211 research outputs found

    Unique presentations and chronic complications in adult cystic fibrosis: do they teach us anything about CFTR?

    Get PDF
    The increase in numbers of adults with cystic fibrosis (CF) has allowed us to identify previously unrecognized chronic complications of CF, as well as appreciate unique presentations of cystic fibrosis-related diseases. Do these chronic complications and unique presentations provide us with new insight into cystic fibrosis transmembrane conductance regulator (CFTR) function? Current data suggest that the 'chronic complications' reveal mainly the effect of a long-term absence of previously recognized CFTR functions. In contrast, the 'unique presentations' provide new insight into the role of CFTR in different tissues

    The ESR1 (6q25) locus is associated with calcaneal ultrasound parameters and radial volumetric bone mineral density in European men

    Get PDF
    <p><b>Purpose:</b> Genome-wide association studies (GWAS) have identified 6q25, which incorporates the oestrogen receptor alpha gene (ESR1), as a quantitative trait locus for areal bone mineral density (BMD(a)) of the hip and lumbar spine. The aim of this study was to determine the influence of this locus on other bone health outcomes; calcaneal ultrasound (QUS) parameters, radial peripheral quantitative computed tomography (pQCT) parameters and markers of bone turnover in a population sample of European men.</p> <p><b>Methods:</b> Eight single nucleotide polymorphisms (SNP) in the 6q25 locus were genotyped in men aged 40-79 years from 7 European countries, participating in the European Male Ageing Study (EMAS). The associations between SNPs and measured bone parameters were tested under an additive genetic model adjusting for centre using linear regression.</p> <p><b>Results:</b> 2468 men, mean (SD) aged 59.9 (11.1) years had QUS measurements performed and bone turnover marker levels measured. A subset of 628 men had DXA and pQCT measurements. Multiple independent SNPs showed significant associations with BMD using all three measurement techniques. Most notably, rs1999805 was associated with a 0.10 SD (95%CI 0.05, 0.16; p = 0.0001) lower estimated BMD at the calcaneus, a 0.14 SD (95%CI 0.05, 0.24; p = 0.004) lower total hip BMD(a), a 0.12 SD (95%CI 0.02, 0.23; p = 0.026) lower lumbar spine BMD(a) and a 0.18 SD (95%CI 0.06, 0.29; p = 0.003) lower trabecular BMD at the distal radius for each copy of the minor allele. There was no association with serum levels of bone turnover markers and a single SNP which was associated with cortical density was also associated with cortical BMC and thickness.</p> <p><b>Conclusions:</b> Our data replicate previous associations found between SNPs in the 6q25 locus and BMD(a) at the hip and extend these data to include associations with calcaneal ultrasound parameters and radial volumetric BMD.</p&gt

    Pediatric DXA: technique and interpretation

    Get PDF
    This article reviews dual X-ray absorptiometry (DXA) technique and interpretation with emphasis on the considerations unique to pediatrics. Specifically, the use of DXA in children requires the radiologist to be a “clinical pathologist” monitoring the technical aspects of the DXA acquisition, a “statistician” knowledgeable in the concepts of Z-scores and least significant changes, and a “bone specialist” providing the referring clinician a meaningful context for the numeric result generated by DXA. The patient factors that most significantly influence bone mineral density are discussed and are reviewed with respect to available normative databases. The effects the growing skeleton has on the DXA result are also presented. Most important, the need for the radiologist to be actively involved in the technical and interpretive aspects of DXA is stressed. Finally, the diagnosis of osteoporosis should not be made on DXA results alone but should take into account other patient factors

    Bone mineral density in partially recovered early onset anorexic patients - a follow-up investigation

