather than on potential N‐unlimited photosynthesis

as in CLM4 and CLM4.5, thereby allowing for more realistic coupling between plant C and water cycles

(Medlyn et al., 2016).

Finally, the Leaf Use of Nitrogen for Assimilation (LUNA; Ali et al., 2016; Xu et al., 2012) model is incorpo-

rated. The model allocates N to maximize daily net photosynthetic carbon gain under the following two key

assumptions: (1) N allocated for light capture, electron transport, and carboxylation are colimiting; and (2)

respiratory nitrogen is allocated to maintain dark respiration determined by Vcmax25. Compared to tradi-

tional photosynthetic capacity models, a key advantage of LUNA is that it is able to predict potential accli-

mation of photosynthetic capacities for different environmental conditions as determined by temperature,

radiation, CO2 concentrations, day length, and humidity. Importantly, the inclusion of LUNA means that

Vcmax25, the maximum rate of carboxylation, is a prognostic model quantity, dependent on leaf N per unit

area and environmental conditions, whereas it was fixed for each PFT in CLM4 and CLM4.5.

2.3.9. Land Management Processes

Representation of human management of the land (agriculture and wood harvest) is augmented in several

ways. Critically, the introduction of the capability to dynamically adjust land unit weights during a simula-

tion means that the crop model can be run coincidentally with prescribed land use change, which signifi-

cantly expands the capabilities of the model. The CLM4.5 crop model is extended to operate globally

through the addition of rice and sugarcane as well as tropical varieties of corn and soybean (Badger &

Dirmeyer, 2015; Levis et al., 2018). These crop types are added to the existing temperate corn, temperature

soybean, spring wheat, and cotton crop types. Industrial N fertilization amounts and irrigation‐equipped

area are updated annually based on crop type and geographic region through the land use time series data

set. The irrigation trigger is updated to remove the dependence on the CLM4.5 plant SMS calculation

(replaced in CLM5 with PHS, section 2.3.6) and instead uses a target soil moisture level, which was tuned

to get reasonable irrigation amounts. Additional minor changes to crop model include the following: (1)

Crop phenological triggers vary by latitude for selected crop types, which is a temporary solution that gen-

erates more realistic global crop planting dates outside of the temperate regions for which the growing

degree day‐based crop planting window was originally parameterized (though serious crop planting
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window errors still occur), and (2) grain C and N is transferred during crop harvest into a 1‐year product pool

with the C needed to seed the next season's crops removed from grain C while the rest of the crop vegetation

residue is transferred to litter C and N pools. To better match wood harvest inventories specified in the LUH2

data set, mass‐based, rather than area‐based, wood harvest is applied. Shifting cultivation is represented by

calculating unrepresented gross transitions in the LUH2 time series and then removing aboveground C to

account for the conversion of the gross forest PFTs to crop or pasture PFTs not included by the net transi-

tions. Shifting cultivation is an optional feature of CLM5 and is off by default and in all simulations consid-

ered in this paper.

Changes to urban modeling capabilities include the introduction of several human heat stress indices for

both urban and rural areas that are calculated and output by default (Buzan et al., 2015). A more sophisti-

cated and realistic building space heating and air conditioning submodel that prognoses interior building

air temperature and includes more realistic space heating and air conditioning waste heat factors is incorpo-

rated (Oleson & Feddema, 2019).

2.3.10. Fire

The fire parameterization in CLM5 simulates four types of fire: agricultural fires in cropland, deforestation

fires in tropical closed forests, peat fires, and nonpeat fires outside cropland and tropical closed forests (see Li

& Lawrence, 2017 for details; Li, Wigmosta, et al., 2013; Li et al., 2012). Burned area is affected by climate and

weather conditions, vegetation composition and structure, and human activity. Once burned area is deter-

mined, the impact of the fire is calculated, including biomass and peat C losses, fire‐induced vegetation mor-

tality, adjustment of the vegetation C:N pools, and fire C and other trace gas emissions. The fire model is

mainly unchanged from CLM4.5 except with a modified scheme for the dependence of fire occurrence

and spread on fuel wetness for nonpeat fires outside cropland and tropical closed forests and with the depen-

dence of agricultural fires on fuel load removed.

The CLM5 fire model, when coupled to the Community Atmosphere Model, can simulate and transfer emis-

sions of total C, aerosols (e.g., black C, organic C, and DMS), greenhouse gases (e.g., CO2, N2O, and CH4),

and other trace gases (e.g., CO, NO, NO2, NH3, HONO, SO2, and over 15 nonmethane hydrocarbon species)

to the atmosphere (Ford et al., 2018). Fire emissions are estimated at the PFT level from total fire C emis-

sions, a conversion factor from C to dry matter (DM; 0.5 g C/g DM) and emission factors (g species/g DM)

that convert DM burned into emissions. The emission factors for each species used in CLM5 are derived from

up‐to‐date inventories compiled from field and laboratories studies (Andreae & Merlet, 2001, updated to

2016; Akagi et al., 2011, updated to 2014; and references therein). The vertical distribution of fire emissions

is derived from PFT‐dependent maximum injection heights (4.3 km for needleleaf trees, 3 km for other bor-

eal and temperate trees, 2.5 km for tropical trees, 2 km for shrublands, and 1 km for grass and croplands).

These injection heights are compiled from satellite‐based observations of fire smoke plumes (Val Martin

et al., 2010; Val Martin et al., 2018). The fire emissions module is not active by default in CESM2 but is avail-

able as a research option.

2.3.11. Parameters

Parameters of CLM5 were defined where possible from literature values and meta‐analyses, with some

adjustments made to reduce large model biases, while accounting for errors in observational data sets and

in the globally applied model structure. Default parameter values for all model parameters can be found

in the CLM5 technical description. A brief description of the rationale for the values used for selected para-

meters is included here. Note that during the process of finalizing the CLM5 parameter set, we found several

instances where parameter value trade‐offs needed to be made related to joint goals of relatively small biases

for quantities such as GPP and LAI and reasonably high PFT survivability rates (see section 4.2). Fisher et al.

(2019) provided a more detailed assessment of CLM5 C and N cycle sensitivity to parametric uncertainty as

well as additional discussion of parameter definition for CLM5. Note that ILAMB was not used during the

parameter adjustment process.

2.3.11.1. Plant Hydraulics Parameters

The plant hydraulics scheme introduces four new parameters for each PFT (Kennedy et al., 2019), including

the water potential at which half of the hydraulic conductivity of each plant element (root, stem, shaded leaf,

and sunlit leaf) is lost (p50), the conductivity of the soil‐root interface (krmax), the conductivities at the inter-

faces between each of the plant elements (kmax), and the cavitation vulnerability curve shape‐fitting para-

meter (ck). The code is structured so that in future investigations, parameter values for each plant element
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can be adjusted individually, but in the released version all plant elements use the same value. Estimates of

p50 across PFTs are obtained from analysis of the data set presented by Choat et al. (2010). Large data sets on

comparable plant tissue conductivities (kmax and krmax) are not widely available. Further, because the

resistances of the plant and roots act in series, the minimum conductivity among the plant elements largely

controls the overall plant conductivity. Plant conductivities are therefore calibrated as follows: kmax values

are set uniformly high, and krmax is considered a free tuning parameter. The introduction of PHS represents

the first instance where a plant hydrodynamic model has been applied globally across all biomes in CLM, or

indeed, in any ESM of which we are aware. Consequently, the plant hydraulics parameter values included in

the released CLM5, which were defined in a generally ad hoc manner, should be considered an initial esti-

mate of reasonable parameter valuables that can and should be refined as required.

2.3.11.2. Vegetation Parameters

Several vegetation parameters were updated relative to those used in CLM4 or CLM4.5. (1) PFT‐specific

values for the slope of the Medlyn stomatal conductance (medlynslope) were adapted from Medlyn et al.

(2011) as documented in Franks et al. (2017). (2) PFT‐specific values of the respiration model intercept

(lmr_intercept_atkin) were derived fromAtkin et al. (2015). (3) Leaf longevity (leaf_long), target leaf CN ratio

(leafcn), and specific leaf area (slatop) were all derived from the mean PFT‐specific values identified in the

TRY database (Kattge et al., 2011). With our final set of default CLM5 parameters, the productivity for boreal

and temperate needleleaf evergreen trees is too high, particularly when the LUNA model is active. To cali-

brate model performance, leafcnwas increased to one standard deviation above the mean reported value for

these PFTs.

The parameters for carbon allocation are as follows: ratio of new coarse root to new stem allocation, croot_-

stem; ratio of new fine root to new leaf allocation, froot_leaf; and ratio of new stem to new leaf allocation,

stem_leaf. The ratios of tissue biomass are the basis for the fixed carbon allocation scheme used in CLM5,

which is an oversimplification of real allometric ratios that vary as plants age. Thus, it is difficult to directly

connect the parametric allocation ratios used in CLM5 to those obtained from databases. The CLM5 alloca-

tion parameters (ratio of new coarse root to new stem, croot_stem; ratio of new fine root to new leaf, froo-

t_leaf; ratio of new stem to new leaf, stem_leaf; and ratio of new live wood to new total wood) were

initially derived from an analysis by Ghimire et al. (2016) but were further adjusted to reduce large biases

in LAI in deciduous PFTs. CLM4.5 down‐regulated leaf allocation with high NPP, whereas CLM5 adopts

a fixed allocation scheme to rectify issues with woody biomass accumulation in tropical forests identified

by Negrón‐Juárez et al. (2015). For CLM5, allocation to stems and roots was increased for many PFTs, poten-

tially compensating for the removal of a variable allocation parameterization, and potentially also contribut-

ing to low growth and survival in more marginal climate areas. This set of parametric trade‐offs reflects the

need for a whole‐plant‐based (as opposed to big leaf, tissue‐based) allocation scheme, as is envisaged for

future generations of the model (Fisher et al., 2015; Fisher et al., 2018).

