52 research outputs found

    Materiales activados alcalinamente a base de residuos de vidrio y escoria para aislamiento térmico y acústico

    Get PDF
    Porous alkali activated materials (AAM), can be obtained from waste glass powder and slag mixtures by alkali activation with NaOH solution. To obtain an adequate porous microstructure, the hardened AAM pastes were thermally treated at temperatures ranging between 900°C and 1000°C, for 60 or 30 minutes. Due to the intumescent behaviour specific for this type of materials, an important increase of the volume and porosity occurs during the thermal treatment. The partial substitution of waste glass powder with slag, determines the increase of compressive strength assessed before (up to 37 MPa) and after (around 10 MPa) thermal treatment; the increase of slag dosage also determines the increase of the activation temperature of the intumescent process (above 950°C). The high porosity and the specific microstructure (closed pores with various shapes and sizes) of these materials recommend them to be utilised as thermal and acoustical insulation materials.Los materiales activados alcalinamente porosos (AAM) se pueden obtener a base de polvo de residuos de vidrio y mezclas de escoria mediante activación alcalina con una solución de hidróxido de sodio (NaOH). Para obtener una microestructura porosa adecuada, las pastas de AAM endurecidas se trataron térmicamente a temperaturas que oscilan entre 900°C y 1000°C durante 60 o 30 minutos. Debido al comportamiento intumescente específico de este tipo de material, se produce un aumento significativo en el volumen y la porosidad durante el tratamiento térmico. La sustitución parcial del polvo de residuos de vidrio por escoria conlleva un aumento en las resistencias a compresión previamente evaluadas (hasta 37 MPa) y después (aproximadamente 10 MPa) del tratamiento térmico; el aumento de la dosis de escoria también determina el aumento de la temperatura de activación del proceso intumescente (por encima de 950°C). La alta porosidad y la microestructura específica de estos materiales recomiendan que se utilicen como materiales de aislamiento térmico y acústico

    Study of the Efficiency and Temperature Loss Caused by Degassing and Filtration of AlSi9Cu3 Alloy

    Get PDF
    This paper presents a research on the ability of the techniques of degassing and filtration to improve the properties of the AlSi9Cu3 alloy. The study includes four types of samples: (1) nontreated, (2) filtered, (3) degassed, and (4) filtered and subsequently degassed samples. Degassing was carried out using nitrogen gas, whereas a 20-pores-per-inch (ppi) alumina filter was used for filtering the samples. The analysis was focused on three aspects: First, the influence of these processes on the porosity was determined by means of software to analyze micrographs. Second, the distribution of phases and the presence of inclusions were obtained by combining optical and scanning electron microscopy. Finally, the temperature loss as a result of each of the treatments received by the material was measured. This information is particularly relevant in view of the subsequent use of the molten material to manufacture parts through highpressure die casting.This investigation was developed within a research project sponsored by the Society for the Regional Development of Cantabria (SODERCAN)

    Management and valorisation of wastes through use in producing alkali-activated cement materials

    Get PDF
    There is a growing global interest in maximising the re-use and recycling of waste, to minimise the environmental impacts associated with waste treatment and disposal. Use of high-volume wastes in the production of blended or novel cements (including alkali-activated cements) is well known as a key pathway by which these wastes can be re-used. This paper presents a critical overview of the urban, agricultural, mining and industrial wastes that have been identified as potential precursors for the production of alkali-activated cement materials, or that can be effectively stabilised/solidified via alkali activation, to assure their safe disposal. The central aim of this review is to elucidate the potential advantages and pitfalls associated with the application of alkali-activation technology to a wide variety of wastes that have been claimed to be suitable for the production of construction materials. A brief overview of the generation and characteristics of each waste is reported, accompanied by identification of opportunities for the use of alkali-activation technology for their valorisation and/or management

    Influence of Alkali Activator Type on the Hydrolytic Stability and Intumescence of Inorganic Polymers Based on Waste Glass

    No full text
    The main objective of this study is the synthesis and characterization of low cost alkali-activated inorganic polymers based on waste glass (G-AAIPs) using a mixture of NaOH and Ca(OH)2 as alkali activators, in order to improve their hydrolytic stability. This paper also presents detailed information about the influence of composition determined by X Ray Diffraction (XRD), microstructure determined by Scanning Electronic Microscopy (SEM) and processing parameters on the main properties of G-AAIP pastes. The main factors analyzed were the glass fineness and the composition of the alkaline activators. The influence on intumescent behavior was also studied by heat treating of specimens at 600 °C and 800 °C. The use of Ca(OH)2 in the composition of the alkaline activator determines the increase of the hydrolytic stability (evaluated by underwater evolution index) of the G-AAIP materials compared to those obtained by NaOH activation. In this case, along with sodium silicate hydrates, calcium silicates hydrates (C-S-H), with good stability in a humid environment, were also formed in the hardened pastes. The highest intumescence and an improvement of hydrolytic stability (evaluated by underwater evolution index and mass loss) was achieved for the waste glass powder activated with a solution containing 70% NaOH and 30% Ca(OH)2. The increase of the waste glass fineness and initial curing temperature of G-AAIPs have a positive effect on the intumescence of resulted materials but have a reduced influence on their mechanical properties and hydrolytic stability

    Intumescent Silicate Coatings with the Addition of Alkali-Activated Materials

    No full text
    Fireproof inorganic coatings based on sodium silicate solution with intumescent additions were prepared and tested to assess their ability to limit the negative effect of a fire. The intumescent materials were obtained by the alkali activation of waste glass powder (obtained by the grinding of recycled soda-lime culet) and slag (waste resulting from the metallurgical industry). The replacement of talc (used as filler in paint formulation) with the intumescent materials obtained by the alkaline activation of waste glass powder (WGP), determined an increase in the intumescence coefficient (up to 65%) and decreased the activation temperature of this process. To evaluate these coatings’ abilities to prevent or delay the temperature increase in metal structures, the paints were applied on steel plates and tested in direct contact with the flame of a butane burner for 60 min. The coatings prevented the increase in the steel substrate temperature over one considered critical (500°C) for steel mechanical properties; the combination of two coatings, with different intumescence activation temperatures, correlated with the increase in the coating’s thickness, sensibly reduced the rate of temperature increase (up to 75%) in the steel substrate

    Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements

    No full text
    In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA) cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h) followed by rapid cooling in air. The resulted material (clinker) was ground for one hour in a laboratory planetary mill (v = 150 rot/min), in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF) and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and thermal analysis (DTA-DTG-TG). The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1) was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2). The compressive strength values were 18.5 MPa (MTA1) and 22.9 MPa (MTA2). Both MTA cements showed good bioactivity (assessed by an in vitro test), good cytocompatibility and stimulatory effect on the proliferation of cells

    Binding Properties and Biocompatibility of Accelerated Portland Cement for Endodontic Use

    No full text
    The sol-gel synthesis of WMTA composition started with the dissolution in 180 mL water, under magnetically stirring of calcium nitrate, followed by aluminium nitrate, until a clear solution was obtained. Tetraethyl-orthosilicate (TEOS) was hydrolysed for 2 h using a molar ratio TEOS: water of 1:4. These two solutions were mixed and continuously stirred for 96 h at 70°C up to the formation of a viscous gel. The gel was dried at 120°C for 420 h and the final product was a white powder. The white powder, was pressed to form pellets and then thermally treated at 1350°C for 30 min, followed by rapid cooling in air -optimal treatment condition
    corecore