    Get PDF
    <p>Abstract</p> <p>Background and aims</p> <p>There still is a lack of prospective studies on bone mineral development in patients with a history of early onset Anorexia nervosa (AN). Therefore we assessed associations between bone mass accrual and clinical outcomes in a former clinical sample. In addition to an expected influence of regular physical activity and hormone replacement therapy, we explored correlations with nutritionally dependent hormones.</p> <p>Methods</p> <p>3-9 years (mean 5.2 ± 1.7) after hospital discharge, we re-investigated 52 female subjects with a history of early onset AN. By means of a standardized approach, we evaluated the general outcome of AN. Moreover, bone mineral content (BMC) and bone mineral density (BMD) as well as lean and fat mass were measured by dual-energy x-ray absorptiometry (DXA). In a substudy, we measured the serum concentrations of leptin and insulin-like growth factor-I (IGF-I).</p> <p>Results</p> <p>The general outcome of anorexia nervosa was good in 50% of the subjects (BMI ≥ 17.5 kg/m<sup>2</sup>, resumption of menses). Clinical improvement was correlated with BMC and BMD accrual (χ<sup>2 </sup>= 5.62/χ<sup>2 </sup>= 6.65, p = 0.06 / p = 0.036). The duration of amenorrhea had a negative correlation with BMD (r = -.362; p < 0.01), but not with BMC. Regular physical activity tended to show a positive effect on bone recovery, but the effect of hormone replacement therapy was not significant. Using age-related standards, the post-discharge sample for the substudy presented IGF-I levels below the 5<sup>th </sup>percentile. IGF-I serum concentrations corresponded to the general outcome of AN. By contrast, leptin serum concentrations showed great variability. They correlated with BMC and current body composition parameters.</p> <p>Conclusions</p> <p>Our results from the main study indicate a certain adaptability of bone mineral accrual which is dependent on a speedy and ongoing recovery. While leptin levels in the substudy tended to respond immediately to current nutritional status, IGF-I serum concentrations corresponded to the individual's age and general outcome of AN.</p

    Do bone mineral content and density determine fracture in children? A possible threshold for physical activity

    Get PDF
    BackgroundRelations between bone parameters, physical exertion, and childhood fractures are complex. We aimed to estimate the associations between fracture history and bone mineral content (BMC) and areal bone mineral density (aBMD) at 7 years of age, by levels of physical activity, as a proxy for trauma frequency.MethodsWe used data collected from 2,261 children of the Generation XXI birth cohort, assembled in 2005/6 in Porto, Portugal. At the age of 7 years (2012/4), fracture history, time spent per week in active play, and sports practice were reported by parents. Subtotal and lumbar spine (LS) BMC and aBMD were measured using whole-body dual-energy X-ray absorptiometry.ResultsBoys and girls in the highest categories of time spent in sports practice or active play generally had higher BMC and aBMD. Among girls, BMC and aBMD were protective of fracture only in the highest quarter of active play (>660 min/week)-odds ratios (OR; 95% confidence interval (95% CI)) for subtotal BMC=0.27 (0.11-0.67), subtotal aBMD=0.18 (0.06-0.49), and LS aBMD=0.41 (0.22-0.75). For boys in the highest quarter of sports practice (>240 min/week), subtotal and LS BMC were protective of fracture-OR=0.39 (0.16-0.98) and 0.51 (0.27-0.96), respectively.ConclusionIn prepubertal children, BMC and aBMD predicted fracture history only in the highest levels of physical activity.info:eu-repo/semantics/publishedVersio