2.3.11.3. Nitrogen Model Parameters

The introduction of the FUN model to CLM5 adds numerous parameters describing the costs of N acquisi-

tion from the environment and control on the flexibility of the tissue C:N ratios. Many of these parameter

values are constrained by data but still include some uncertainty since they represent processes (N uptake,

fixation, and allocation) that are sparsely documented in the literature. Nitrogen cycle models in general

have large structural and parametric uncertainty. The maximum fraction of net carbon assimilation that

can be spent (at a PFT level) on fixation is a proxy for the fraction of N fixers (FUN_fracfixers) in an ecosys-

tem. FUN_fracfixers is set at 0.25 for each PFT and 0 for all CFTs except temperate and tropical soy where it

equals 1. Note that although FUN_fracfixers allows fixation, this does not necessarily mean it occurs if there

are cheaper C costs for N acquisition from other pathways. Parameters for fixation cost (a_fix, b_fix, c_fix,

and s_fix) were derived from Houlton et al. (2008). The relative values of the six parameters of the active cost

of N uptake (akc_active, akn_active, ekc_active, ekn_active, kc_nonmyc, and kn_nonmyc) were taken from

Brzostek et al. (2014). These parameters shape the C cost curves for the mycorrhizal and direct root uptake

pathways. Note that N uptake costs of some PFTs were adjusted from Brzostek et al. (2014) values to reduce

biases in GPP, especially broadleaf tropical deciduous trees and C4 grass, which Brzostek et al. (2014) did not

provide. The parameters that adjust C expenditure on N uptake with changing environmental cost and exist-

ing tissue ratios (fun_cn_flex_a, fun_cn_flex_b, and fun_cn_flex_c) were determined via an off‐line calibra-

tion exercise to achieve variations in tissue C:N ratios for the typical modeled N‐cost range to be
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consistent with the range of observations. These parameters allowed FUN, which was originally parameter-

ized for models with fixed plant C:N ratios, to work with the variable plant C:N ratios in CLM5. The fraction

of ectomycorrhizal fungi (per_ecm) was derived from Shi et al. (2016).

2.3.12. FATES

Included as an option with CLM5 is the FATES (Fisher et al., 2015). FATES is a cohort model of vegetation

competition and coexistence, allowing a representation of the biosphere which accounts for the division of

the vegetated land into successional stages and for competition for light between height‐structured cohorts

of representative trees of various PFTs. FATES allows the prediction of biome boundaries directly from plant

physiological traits via their competitive interactions and includes the SPITFIRE model of Thonicke et al.

(2010), modular allometry and allocation schemes, flexible trait‐based PFT definition, interactive logging,

and plant hydrodynamics based on Christoffersen et al. (2016). FATES fast‐timescale physiological processes

are based on CLM but resolved for a height‐structured andmulti‐PFT canopy. FATES is not active by default

in CLM5 and is not active within any simulations assessed in this manuscript. Open‐source development

and application of the codebase is ongoing (https://github.com/NGEET/fates).

2.3.13. Data Assimilation Capabilities

The capabilities for conducting data assimilation with CLM5 using the Data Assimilation Research

Testbed (DART, Anderson et al., 2009) continue to improve, particularly with respect to computational

efficiency. The CLM‐DART system relies heavily on the CESM multi‐instance capability and other work-

flows. The latest distribution of DART includes full support for CLM5 both in terms of the initial setup

scripts provided to create a multi‐instance case suitable for DA and the assimilation scripts called by

CESM and for the DART executables themselves. CLM‐DART has the ability to assimilate many land

observation types using the general DART framework, including in situ and remote sensing measure-

ments of soil moisture and temperature, eddy covariance flux tower measurements of carbon and water

fluxes, and most recently LAI and aboveground biomass (Fox et al., 2018). Previous work with CLM‐

DART has concentrated on hydrometeorology and describe capabilities to assimilate snow cover fraction

(Zhang et al., 2014), AMSR‐E brightness temperature for snow depth (Kwon et al., 2016), soil moisture

(Zhao et al., 2016), and GRACE total water storage (Zhao & Yang, 2018). Work is underway to add

capability to assimilate solar‐induced fluorescence and the latest generation of spaceborne soil

moisture observations.

3. Simulations and Assessment

3.1. Simulations

Table 2 lists the CLM4, CLM4.5, and CLM5 simulations that have been performed. This set of experiments

provides a comprehensive assessment of CLM across model generations and across common CLM config-

urations, as well as the basis to assess the sensitivity to forcing data sets. The assessment of three model ver-

sions allows readers to understand the progression of model performance and provides context for CESM1

versus CESM2. These include simulations that apply LAI prescribed from satellite phenology (SP) and simu-

lations with prognostic vegetation state and active biogeochemistry (BGC). Note that only CLM5 has the

capability to dynamically simulate crop management and crop management change through time so this

simulation is defined as CLM5 BGC crop. All simulations were completed at a resolution of 0.9° latitude

by 1.25° longitude and except where indicated include all required historical or future CLM forcings (as

applicable for each configuration) including time series of CO2, aerosol deposition, N deposition, and land

use change. The projection period (2015–2300) simulations, which used the “anomaly forcing” method

(Lawrence et al., 2015), and the no land use change simulations are not assessed here but are available to

the community via the data portal for use. The +N and +CO2 simulations are 20‐yearlong simulations start-

ing in year 1995 that replicate the CLM4, CLM4.5, and CLM5 BGC simulations but with a step increase of (1)

nitrogen deposition (5 g N·m−2·year−1 above ambient evenly distributed over the year) and (2) atmosphere

CO2 concentration (200 ppm over ambient; see Wieder et al., 2019 for further detail). Results from the +CO2

and +N experiments are described in section 4.7. Note that we restrict our analysis to land‐only simulations

in this manuscript. However, for reference we include assessment of land quantities in CESM1 versus

CESM2 with ILAMB and the CLM diagnostics package (see section 3.3). The performance of CLM5 within

CESM2 will be assessed in a separate manuscript.
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The standard CLM spin‐up protocol is used to achieve carbon, water, and energy equilibrium at the start of

the simulation. The year 1850 equilibrium conditions are calculated by integrating over a repeating 20‐year

period of an atmospheric reanalysis data set (i.e., years 1901 to 1920 from the forcing data sets described

below) along with fixed atmospheric CO2, N deposition, aerosol deposition, and land use (note that wood

harvest is set to zero during spin‐up). As with earlier versions of CLM, it is prohibitively expensive to run

the full model for the period of time required to achieve a quasi steady state. Thus, the spin‐up procedure

involves a new “accelerated decomposition” methodology, updated from that introduced in Thornton and

Rosenbloom (2005) and Koven et al. (2013), with modifications for CLM5 to both add a geographic term

to the acceleration and also accelerate the stem and coarse root C turnover. During the accelerated decom-

position phase, the decomposition of the slow C pools (e.g., the long turnover time soil C and coarse woody

debris pools) are artificially increased to allow faster convergence on the equilibrium state (see section 21.8

of CLM5 technical description for details). The CLM historical simulations assessed here were initialized

from spin‐up simulations that consisted of ~400 years in accelerated mode, followed by an additional 400–

800 years in “normal mode.” Though the length of time for spin‐up varies across configurations, by the

end of the spin‐up, the global total ecosystem C is drifting by less than 0.02 Pg C/year, and fewer than 5%

of grid cells are out of C balance by more than 1 g C·m−2·year−1. For CLM5, initial/cold start (prior to

spin‐up) soil C and N stocks are increased substantially over earlier model versions, which was done to per-

mit vegetation establishment in harsh environments (where the need for plants to pay for N uptake can inhi-

bit growth under marginal conditions). In some high‐latitude grid cells, however, vegetation does not

survive, and soil C turnover is slow due to cold climate conditions. In these locations, the high initial soil

C stocks do not deplete during the accelerated spin‐up, which leads to unrealistically high equilibrium soil

C stocks in those grid cells. To circumvent this undesirable feature, the C stocks of the slow C pools are set to

zero where vegetation C is <0.1 g C/m2 by the end of the accelerated spin‐up phase.

3.2. Meteorological Forcing Data Sets

For comparison, we utilize three historical meteorology/climate forcing data sets (1901–2014) which are

drawn from standard forcing data sets that will be used within LS3MIP (Van den Hurk et al., 2016).

3.2.1. GSWP3v1

The Global Soil Wetness Project forcing data set (GSWP3) is the default forcing data set for LS3MIP (Van den

Hurk et al., 2016) and LUMIP (Lawrence et al., 2016) land‐only simulations. It is a 3‐hourly 0.5° global for-

cing product (1901–2014) that was developed for the third phase of GSWP3 (http://hydro.iis.u‐tokyo.ac.jp/

GSWP3/). It is based on the 20th Century Reanalysis version 2 performed with the NCEP model (Compo

et al., 2011). The reanalysis was dynamically downscaled to T248 (0.5°) resolution using the Global

Spectral Model using a spectral nudging technique (Yoshimura & Kanamitsu, 2008). Bias correction for tem-

perature, precipitation, and longwave radiation, and shortwave radiation were made using CRU TS v3.21

(Climate Research Unit, Jones & Harris, 2013), GPCCv7 (Global Precipiation Climatology Centre,

Schneider et al., 2014), and Surface Radiation Budget data sets, respectively. A wind‐induced undercatch

correction was applied.

Table 2

Simulations Performed for CLM Analysis

Component CLM4 CLM4.5 CLM5

Forcing SP BGC +CO2, +N No LUC SP BGC +CO2, +N No LUC SP BGC +CO2, +N No LUC

GSWP3v1 ✓o ✓o★ ✓ ✓ ✓o★ ✓ ✓ ✓ ✓o ✓o★ ✓ ✓

CRUNCEPv7 ✓ ✓ ✓ ✓★ ✓

WATCH/

WFDEI

✓ WF ✓ W

Note.✓ indicates historical simulation (1850–2014,
W
1850–2001,

WF
1979–2014).★ indicates projection period simulation (RCP8.5, 2015–2300). o indicates daily

and hourly output for selected years. SP = satellite phenology; BGC = biogeochemistry; no LUC = land use and land cover change turned off; +N = nitrogen
addition; +CO2 = CO2 addition. Except where explicitly noted, all simulations include all historical or future forcings as applicable to the version of the model
(CO2, N deposition, aerosol deposition, and LUC time series). Note that CLM5 is the only CLM version with capability to run with the dynamic crop model. See
section 3.1 for further details on the experimental design. Except for CLM4SP, CLM4.5SP, and CLM5SP, all simulations are with active BGC.
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3.2.2. CRUNCEPv7

CRUNCEP is the default forcing data set used in the Global Carbon Project TRENDY simulations (Le Quéré

et al., 2018) and MsTMIP simulations (Huntzinger et al., 2013). It is also a secondary forcing data set for

LS3MIP land‐only simulations. It is a 6‐hourly 0.5° global forcing product (1901–2015) which is a combina-

tion of the CRUTS v3.24 monthly climate data set (Jones &Harris, 2013) and NCEP reanalysis (Kalnay et al.,

1996). The reanalysis is only used to generate diurnal and daily anomalies added to CRU TSmonthly means.

Precipitation, temperature, cloudiness, and relative humidity are all based on CRU while longwave radia-

tion, pressure, and wind speed are taken directly from NCEP.

3.2.3. WATCH/WFDEI

WATCH is a 3‐hourly or 6‐hourly 0.5° global forcing product (1901–2001). It uses the CRU TS2.1 (Mitchell &

Jones, 2005) and GPCCv6 data sets to provide themean climate and the European Centre forMedium‐Range

Weather Forecasts (ECMWF) reanalysis (ERA‐40) product to distribute the mean monthly climate to daily

and hourly estimates. Years 1958–2001 are based directly on ECMWF Reanalysis (ERA‐40) whereas years

1901–1957 are based on reordered ERA‐40 data. Corrections have been applied for seasonal‐ and decadal‐

scale variations in the effects of tropospheric and stratospheric aerosol loading on solar radiation, thereby

accounting for the effects of global “dimming” and “brightening.” Additional detail about the WATCH data

set is available in Weedon et al. (2011). Note that simulations with WATCH forcing only run through year

2001. We also utilize the WFDEI product, which utilizes the WATCHmethodology to the ERA‐Interim rea-

nalysis data set (Weedon et al., 2014). This WFDEI data set covers the period 1979–2012. Due to the short

record, we only use WFDEI data set for SP simulations.

3.3. ILAMB

The International Land Model Benchmarking (ILAMBv2.1, Collier et al., 2018) package is used to assess the

models. ILAMB is an open‐source landmodel evaluation system that operates on global‐, regional‐, and site‐

level data and provides a hierarchical scoring system to indicate model fidelity. The ILAMBv2 version used

here integrates analysis for 28 variables utilizingmore than 60 data sets and data products. For each variable,

ILAMB produces statistics, maps, time series, and metrics for annual mean, bias, relative bias, RMSE, sea-

sonal cycle phase, spatial distribution, interannual variability, and variable‐to‐variable assessments. Both

global and regional assessments are included.

To address a range of questions related to the impacts of model configuration (e.g., prescribed satellite vege-

tation phenology [SP in CLM infrastructure terminology] vs. prognostic vegetation and biogeochemistry

[BGC in CLM infrastructure terminology], model structural evolution across CLM generations [CLM4 vs.

CLM4.5 vs. CLM5], and forcing data sets [GSWP3v1 vs. CRUNCEPv7 vs. WATCH]), we ran ILAMB for sev-

eral different sets of the model simulations listed in Table 2 (http://www.cesm.ucar.edu/experiments/

cesm2.0/land/diagnostics/clm_diag_ILAMB.html):

• structural evolution BGC mode (CLM4BGC, CLM4.5BGC, CLM5BGC; GSWP3v1 and CRUNCEPv7

forcing);

• structural evolution prescribed vegetation mode (CLM4SP, CLM4.5SP, CLM5SP; GSWP3 forcing);

• forcing uncertainty (CLM5BGC and CLM5SP with GSWP3, CRUNCEP, and WATCH/WFDEI);

• structural and forcing uncertainty (CLM4, CLM4.5, CLM5 with GSWP3, and CRUNCEP, SP, and BGC).

The CLM diagnostics package provides a vast set of additional plots and tables, including plots for many vari-

ables that are not included in ILAMB as well as seasonal comparisons against selected observed data sets.

CLM diagnostic package results are available here for reference (http://www.cesm.ucar.edu/experiments/

cesm2.0/land/diagnostics/clm_diag_PCKG.html).

4. Results

In this section, we present a representative sample of analyses that are selected to emphasize strengths and

weaknesses of CLM5, relative to CLM4 and CLM4.5, as well as to highlight new features of themodel. Due to

the breadth of model improvements and the scope of the model output, the assessment presented here is

necessarily incomplete. Companion manuscripts focused on CLM5 for the CESM2 Special Issue provide

more in‐depth assessment of specific aspects of the model (CO2 and N‐additions response, Wieder et al.,
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2019; plant hydraulics, Kennedy et al., 2019; C‐N interactions and parameter uncertainty, Fisher et al., 2019;

urban data sets, Oleson & Feddema, 2019; and terrestrial carbon cycle uncertainty, Bonan et al., 2019).

4.1. Assessment with ILAMB

Encouragingly, there is a general progression in the quality of the simulations across model generations.

CLM5 outperforms CLM4 for the majority of assessed variables (Figure 3, see also http://www.cesm.ucar.

edu/experiments/cesm2.0/land/diagnostics/clm_diag_ILAMB.html). We refer the reader to ILAMB output

where vast amounts of additional figures and statistics are available. The improvements from CLM4.5 to

CLM5 are comparatively subtle with several variables showing improvement (biomass, burned area, LAI,

net ecosystem carbon balance, latent heat, terrestrial water storage, albedo, net ecosystem exchange, and

ecosystem respiration) but others showing degradation (soil carbon, runoff, surface net radiation, and

CO2). The broad improvements across model generations are an emergent feature of the comprehensive

model development activities described in section 2. Definitive identification of the source of particular

improvements (or degradation) is beyond the scope of this paper, but some insight is provided in the analyses

below. Note that ILAMB results should be interpreted carefully. The summary scores shown in Figure 3

reflect integrated scores across multiple metrics (RMSE, bias, interannual variability, spatial pattern, etc.)

and for some variables alsomultiple observational data sets. An overall improved or degraded score for a par-

ticular variable can be a result of a mix of scores for individual metrics. For runoff, for example, the overall

score is degraded in CLM5 which, when one drills down into ILAMB output, comes from a combination of

degraded interannual variability, improved spatial distribution, and a slightly greater mean bias (shifting

from a low bias in CLM4 to a high bias of similar magnitude in CLM5 when forced with GSWP3v1; when

forced with CRUNCEPv7, all model versions show a large low bias in runoff). Consequently, the overall

reduced score for runoff should be considered within this more nuanced perspective.

ILAMB scores indicate a degradation in the simulations of soil carbon stocks from CLM4.5 to CLM5,

but the observed estimates are known to be highly uncertain. An alternative soil carbon metric that

evaluates the models against apparent soil carbon turnover time shows an improvement from CLM4.5

to CLM5 (section 4.6). This apparent disagreement between two metrics of soil carbon highlights one

of the challenges of benchmarking. When there is disagreement across metrics, we argue that the metric

that emphasizes a model process is more meaningful than one that simply evaluates a stock or flux.

Consequently, in this instance, our interpretation (based partly on expert judgment) is that the represen-

tation of soil carbon is actually slightly improved in CLM5, even though the ILAMB assessment indi-

cates otherwise. We refer the readers to Collier et al. (2018) for more information on how observed

data set uncertainty is accounted for in ILAMB and note that improved treatment of observational data

uncertainty is ongoing within the ILAMB project.

ILAMB also assesses functional relationships between two variables (e.g., precipitation vs. GPP or LAI).

CLM5 performs better than CLM4 or CLM4.5 for the majority of the functional relationships assessed

(Figure 4), suggesting improved process representation in CLM5. In particular, the relationships between

GPP and climate variables such as solar radiation and precipitation are improved, though there is a slight

degradation (CLM4.5 to CLM5) of the relationship between GPP and surface air temperature.

Relationships between burned area and climate are also improved (see ILAMB plots), with burned area cor-

rectly peaking at average annual precipitation rates of 2.5 to 5 mm/day, an ecoclimatic regime that is dry

enough for fire but productive enough to establish fuel loads.

The ILAMB system was designed to probe model performance across both timescales and spatial scales. At

the global scale, the seasonal cycle of atmospheric CO2 deduced from CLM carbon fluxes improved substan-

tially from CLM4 to CLM5, especially in the mid‐to‐high northern latitudes. However, the magnitude of

interannual variability has degraded, especially in the tropics. For all CLM model versions, the Northern

Hemisphere interannual variability is at most one third of that observed at NOAA marine boundary

layer sites.

Utilizing ILAMB, we can also identify a significant sensitivity of simulation output to the forcing data set

(Figure 5). While all of the forcing data sets used in this study are observationally derived, each one employs

different methodology for downscaling and bias correction and can therefore potentially be assessed with

ILAMB. GSWP3‐forced simulations score best for most of the forcing variables (assessed forcing variables
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are surface air temperature, precipitation, surface relative humidity, and surface downward shortwave and

longwave radiation) with relative humidity being the exception. Generally, CLM5 scores best for simulations

forced with the GSWP3 forcing data set. The fact that model output variables score better with the best

(according to ILAMB) forcing data set suggests, not surprisingly, that land models are likely to perform

better with more accurate forcing, particularly when functional relationships are represented reasonably

by the model.

As noted in section 3.1, it is beyond the scope and aim of this paper to provide an assessment of the

performance of CLM5 within CESM2. However, we direct interested readers to the ILAMB results for

CESM1/CLM4 versus CESM2/CLM5 that we provide on the ILAMB webpage associated with this

paper. In those results, we see that the land climate forcing variables (e.g., surface air temperature,

downwelling shortwave and longwave radiation, and surface relative humidity) are generally marginally

improved in CESM2 (with the exception of precipitation which shows slight degradation). The assessed

land carbon, water, and energy variables show similar improvements in the coupled simulations

(i.e., from CESM1 to CESM2) as they do in land‐only simulations (CLM4 to CLM5). The modest

improvement in coupled model land forcing quantities combined with the consistent relatively strong

improvements in land‐only and coupled simulations implies that the source of improvement in land

surface variables derives from developments in CLM, rather than due to improvements in other compo-

nents of CESM.

Figure 3. ILAMB summary diagram for CLM4BGC, CLM4.5BGC, and CLM5BGC for GSWP3v1 and CRUNCEPv7 for-

cing. A version of this figure designed for colorblind readers is available within the ILAMB results.
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4.2. PFT‐Level Assessment

Biases in the annual monthly maximum LAI for selected PFTs are shown in Figure 6 and for all PFTs in sup-

porting information Figure S2. CLM5 shows reduced root mean square error compared to MODIS LAI

(Table 3) for nine out of 14 PFTs compared to CLM4.5. Broadleaf evergreen tropical trees, broadleaf decid-

uous temperate trees, and C4 grasses showed the biggest improvement.

During the course of the development of CLM5, we tested the model with parameter sets that resulted in

considerable areal fractions of the vegetation not surviving for one or more PFTs. This result leads us to rou-

tinely track survival percentage throughout the model development process. Survival percentage for each

PFT is reported in Table 3. In general, survival percentage is slightly higher in CLM5. Survival fraction plots

in Whitaker space are shown in Figure S3. We can see, unsurprisingly, that for most PFTs survival fractions

are low in dry and warm climates or in very cold climates. CLM PFTs have the same parameters across their

entire geographical range, thus not accounting for geographical trait variations which could nonetheless reg-

ulate surface fluxes (Giardina et al., 2018; Konings & Gentine, 2017). Land models where PFTs or their para-

meters are more disaggregated, for example, into those adapted for more and less productive environments

(e.g., CLM‐FATES), should in principle be able to circumvent this issue. It is important to note that in CLM,

once a PFT dies (i.e., vegetation C goes to zero) in a particular grid cell, that PFT cannot grow back during the

course of the simulation, even if climate conditions become more amenable for survival.

Maximum carboxylation rate at 25 °C, Vcmax25, values (representing leaf canopy average) for each PFT and

each model version are shown in Table 3 and are compared to the synthesized Kattge et al. (2009) observa-

tional estimates. In CLM4 and CLM4.5, the Vcmax25 values are prescribed with the values in CLM4.5 speci-

fically calibrated to reflect data in Kattge et al. (2009), except for broadleaf evergreen tropical trees which

were adjusted upwards so as to produce a viable tropical forest photosynthesis levels. In CLM5, Vcmax25 is

a prognostic quantity (see section 2.3.7), and the values shown in the table represent a spatially weighted

average monthly maximum Vcmax25 for each PFT. With the model's current parameterization, CLM5 pre-

dicts Vcmax25 values that are lower than the observational estimates for most PFTs, especially C3 grasses

Figure 4. ILAMB variable‐to‐variable comparison summary diagram for CLM4BGC, CLM4.5BGC, and CLM5BGC for

GSWP3v1 forcing. See Collier et al. (2018) for details on this metric. Right panels show example ILAMB relationship

plot for a particular variable‐to‐variable comparison between climatological annual precipitation and LAI. Black line,

repeated in each plot, is the observationally derived relationship. Error bars indicate the ±1 standard deviation of LAI for

all grid cells that lie within that precipitation bin. Values in parentheses indicate ILAMB score for that comparison.
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(Table 3 and Figure S4). The discrepancy may be partially related to the fact that observed values of Vcmax25

may not represent the environmental conditions (e.g., shading) as experienced by the plants in CLM, in

addition to challenges associated with the limited spatial representativeness of the observed values. The

ability of the model to represent photosynthesis and LAI reasonably well even with such low Vcmax25

values is potentially indicative of a structural problem in the leaf‐level versus canopy‐scaled value (as

discussed in Rogers et al., 2017) which will be investigated further using off‐line tools such as those

presented by Walker et al. (2018). The prognostic Vcmax25 values produced in CLM5 should be perceived

as an initial effort to incorporate parameterizations that can simulate changes in leaf N allocation and

photosynthetic capacity under environmental change. Further investigation is needed to improve the

model representation of photosynthetic capacity.

Figure 5. ILAMB summary diagram for CLM5SP (prescribed vegetation, left) and CLM5BGC (prognostic vegetation and

carbon cycle, right) forced with three alternative forcing data sets (GSWP3v1, CRUNCEPv7, and WFDEI/WATCH). Note

that the CLM5BGC WATCH‐forced runs only run through year 2001 which means that CLM5BGC‐WATCH runs are

evaluated over different set of observational years. Gray color for CLM5‐WATCH for terrestrial water storage is because

there are not enough years of overlap between observations and model. Note that a different set of forcing data sets is used

for SP versus BGC simulations (WFDEI for SP and WATCH for BGC) which affects the relative scores even for forcing

variables such as precipitation which is the same for CRUNCEPv7 and GSWP3v1 in SP versus BGC.
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Simulated canopy height and canopy height biases with respect to those derived from ICEsat (Simard et al.,

2011) are shown for all tree PFTs for CLM5BGC in Figure S5. On average, boreal needleleaf evergreen trees

are too tall by 5–10 m while tropical broadleaf evergreen trees and temperate and boreal deciduous trees are

too short by 5–10 m. These biases are related to simulated plant biomass as well as uncertainties in the spe-

cified allometric relationships between biomass and height. Biases in canopy height will affect the land sur-

face roughness length and therefore turbulent heat flux exchange between the land and the atmosphere.

4.3. Hydrology

The main changes to soil hydrology (see section 2.3.2) are (1) introduction of spatially variable soil depth

(depth to bedrock), (2) replacement of the unconfined aquifer that existed below the soil column with a

no flux bottom boundary condition (Swenson & Lawrence, 2015), and (3) a revised soil evaporation parame-

terization that accounts for the rate of diffusion of water vapor through a dry surface layer (Swenson &

Lawrence, 2014). Figure 7 illustrates the impacts of these new features for two example grid cells in the

southwest and southeast United States. At the southwest U.S. grid cell, one can see that ET is too variable

compared to the observations for CLM4 and CLM4.5. With the dry surface layer in CLM5, soil evaporative

water losses are restricted, resulting in improved ET seasonality. Water from snow melt and spring rains

then infiltrates deeper into the soil column (which is 8.5 m deep at this location), providing a source of moist-

ure for evaporation into the summer months. At the eastern U.S. grid cell, we can observe a different feature

of the new model. The shallow 1‐m‐thick soil prescribed at this location in CLM5 cannot store much water.

Consequently, we can see strong drying throughout the soil column in the low precipitation year of 1993,

which then restricts ET from summer into fall, in agreement with observations. In CLM4 and CLM4.5,

ET is unrealistically supported through this period by soil water that is stored deeper in the standard 3.5‐

m‐thick soils.

ILAMB and CLM diagnostics package results indicate only relatively small changes in the quality of annual

streamflow for the top 50 biggest rivers. In particular, mean flow for the Amazon and Congo rivers is

increased and shows better agreement with observed flows, with the improvement mainly due to reduction

of the excessively high tropical forest ET that was seen in CLM4. The mean bias in global annual mean river

flow is slightly degraded, with CLM5 showing a high bias in global river discharge in both SP and BGC con-

figurations (bias is larger in BGC mode). On the other hand, the global annual mean bias and bias/RMSE

scores for ET show nominal improvement in CLM5. We also note that differences in simulated runoff and

ET between forcing data sets are larger than the differences across model versions.

Figure 6. Maps of biases in annual monthly maximum LAI (m
3
/m

3
) for CLM4BGC, CLM4.5BGC, and CLM5BGC with GSWP3 forcing for two PFTs, temperate

needleleaf evergreen trees, and C4 grasses. Weighted area average RMSE is shown in upper left of each plot. Data are shown only where the individual PFT frac-

tion for a particular grid cell is >0.

10.1029/2018MS001583Journal of Advances in Modeling Earth Systems

LAWRENCE ET AL. 22



Assessment of the impact of hydrology changes on simulated land‐atmosphere interactions is beyond the

scope of this manuscript. However, we can infer that the relationship is likely to differ by examining the

simulated soil moisture residence time (SMRT) across models. SMRT is the e‐folding decay timescale of soil

moisture due to evapotranspiration and is an integrative measure of soil‐plant‐atmosphere dynamics. We

calculate SMRT for the root zone (0–0.5 m) from daily soil moisture curves during post‐rain periods using

a procedure similar to the estimation of a base flow recession constant (Vogel & Kroll, 1996). This residence

time metric is reflective of the evapotranspiration dry‐down response timescale (Teuling et al., 2006). In

Figure 8, SMRT as simulated by CLM5 is shown for the continental United States for the May to October

warm season and is compared to observationally derived estimates from the North American Soil

Moisture Database (Quiring et al., 2016). In general, the SMRT as simulated by CLM5 compares well with

observations except for the western United States where observations show a wide range of residence times

from less than 60 days to greater than 90 days whereas CLM5 shows uniformly longer residence time (120

days or more). At least some of the western U.S. discrepancy could be attributed to the poorly resolved topo-

graphic gradients at the nominal 1° resolution of these simulations. Figures 11b and 11c compare the SMRT

in CLM5with that in CLM4 and CLM4.5. Overall, the SMRT in CLM5 has increased across much of the east-

ern United States and decreased in parts of the western United States compared to both CLM4 and CLM4.5.

Identification of the source of the changes in residence time is beyond the scope of this paper, but the spa-

tially explicit soil depths, the introduction of the dry surface layer parameterization for soil evaporation,

and soil moisture dynamics associated with the PHS routine are all likely to be factors. Averaged across

the continental United States domain, SMRT is higher by 15% compared to CLM4.5 and 1.5% compared to

CLM4. Dirmeyer et al. (2016) concluded that the SMRT in CLM4 was 18% too low, so the lengthened resi-

dence time in CLM5 may represent a change in the desired direction.

The residence time metric suggests improvements in CLM5 compared to CLM4, and CLM4.5 with CLM5

shows a generally higher SMRT across majority of the soil moisture observing network, as one would expect

with generally deeper soils and stronger soil evaporation limitations associated with the dry surface layer

parameterization. In many regions this moves the model further from observed estimates (Table S1) though

caution is warranted when comparing CLM SMRT with observationally derived SMRT due to uncertainties

from a number of sources including uncertainties in observationally derived SMRT due to different types of

sensors and measurement techniques at each site, the substantial spatial‐scale mismatch between grid cells

and observational sites, as well as uncertainties in model parameterizations (Dirmeyer et al., 2016). We

Table 3

PFT‐Level Quantities

Component

Area LAI RMSE
a
(m

2
/m

2
) Survival (%) Vcmax25 (μmol CO2·m

−2
·s
−1

)

(10
6
km

2
) CLM4 CLM4.5 CLM5 CLM4 CLM4.5 CLM5 Obs

b
CLM4 CLM4.5 CLM5

NET temperate 4.9 1.9 2.3 2.0 93 91 87 63 61 63 42

NET boreal 6.0 1.7 3.6 2.7 91 91 92 63 54 63 55

NDT boreal 2.1 1.0 1.3 1.1 67 10 67 39 57 39 52

BET tropical 14.3 1.9 1.5 1.1 92 76 92 29 72 55 38

BET temperate 1.3 1.4 1.4 3.8 88 74 99 62 72 62 39

BDT tropical 2.0 2.4 2.2 2.5 63 24 78 29 52 41 35

BDT temperate 3.0 1.9 2.1 1.1 85 82 81 58 52 58 50

BDT boreal 1.0 1.5 1.6 1.0 92 88 78 58 52 58 50

BES temperate 0.03 3.2 2.3 1.7 83 68
a

67 62 72 62 43

BDS temperate 4.6 0.9 0.6 0.6 26 18 30 54 52 54 44

BDS boreal 4.9 1.1 1.3 1.8 35 56 88 54 52 54 58

C3 Arctic grass 8.7 1.4 2.7 2.5 61 78 83 52 78 52

C3 grass 16.0 1.6 1.6 1.8 60 78 85 78 52 78 36

C4 grass 19.9 2.1 2.4 1.2 99 98 90 52 52 50

Note. PFT area, LAI RMSE, and Vcmax25 are calculated for year 2010. Survival percentage is for year 1850. For Vcmax25, data are only included for plants that
survive (i.e., annual maximum LAI > 0.01 m

2
/m

2
). For Vcmax25, CLM4 and CLM4.5 parameter values are prescribed. Vcmax25 is a prognostic quantity in

CLM5. All data shown are fromGSWP3v1‐forced BGC simulations. Note that survival rates for CRUNCEPv7‐forced simulations are generally within 5% of those
with GSWP3v1. N = needleleaf; B = broadleaf; E = evergreen; D = deciduous; T = tree; S = shrub.
a
LAI observations are from MODIS.

b
Vcmax25 observational estimates are from Kattge et al. (2009). Note that TRY database reports two values for tropical

trees, 29 for trees on oxisol soil, and 41 for trees on nonoxisol soils.
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repeated our calculations using the soil moisture memory metric employed in Dirmeyer et al. (2016) and

found a similar change in CLM5 compared to CLM4 and CLM4.5 (not shown). Changes in SMRT are

likely to impact a range of land‐atmosphere interaction phenomenon including land‐driven climate

predictability.

4.4. PHS and ET Partitioning

The PHS configuration implements new parameterizations for root water uptake and water stress for CLM5.

For comparison, we also ran CLM5 with PHS replaced with the SMS parameterization included in prior

CLM versions (see section 2.3.6). One of the broadest impacts of PHS is a decrease in the coefficient of var-

iation of GPP (CVGPP) and transpiration (CVET) (Figures 9d and 9h). The global distributions of CVGPP and

CVET both shift toward lower values with PHS (Figures 9c and 9g), corresponding to global reductions in CV

of 8.0% and 12.5% for GPP and ET, respectively, relative to SMS. Decreases in CVGPP tend to occur in water‐

limited ecosystems with seasonal rainfall, such as the Sahel region of Africa and northern Australia

(Figure 9d). PHS incorporates more flexible root water uptake (Kennedy et al., 2019), which can utilize more

of the soil column to buffer shortfalls in precipitation, acting to reduce variability imposed by precipitation

variations. CVET decreases follow roughly the same patterns, reflecting the coupling of transpiration and

photosynthesis through stomatal conductance (Figure 9h). With PHS, vegetation water stress is sensitive

to atmospheric demand for transpiration and tends to narrow the range of transpiration values, which

results in relatively larger reductions in CVET as compared to CVGPP. In some regions, variability increases

with PHS, primarily at high latitudes (e.g., eastern Siberia) and in arid regions. Such increases in CVGPP and

CVET are generally associated with increases in the mean fluxes of GPP and ET in these regions with PHS.

Other mechanisms unrepresented in CLM, including adaptive responses of Vcmax25 to dry conditions and

biochemical responses to stress (Keenan et al., 2009; Niinemets & Keenan, 2014), could in principle increase

interannual variability of these fluxes; thus, the decrease in variability seen here is not necessarily indicative

of a structural degradation or inappropriate PHS parameters.

The partitioning of evapotranspiration into transpiration, canopy evaporation, and soil evaporation is a key

emergent process simulated by land models, essential to assess ecosystem WUE (Lawrence et al., 2007). In

Figure 10, we show the transpiration fraction from each model compared to estimates of transpiration frac-

tion from the Water, Energy, and Carbon with Artificial Neural Networks data set (WECANN,

Alemohammad et al., 2017, available at https://gentinelab.eee.columbia.edu/content/datasets). In pre-

scribed vegetation configurations, CLM5SP shows better agreement with WECANN transpiration fraction

than either CLM4SP or CLM4.5SP, especially in the tropics. Globally, the contribution of soil evaporation

to ET is diminished in CLM5 relative to CLM4 and CLM4.5, resulting in a higher percentage of ET

Figure 7. Plots of CLM4SP, CLM4.5SP, and CLM5SP (GSWP3) evapotranspiration (upper panels, mm/month) and soil moisture (lower panels, fraction of satura-

tion) with depth for 2 years for two example grid cells in the (a) southwest United States (248°E, 40°N; upper plots) and the (b) southeast United States (278.5°E, 36°

N; lower plots). Observations are from GBAF latent heat flux converted to evapotranspiration (mm/month). RMSD between model and observations shown for ET

comparison. Black lines in soil moisture plots indicate water table position. Gray shading in CLM5 soil moisture plots indicates hydrologically inactive bedrock;

white area in CLM4 and CLM4.5 indicates the unconfined aquifer.
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coming from transpiration (CLM4SP and CLM4.5SP 53%; CLM5SP 60%, Table 4), in line with recent isotopic

data estimates of 61% ± 15% (Jasechko et al., 2013; Schlesinger & Jasechko, 2014). However, in prognostic

vegetation mode, biases in simulated LAI lead to poorer agreement with WECANN for ET partitioning for

all model versions. In particular, low LAI biases for tropical deciduous trees (Figure S2), especially in the

Sahel and southern Africa, appear to correlate with low biases in transpiration fraction, though errors in

the observations. Table 4 shows global percentages for transpiration, soil evaporation, and canopy evapora-

tion for the CLM versions. Note that simulations forced with CRUNCEPv7 show a higher proportion of ET

coming from canopy evaporation than GSWP3v1‐forced simulations. This difference is likely due to the tem-

poral frequency of the forcing precipitation (6‐hourly for CRUNCEPv7 and 3‐hourly for GSWP3v1), which

can have a strong impact on canopy evaporation.

4.5. Permafrost and Snow Density

Permafrost is a key feature of the earth system, and uncertainty regarding the strength of the permafrost

climate‐carbon feedback is considerable (McGuire et al., 2018; Schuur et al., 2015). The permafrost

climate‐carbon feedback is a challenging research problem that depends onmany features of a landmodeling

system.A known deficiency in prior versions of CLMwas an unrealistically low fresh snowdensity, which led

to excessive snow insulation of the ground, particularly at low snow depths (Slater et al., 2017). Several

changes to fresh snow density and snow densification were introduced in CLM5 (van Kampenhout et al.,

2017) resulting generally in denser snow for both seasonal and perennial snowpacks. The denser snow over

Figure 8. (a) Soil moisture residence time (SMRT, May to October) as simulated by CLM5SP (contours) and as derived from soil moisture time series at 928 North

American Soil Moisture Database (NASMD) stations (filled circles, note that ARM and OK‐Mesonet sites are not included because they exhibit large high soil

moisture residence time biases, Dirmeyer et al., 2016). (b) Percentage change in SMRT from CLM4.5SP to CLM5SP: (CLM5SPSMRT − CLM4.5SPSMRT) * 100/

CLM5SMRT. (c) Change in SMRT from CLM4SP to CLM5SP.
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Greenland and Antarctica is an improvement and along with the deeper snowpack allows themodel to more

realistically representfirn and the transition from snow to ice. The denser surface snowpack also largely elim-

inates excessive subsnow surface melt that occasionally occurred in CLM4 and CLM4.5 in very cold climates

where the simulated near‐surface thermal conductivity was unrealistically low.

The changes to modeled snow density also have beneficial impacts on permafrost distribution and ALT (the

depth to which permafrost soils thaw each summer). In Figure 11, maps of ALT and February snow density

are shown for CLM4.5 and CLM5 with GSWP3v1 and CRUNCEPv7. These maps reveal that there are strong

relationships between the forcing data set, the snow density formulation, and simulated ALT. Snow is denser

across the permafrost domain in CLM5 (225 to 275 kg/m3) compared to CLM4.5 (<200 to 225 kg/m3). This

denser snow in CLM5 is more consistent with the values of 230 to 330 kg/m3 reported for northwest Alaska

(Sturm et al., 2010). The denser snow reduces snow insulation and results in colder soils and shallower ALT

in CLM5 compared to CLM4.5.

Figure 9. Impact of PHS on variability of GPP and ET. Coefficient of variation (CV, unitless) of GPP and ETwith two CLM5SPmodel configurations: PHS and SMS.

CV data are derived from monthly model output over 50 years (1964–2013), after removing the trend and seasonal cycle. GPP analyses exclude grid cells with

average GPP less than 0.5 μmol·m
−2

·s
−1

. ET analyses exclude grid cells with average ET less than 5 W/m
2
. Bin widths for all bar plots are 0.05 (CV, unitless), with

each bar representing the percent of global average GPP or ET where CV falls within the corresponding range.
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It is also relevant to note the impact of forcing data set on snow density and ALT simulations. Snow tends to

be less dense with CRUNCEPv7 forcing than with GSWP3v1 forcing. Taken in isolation, this should lead to

shallower ALT with GSWP3v1 forcing, but instead ALT is generally deeper which appears to be due largely

to greater downwelling longwave and shortwave radiation in GSWP3v1 forcing data. The large differences in

simulated permafrost distribution and ALT between the two forcing data sets reveal an important aspect of

uncertainty in permafrost modeling (which propagates to uncertainty in modeled soil carbon stocks, as dis-

cussed below). ILAMB output indicates that downwelling longwave radiation, downwelling solar radiation,

and humidity variables all score significantly higher across the Arctic land domain with GSWP3v1 (other

forcing quantities are roughly equivalent across these two forcing data sets) which suggests that for perma-

frost studies, GSWP3v1 forcing may be more appropriate. If we consider just the GSWP3v1‐forced simula-

tions, we see that CLM4.5, with its low‐density snow, exhibits ALT that is unrealistically deep (ALT >1 m

deep across nearly the entire permafrost domain) while CLM5, with its denser snow, is more realistic.

These results are an indirect indication that the CLM5 snow density parameterizations may represent

an improvement.

4.6. Carbon and Nitrogen Fluxes and Stocks

Table 5 lists the simulated global total carbon stocks and annual mean fluxes for the different model versions

compared to available data products. Global GPP agrees best with available data products for CLM5 (119 Pg

C/year in CLM5BGC, 134 Pg C/year in CLM4BGC, and 118 Pg C/year for FLUXNET‐MTE observed GPP

estimate; values are for area of land intersection between model and observations, that is, grid cells where

Figure 10. Annual transpiration fraction (transpiration/total ET) as estimated with WECANN data set (upper left) and

the difference between model and WECANN for CLM4, CLM4.5, and CLM5 (GSWP3) for SP (left) and BGC (right)

configurations.
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model and observations agree there is land). NPP increased in successive versions of the model, reflecting

concurrent declines in autotrophic respiration fluxes. As such, annual mean carbon use efficiency (CUE,

calculated as the quotient of grid cell NPP and GPP) increased from CLM4 to later versions of the model,

although all three model versions show high spatial heterogeneity in CUE (Wieder et al., 2019). The

latitudinal variation of CUE simulated by CLM5 seems plausible, based on published estimates (Campioli

et al., 2015; DeLucia et al., 2007; Malhi et al., 2011; Vicca et al., 2012) but deserves further investigation.

All three model versions reasonably replicate the global totals for vegetation carbon stocks, but the spatial

distribution differs across models. ILAMB results show that CLM4BGC placed too much carbon into

tropical rainforests and too little carbon into boreal forests, especially across Europe and Siberia. To first

order, the biases are reversed in CLM5BGC with too little carbon in the tropical rainforests and too much

carbon across the boreal forests, largely reflecting the spatial pattern of GPP biases but likely also related

to changes in C allocation in CLM5.

Soil C stock patterns are more realistic in CLM4.5BGC and CLM5BGC than in CLM4BGC because of the

introduction of vertically resolved soil biogeochemistry in CLM4.5 (Koven et al., 2013), which allows the

model to generate large C stocks across the northern high‐latitude permafrost domain, as observed. The rela-

tionship between apparent soil C turnover times (defined as the ratio of mean soil C stocks over climatolo-

gical annual mean NPP) and mean air temperature is more realistic in CLM4.5 and CLM5 (Figure 12, metric

reproduced as in Koven et al., 2017), with both of these model versions at least partially capturing the transi-

tion to longer apparent soil C turnover times in cold climates. This metric suggests that CLM5 apparent soil

C turnover times are slightly improved over CLM4.5 with a steeper increase in turnover times at cold tem-

peratures as well as a broader spread of turnover times in warm climates associated with soil wetness (short

turnover times in warm‐wet climates and long turnover times in warm‐dry climates). Because of the greater

permafrost extent and colder permafrost soil temperatures in CLM5 when forced by CRUNCEPv7 than by

GSWP3v1, the stocks of soil C to 3‐m depth are a factor of 2 larger when forced by CRUNCEPv7 (4,000 Pg

C) than when forced by GSWP3v1 (1,925 Pg C), demonstrating the extreme sensitivity of simulated perma-

frost soil C stocks to simulated permafrost conditions.

The spatial distribution and global sums of terrestrial N inputs and losses remain poorly constrained with

data and highly variable among versions of CLM. Table 6 shows published estimates of global terrestrial

N fluxes and corresponding estimates from the GSWP3‐forced BGC simulations. Within CLM, N inputs

come fromN deposition and N fixation. Inputs fromN deposition are consistent amongmodel versions, with

forcings coming from Lamarque et al. (2010), and show broad agreement with observationally derived esti-

mates (Fowler et al., 2013). Estimates of global N fixation show greater spread among models. The empirical

approach applied in CLM4 and CLM4.5 estimated biological N fixation rates as function of NPP (Cleveland

et al., 1999). CLM5 calculates both symbiotic and free‐living N fixation. Total N fixation in CLM5 is lower

than in previous versions of the model and lies within the range of estimates of N fixation rates (Vitousek

et al., 2013). Finally, with the ability to simulate a global interactive crop model, CLM5 provides opportu-

nities to estimate anthropogenic changes to the terrestrial N cycle through planting N fixing crops and fer-

tilizer application. The N fixation rates simulated by soy in the model are well below upscaled estimates of

agricultural N fixation (Herridge et al., 2008), but simulated fertilization rates appear to be on target with

Table 4

Summary of Water Cycle Variables

Component P (mm/day) ET (mm/day) Total runoff (mm/day) Transpiration (%) Soil evaporation (%) Canopy evaporation (%)

Obs 2.22 1.17 0.83 60

CLM4SP 2.22 1.27 0.86 53 32 14

CLM4.5SP 2.22 1.24 0.84 53 34 13

CLM5SP 2.22 1.20 0.89 60 26 14

CLM4BGC 2.22 (2.08) 1.34 (1.42) 0.77 (0.52) 60 25 15

CLM4.5BGC 2.22 (2.08) 1.25 (1.33) 0.81 (0.58) 56 (53) 29 (26) 15 (20)

CLM5BGC 2.22 (2.08) 1.17 (1.30) 0.91 (0.58) 54 31 15

Note. Sum of evapotranspiration components may not add up to 100% due to rounding. Values in parentheses are from CRUNCEPv7‐forced simulations. All
other values are from GSWP3v1‐forced simulations. Note that observed values are for the area of intersection where both observations and model are land as
reported in ILAMB (Collier et al., 2018). Observations are GPCC for precipitation, GLEAM for ET, Dai et al. (2009) for runoff, and WECANN.
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observational estimates (Fowler et al., 2013). CLM simulates N losses through leaching, gaseous emissions,

and biomass removal. Successive model versions show increasing hydrological N losses, though these have

not been evaluated against data. Houlton et al. (2015) pointed out that gaseous N losses were too high in

CLM4. The same is likely true with CLM5, which still suffers from poorly implemented representation of

soil N dynamics resulting in a high bias in gaseous (as opposed to hydrologic) N losses. With

intensification of land use and land management, CLM5 also shows anthropogenically driven N losses

associated with wood harvest, crop harvest, and land use change. These N loss fluxes, as well as gaseous

N emissions (including NOx emissions due to fire and soil N2O fluxes), remain poorly constrained and an

area for future model evaluation and development.

4.7. CO2 and N‐Addition Response

Over the course of model development, CLM (BGC configurations) transitioned from amodel that exhibited

strong N limitation of the terrestrial carbon cycle (CLM4) to a model that showed greater responsiveness to

elevated concentrations of CO2 in the atmosphere (CLM5; Wieder et al., 2019), consistent with recent obser-

vations that suggest that there has been only weak N limitations on CO2 fertilization (Campbell et al., 2017).

Specifically, the carbon cycle simulated by CLM4 showed an unrealistically strong nitrogen limitation

(Bonan & Levis, 2010; Thomas et al., 2013; Thomas et al., 2013) and a lower than observed response to

CO2 enrichment (Figure 13; Hoffman et al., 2014; Walker et al., 2014; Zaehle et al., 2014). With revisions

to the photosynthesis parameterization and soil biogeochemical model (Bonan et al., 2011; Koven et al.,

2013), CLM4.5 showed a lower sensitivity to N enrichment than its predecessor that was more in line with

observations (LeBauer & Treseder, 2008), but it still exhibited lower sensitivity to CO2 enrichment than

observations from Free‐Air CO2 Enrichment sites (Ainsworth & Long, 2004). CLM5 includes a suite of

model developments focused on improving the representation of vegetation C‐N dynamics (outlined in

section 2.3.6). The globally integrated response of terrestrial ecosystems to N and CO2 enrichment suggests

that CLM5 shows improved agreement with observed ecosystem response to these environmental manipu-

lations (Figure 13; Ainsworth & Long, 2004; LeBauer & Treseder, 2008), though the globally integrated

improved agreement with these syntheses should not be overinterpreted. Besides capturing the appropriate

magnitude of terrestrial C pools and fluxes to N enrichment, simulations with CLM5 also show increases in

foliar N content and ecosystem C use efficiency that are consistent with observations (Campioli et al., 2015;

Vicca et al., 2012; Wieder et al., 2019). Similarly, foliar N content and Vcmax decline under elevated CO2,

again consistent with observations (Ainsworth & Long, 2004). Together, these results suggest that CLM5

Figure 11. Permafrost maximum active layer thickness (top panels) and February snow density (lower panels), averaged over years 1990–2010 for CLM4.5BGC and

CLM5BGC with GSWP3v1 and CRUNCEPv7 forcing. Total permafrost area in millions of km
2
shown under title bar. CLM4 results (not shown) are similar to

CLM4.5.
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better captures terrestrial ecosystem responses to global change drivers (N and CO2 enrichment) than

previous versions of the model and that CLM5 captures these responses for at least some of the right

reasons, though in a parameter uncertainty assessment, Fisher et al. (2018) demonstrate a strong

sensitivity of CO2 and N fertilization to several factors including to what extent plant communities can

increase their fixation of nitrogen, stoichiometric flexibility of plant tissues, nitrogen uptake costs, and

model initial state. The strong sensitivity to parameters as well as large differences in response across

PFTs (see Wieder et al., 2019 for further figures and discussion) implies that the large‐scale agreement

with observations should not be overinterpreted as indicative that the model is necessarily reproducing

the observed response for the right reasons.

Confronting land models with perturbations that are similar to experimental manipulations also exposes

shortcomings in the model's structural assumptions and parameterizations. For example, although the bulk

C cycle response to N enrichment simulated by CLM5 appears more appropriate than CLM4 or CLM4.5, the

model still fails to capture observed shifts in plant C allocation toward greater aboveground productivity or

decreases in heterotrophic respiration that are commonly seen in nutrient addition experiments (Janssens

et al., 2010; Liu & Greaver, 2010). Similarly, terrestrial sensitivities to elevated CO2 simulated by CLM5 seem

more in line with observed responses, but the model achieves higher productivity by increasing LAI and

nitrogen fixation rates beyond what is likely to occur in natural ecosystems (Ainsworth & Long, 2004;

Hungate et al., 2004; Medlyn et al., 2015; Terrer et al., 2018). Indeed, results from experimental manipula-

tions emphasize that acclimation as well as changes to plant allocation (which are not represented in

CLM5) and stoichiometry are important aspects of terrestrial ecosystem responses to global change drivers

(Liu & Greaver, 2010; Luo et al., 2006; Reich et al., 2006). Despite its improvements, CLM5 still has limited

capacity to capture these responses, highlighting priority areas that should be addressed in future model

developments. Specifically, understanding and modeling appropriate changes in aboveground and below-

ground C and N allocation remains uncertain, especially in response to global change (Giardina et al.,

2005; Terrer et al., 2018). This is an outstanding challenge to be addressed in landmodels and evaluated with

observations from experimental manipulations. Despite these limitations, the overall transition toward the

use of optimality theories in N cycle representation in CLM5 and in integrating N processes directly into

plant physiology, rather than the post hoc reconciliation of N‐unlimited and N‐limited rates of GPP in

CLM4, appears to broadly move the model in the right direction, though there is much work still to do

(e.g., resolve limitations in representation of soil nutrient competition between plants, microbes, and

mineral surfaces; Zhu et al., 2016).

4.8. Land Carbon Accumulation Over Historical Period

The global land C accumulation trends exhibit clear differences across model versions (Figure 14). As

noted above, CLM4 produces an unrealistically strong nutrient limitation on photosynthesis, which limits

that model's capacity for C uptake even as atmospheric CO2 increases. Consequently, in CLM4 land use

and land cover change (LULCC) C loss fluxes dominate over the CO2 fertilization response resulting in

an accumulated land C loss of ~60 Pg C over the period 1850 to 2014, which is outside the observational

estimates of −8 Pg C (range +32 to −52 Pg C, 1850–2010; Hoffman et al., 2014). CLM4.5, on the other

hand, shows C uptake and accumulation in response to CO2 fertilization that is perhaps too strong,

Table 5

Summary of Global C Fluxes and Stocks

Component GPP NPP CUE AR HR ER Ecosys C Veg C Soil C 1 m

Obs (118)
a

(94)
a

(449)
b

(1,320)
c

CLM4BGC 130 (122) 45 0.40 85 41 126 (119) 1,043 469 (453) 500 (493)

CLM4.5BGC 113 (137) 47 0.48 66 43 107 (100) 2,379 450 (432) 879 (862)

CLM5BGC 125 (119) 49 0.43 70 42 112 (103) 2,574 492 (460) 1,057 (1,040)

Note. Fluxes include gross and net primary productivity (GPP and NPP), carbon use efficiency (CUE), autotrophic, heterotrophic, and ecosystem respiration (AR,
HR, and ER). Units are Pg C/year for C fluxes, Pg C for C stocks, and a unitless ratio for CUE. Data are averages for the period 1995–2014 from the GSWP3v1‐
forced simulations. Values in parentheses indicate ILAMB values for the area of intersection between observations and model.
a
GPP and ER observed estimates from FLUXNET‐MTE upscaling (Jung et al., 2011).

b
Forest vegetation C stock observed estimate from GEOCARBON project

(Avitabile et al., 2016; Santoro et al., 2015).
c
Soil C to 1‐m depth observed estimate from Harmonized World Soil Database (Fao/Iiasa/Isric/Isscas/Jrc, 2012).
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especially under the GSWP3v1‐forced simulation. The CLM5 land C accumulation curve lies in between

CLM4 and CLM4.5 and appears to result in the best match with observational estimates, for the historical

period as well as the global carbon project era (1950–2012; Le Quéré et al., 2014). These results are also

reflected by the comparatively high scores for the Global Net Ecosystem Carbon metric in ILAMB for

CLM5 (Figure 3).

Although it is tempting to infer that the more realistic responses of CO2 and N additions in CLM5 (Wieder

et al., 2019) are responsible for the improved emergent behavior of the model with respect to the historical

land C accumulation, historical C accumulation is a function of several sometimes counteracting processes

that control C fluxes and stocks, and thus, these changes should be interpreted cautiously. These processes

include deforestation and wood harvest fluxes and the dependency of these fluxes on initial forest vegetation

C stocks, C uptake responses to increasing CO2 and N deposition trends, and vegetation and soil C responses

to climate trends and variability. Furthermore and importantly, as noted above, Fisher et al. (2019) demon-

strate that CLM5 responses to CO2 and N fertilization exhibit strong sensitivity to several uncertain para-

meters. Nonetheless, the improvement in this important emergent behavior of the model is intriguing and

is investigated in more depth in Bonan et al. (2019).

Also apparent in Figure 14 is a strong sensitivity to atmospheric forcing with accumulated land C for the

period 1850 to 2014 differing between runs forced with GSWP3v1 and CRUNCEPv7 by 50, 20, and 10 Pg

C for CLM4, CLM4.5, and CLM5, respectively. The divergence in C accumulation between runs with

different forcing data sets arises early in the period, mainly prior to 1950, when CO2 fertilization would

have been relatively small and LULCC fluxes dominate. This implies, then, that LULCC C fluxes can

differ substantially even within a model version forced with exactly the same LULCC time series but

under different estimates of historical climate forcing. We hypothesize that the simulated preindustrial

(year 1850) vegetation C stocks and their regional distribution can impart a strong influence on historical

LULCC C fluxes.

Figure 12. Metric for apparent soil carbon turnover time versus mean air temperature, as in Koven et al. (2017) for obser-

vations and CLMBGC model versions. Turnover time is calculated in observations and models as ratio of mean carbon

stocks (SOM) over climatological annual mean carbon inputs (NPP). Each dot represents one grid cell, color coded by

mean annual precipitation. The best fit regression curve for the observational data with 50% prediction intervals is shown

as black lines for the models. RMSE represents the agreement with the best fit curves. See Koven et al. (2017) for full

description of this metric. Observations for soil organic matter (SOM) are merged from Harmonized World Soil Database

(Fao/Iiasa/Isric/Isscas/Jrc, 2012) and Northern Circumpolar Soil Carbon Database (Hugelius et al., 2013). Observed NPP

estimate is from MODIS (Zhao et al., 2005).
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Finally, while the long‐term land carbon accumulation agrees better with

observed estimates, which are derived from atmospheric CO2 and ocean C

inventories, the interannual variation in land C accumulation appears to

be degraded in CLM5 (larger low bias in variability), based on a compar-

ison of interannual variability of atmospheric CO2 simulated from the

CLM fluxes compared to that observed (see ILAMB CO2 diagnostics).

Throughout the Northern Hemisphere, interannual variability is at most

one third of that observed at NOAA marine boundary layer sites. The dri-

vers and implications of this degradation from CLM4 to CLM4.5 to CLM5

require further investigation, since climate‐driven variations at interann-

ual timescales may provide useful information about future climate‐

driven changes in terrestrial carbon stocks (Cox et al., 2013; Keppel‐

Aleks et al., 2018). Preliminary investigation suggests that although the

plant hydraulics scheme does tend to reduce variability in GPP and tran-

spiration (see section 4.4), it does not appear to be primarily responsible

for the reduced C flux variability in CLM5, with the reduced variability

potentially resulting from increased interannual synchronicity between

NPP and ecosystem respiration.

4.9. Water Use Efficiency

Quantification of changes in WUE (carbon uptake per unit of water loss)

due to climate change and rising atmospheric CO2 levels is challenging

(Cheng et al., 2017). Changes in WUE will have strong implications for

water availability, food and fiber production, as well as the C sink capacity

of terrestrial ecosystems. Though this topic has received considerable

recent attention in the literature (e.g., Cheng et al., 2017; Frank et al.,

2015; Huang et al., 2015; Keenan et al., 2013), there is still no consensus

on how the coupled terrestrial carbon and water cycles have changed or

will change in the future.

A key feature of CLM5 is a more realistic coupling of N limitation and sto-

matal conductance, with stomatal conductance in CLM5 based on the N‐

limited photosynthesis (Ghimire et al., 2016) rather than on N‐unlimited

potential photosynthesis as it was in CLM4 and CLM4.5. This more realis-

tic coupling has consequences for WUE andWUE trends since changes in

N limitation will propagate directly into simulated transpiration. The

increase in global WUE (defined here as GPP/transpiration) over the his-

torical period is considerably stronger in CLM5 compared to CLM4 and

CLM4.5 (Figure 15). Global GPP trends are comparable across models,

though CLM5 marginally exhibits the strongest increase, while CLM4

shows the weakest increase, at least partially due to the high N limitation

in that version (see section 4.7). Global transpiration trends, on the other

hand, diverge considerably across versions with CLM4 and CLM5 show-

ing a declining trend in transpiration during 1980 to 2014 and CLM4.5

showing an increasing trend over the same period. Spatially, the increase

inWUE is larger almost everywhere in CLM5 than in the other model ver-

sions, but the driver of the WUE change differs considerably by region. In

the tropics, the CLM5 increase in WUE is driven by both increased GPP

and somewhat reduced transpiration (Figure S6). In the boreal forest

and across the mid‐to‐high northern latitudes, the historical increases in

GPP are high, but transpiration is largely unchanged or is weakly

increased. Deeper analysis of the WUE trends and its interaction with

CO2 fertilization and LAI, N limitation, and soil moisture limitation

trends across model versions and compared against available estimates

Table 6

Summary of Nitrogen Fluxes

N flux

Obs

estimate CLM4BGC CLM4.5BGC CLM5BGC

N inputs

N deposition 70
a

63.1 63.1 63.1

Symbiotic N fix 58
b*

57.9

Free‐living N fix 107.7 96.6 38.5

Soy N fix 60
c

6.0
e

Crop N

fertilization

120
a

106.7

N losses

Denitrification 100
a

117.8 51.2 100.1

Hydrologic N

losses

80
a

0.01 10.2 33.2

LULCC N losses 5.6 2.6 19.2

Wood harvest 1.4 1.2 2.6

Crop harvest 32.7

Fire losses 14.1
d

21.8 43.3 32.0

N2O 13
a

2.7 6.3

Note. Units are Tg N/year. Data are averages for the period 1995–2014
from the GSWP3v1‐forced simulations.
a
Data from synthesis by Fowler et al. (2013).

b
Preindustrial estimate

(Vitousek et al., 2013), range 40–100 Tg N/year.
*
Note, this includes both

free‐living and symbiotic N fixation.
c
Globally upscaled estimate for

agricultural N fixation, range 50–70 Tg N/year (Herridge et al., 2008).
d
Global biomass burning estimates of NOx and NH3, converted to Tg
N/year (Lamarque et al., 2010).

e
Soy N fix is also included in global esti-

mate of symbiotic N fixation listed above in the table. Data here are from
CFT output for nitrogen fixation.

Figure 13. Simulated effect sizes of nitrogen versus CO2 enrichment on glo-

bal rates of net primary productivity (NPP) that was calculated for

CLM4BGC, CLM4.5BGC, and CLM5BGC (brown, turquoise, and purple

symbols, respectively; GSWP3 simulations). Observational constraints for

the nitrogen response (aboveground NPP from LeBauer & Treseder, 2008)

and CO2 response (DM production from Ainsworth & Long, 2004) are

shown with the vertical and horizontal lines, respectively (mean ± 95%

confidence interval). Figure reproduced from figure 7a in Wieder et al.

(2019).
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of historical WUE trends is worthy of additional study but is beyond the

scope of this paper.

4.10. Crops

Agricultural management practices can have a considerable impact on cli-

mate (Bagley et al., 2015; Davin et al., 2014; Lombardozzi et al., 2018;

Mueller et al., 2017; Thiery et al., 2017), highlighting the importance of

representing agriculture in ESMs. CLM5 is the first version of CLM that

includes transient representation of crop distribution and management,

and the inclusion of managed agriculture in CLM5 does affect carbon,

water, and energy fluxes from the land surface. The representation of

crops in CLM5 also allows the model to track crop yields through time.

The crop yields simulated by CLM5 increase from 1.1 tons/ha in 1850 to

~3 tons/ha in 2010 (Figure 16c). For the crop types represented in

CLM5, the simulated yields match observations for the same crop types

from the United Nations Food and Agriculture Organization (UN‐FAO)

from the start of available observations in 1961 through approximately

1980. Yields in CLM5 level off after that time, whereas the UN‐FAO yields

steadily increase, with the discrepancy likely due to the fact that crop

representation in CLM5 does not include processes associated with inten-

sification, such as increasing planting density. The spatial distribution of

crop yields illustrates that CLM5 underestimates crop yields throughout

the Northern Hemisphere compared to UN‐FAO, particularly in the

Central United States, Europe, and Southwestern Asia, but overestimates

crop yields throughout much of the tropics (Figures 16a and 16b). Yields

of individual crops are generally similar to UN‐FAO estimates, though

CLM5 underestimates corn yields throughout most temperate regions.

The management techniques represented in CLM5 also impact the mag-

nitude of crop yields. Globally, agricultural expansion and fertilization

have large impacts on increasing crop yields, and irrigation has a smaller

impact due to the fact that less than ~25% of cropland area is irrigated.

Irrigation is quite important for crop yields within irrigated areas, however. Note that due to the inflexibility

of the planting windows in CLM5, planting dates in some regions, such as India (too early), are unrealistic. A

more flexible climate‐driven planting date scheme is planned for future model versions.

4.11. Urban

To evaluate behavior of the updated urban model and building properties data, observations from five urban

flux tower sites and a global anthropogenic heat flux (AHF) data set were used. In simulations described in

Oleson and Feddema (2019), radiative and turbulent fluxes, surface temperatures, and AHF were found to

be generally improved compared to the previous version. The simulation of global and regional AHF is also

significantly improved, mainly due to the new building energy model. For example, large positive biases in

AHF over the United States and Europe, evident in the previous model version, are reduced such that simu-

lated values are now within 1% and 11% of observations, respectively. The increased simulation fidelity and

new capabilities of the model should enhance its utility for research into the combined effects of urbaniza-

tion and global climate change.

5. Summary and Discussion

As with prior CLM versions, the development of CLM5 was an extensive community effort involving

researchers from many different institutions and culminating with the integration of numerous disparate

development efforts. The resulting updated model represents a significant advancement, relative to prior

model versions. CLM5 includes new default and optional functionality, improved flexibility in model config-

urations and land cover transitions (natural vegetation ↔ glacier, natural vegetation ↔ crop), as well as

more mechanistic and ecologically relevant representations of the physics, biology, and human land man-

agement processes that govern terrestrial states and fluxes.

Figure 14. Land carbon accumulation for the period (a) 1850–2014 and (b)

1960–2014 for CLM4BGC, CLM4.5BGC, and CLM5BGC simulations forced

with GSWP3v1 and CRUNCEPv7. Observationally constrained model

reconstructions (black lines, uncertainty estimates in gray) are from (a)

Hoffman et al. (2014) and (b) Global Carbon Project (Le Quéré et al., 2014).
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Benchmarking packages such as ILAMB mark a significant enhancement in our ability to evaluate land

model representations of water, energy, and carbon cycles. Broadly, ILAMB and other metrics presented

here indicate that the simulation quality is improved in CLM5 over CLM4 and CLM4.5, although differences

between CLM4.5 and CLM5 are less distinct, and particular variables or metrics show degraded perfor-

mance. However, even with the deployment of advanced model assessment tools and metrics, in many cases

a clear and unambiguous demonstration of improvement or degradation for a complex model such as CLM

remains challenging. We find, for example, perhaps unsurprisingly, that climate and weather forcing uncer-

tainty confound the interpretation of impacts of model structural advances. The impact of parameter uncer-

tainty is not assessed here (see Fisher et al., 2019 for partial parameter sensitivity assessment of CLM5).

Nonetheless, we interpret the broad indications of improvement across multiple variables and metrics

(>30) suggest genuine progress, which (hopefully) is grounded in the upgraded model parameterizations

and more comprehensive process representation.

We stress, however, that model users should consider improvements or degradation identified in ILAMB or

other metrics presented here with caution due to observed data limitations related to data scale applicability,

measurement uncertainties, inconsistencies across multiple observational data sets for one or more variables

Figure 15. Global time series of the change in (a) mean water use efficiency (WUE =GPP/Transpiration), (b) GPP (weighted sum), and (c) transpiration. Note that

only grid cells with annual maximum LAI > 0.1 mm
2
/mm

2
are included in the averaging. (d) Global maps of change in WUE over the historical period (2005–2014

minus 1850–1859) for GSWP3v1‐forced CLM4BGC, CLM4.5BGC, and CLM5BGC. Gray color denotes regions where annual maximum LAI < 0.1 mm
2
/mm

2
.
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(e.g., water and energy budgets derived from the available observationally based ILAMB data sets do not

close), as well as limitations in the metrics included in ILAMB. Improved methods within ILAMB to

account for observational data uncertainty are critical and are a priority for the ILAMB project. An

improvement or a degradation for a particular variable or metric does not on its own imply that the

model is suited or not suited for research related to that particular variable. For example, ILAMB

indicates that snow water equivalent is degraded in CLM5 relative to CLM4. This apparent degradation

occurs despite several mechanistic improvements to snow physics that have been introduced between

CLM4 and CLM5. The lower ILAMB score for snow water equivalent for CLM5 could indicate a real

model snow simulation performance degradation (due to structural or parametric problems introduced

during development from CLM4 to CLM5), but it could also potentially be attributed due to inaccuracies

in the forcing data or biases in the observed data set used in ILAMB or limitations in the ILAMB metrics

themselves. Consequently, CLM5 users interested in applying the model for research into snow processes

will need to balance knowledge of the snow physics and snow physics structural advances against the

ILAMB score decrease and against their own assessment of snow simulations to decide whether or not

the model is “fit‐for‐purpose.”

More explicit process representation enables new types of observations to be applied for evaluation of CLM.

For example, since CLM5 implements prognostic, rather than prescribed, leaf photosynthetic traits, observa-

tions of Vcmax25 and Jmax25 can be used as a means for assessing the model. Similarly, the introduction of

plant hydraulics opens up the potential to employ several observational quantities that were previously

not applicable to CLM including mid‐day stomatal conductance, leaf water potential, and sap flow. This list

could continue, but in general, the expansion of CLM science to more realistically represent physical and

ecological processes opens also new opportunities to evaluate the model with diverse observational data sets.

Identifying, developing, and applying these and other new data products to constrain the more realistic

Figure 16. CLM5 BGC crop yields were evaluated against data from the United Nations Food and Agriculture

Organization (UN‐FAO), which were downscaled using EarthStat data. The spatial distribution of crop yields averaged

from 1990 to 2010 is plotted in (a) for UN‐FAO and (b) for CLM5 and illustrates the summed yields for all explicitly

represented crop types (temperate and tropical soybean, temperate and tropical corn, rice, sugarcane, cotton, and wheat).

The time series of globally summed crop yields for all explicitly represented crop types is plotted in (c) as simulated by

CLM5 (black line) over the full time period and evaluated against data fromUN‐FAO (red line) starting in 1961, when data

are first available.
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representations of physical and ecological processes is likely to be a fruitful avenue for research and model

development going forward.

Open‐source development of CLM is ongoing (https://github.com/escomp/ctsm). Model users and develo-

pers are encouraged to provide feedback, report bugs, and contribute model developments. New model fea-

tures and parameterizations are in development for future versions of CLM including multiple lines of

FATES development, explicit treatment of biomass heat storage (Swenson et al., 2019), a representative hill-

slope formulation that permits water to flow laterally within a grid cell according to topographic or water

table gradients, and a multilayer canopy parameterization (Bonan et al., 2018) as well as ongoing projects

on agriculture (e.g., more realistic crop phenology and allocation, Peng et al., 2018; tillage, Levis et al.,

2014; and biofuel crops), water management (e.g., multiple sources of irrigation water and reservoirs), and

forestry. As these development projects come to fruition, they will be made available to the CLM research

community for use.
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