    Bone mineral density in vocational and professional ballet dancers

    Get PDF
    Summary: According to existing literature, bone health in ballet dancers is controversial. We have verified that, compared to controls, young female and male vocational ballet dancers have lower bone mineral density (BMD) at both impact and non-impact sites, whereas female professional ballet dancers have lower BMD only at non-impact sites. Introduction: The aims of this study were to (a) assess bone mineral density (BMD) in vocational (VBD) and professional (PBD) ballet dancers and (b) investigate its association with body mass (BM), fat mass (FM), lean mass (LM), maturation and menarche. Methods: The total of 152 VBD (13 ± 2.3 years; 112 girls, 40 boys) and 96 controls (14 ± 2.1 years; 56 girls, 40 boys) and 184 PBD (28 ± 8.5 years; 129 females, 55 males) and 160 controls (27 ± 9.5 years; 110 female, 50 males) were assessed at the lumbar spine (LS), femoral neck (FN), forearm and total body by dual-energy X-ray absorptiometry. Maturation and menarche were assessed via questionnaires. Results: VBD revealed lower unadjusted BMD at all anatomical sites compared to controls (p < 0.001); following adjustments for Tanner stage and gynaecological age, female VBD showed similar BMD values at impact sites. However, no factors were found to explain the lower adjusted BMD values in VBD (female and male) at the forearm (non-impact site), nor for the lower adjusted BMD values in male VBD at the FN. Compared to controls, female PBD showed higher unadjusted and adjusted BMD for potential associated factors at the FN (impact site) (p < 0.001) and lower adjusted at the forearm (p < 0.001). Male PBD did not reveal lower BMD than controls at any site. Conclusions: both females and males VBD have lower BMD at impact and non-impact sites compared to control, whereas this is only the case at non-impact site in female PBD. Maturation seems to explain the lower BMD at impact sites in female VBD

    Modifiable risk factors associated with bone deficits in childhood cancer survivors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine the prevalence and severity of bone deficits in a cohort of childhood cancer survivors (CCS) compared to a healthy sibling control group, and the modifiable factors associated with bone deficits in CCS.</p> <p>Methods</p> <p>Cross-sectional study of bone health in 319 CCS and 208 healthy sibling controls. Bone mineral density (BMD) was measured by dual-energy x-ray absorptiometry (DXA). Generalized estimating equations were used to compare measures between CCS and controls. Among CCS, multivariable logistic regression was used to evaluate odds ratios for BMD Z-score ≤ -1.</p> <p>Results</p> <p>All subjects were younger than 18 years of age. Average time since treatment was 10.1 years (range 4.3 - 17.8 years). CCS were 3.3 times more likely to have whole body BMD Z-score ≤ -1 than controls (95% CI: 1.4-7.8; p = 0.007) and 1.7 times more likely to have lumbar spine BMD Z-score ≤ -1 than controls (95% CI: 1.0-2.7; p = 0.03). Among CCS, hypogonadism, lower lean body mass, higher daily television/computer screen time, lower physical activity, and higher inflammatory marker IL-6, increased the odds of having a BMD Z-score ≤ -1.</p> <p>Conclusions</p> <p>CCS, less than 18 years of age, have bone deficits compared to a healthy control group. Sedentary lifestyle and inflammation may play a role in bone deficits in CCS. Counseling CCS and their caretakers on decreasing television/computer screen time and increasing activity may improve bone health.</p

    Inhibition of the Progesterone Nuclear Receptor during the Bone Linear Growth Phase Increases Peak Bone Mass in Female Mice

    Get PDF
    Augmentation of the peak bone mass (PBM) may be one of the most effective interventions to reduce the risk of developing osteoporosis later in life; however treatments to augment PBM are currently limited. Our study evaluated whether a greater PBM could be achieved either in the progesterone nuclear receptor knockout mice (PRKO) or by using a nuclear progesterone receptor (nPR) antagonist, RU486 in mice. Compared to their wild type (WT) littermates the female PRKO mice developed significantly higher cancellous and cortical mass in the distal femurs, and this was associated with increased bone formation. The high bone mass phenotype was partially reproduced by administering RU486 in female WT mice from 1–3 months of age. Our results suggest that the inhibition of the nPR during the rapid bone growth period (1–3 months) increases osteogenesis, which results in acquisition of higher bone mass. Our findings suggest a crucial role for progesterone signaling in bone acquisition and inhibition of the nPR as a novel approach to augment bone mass, which may have the potential to reduce the burden of osteoporosis

    CKD-MBD after kidney transplantation

    Get PDF
    Successful kidney transplantation corrects many of the metabolic abnormalities associated with chronic kidney disease (CKD); however, skeletal and cardiovascular morbidity remain prevalent in pediatric kidney transplant recipients and current recommendations from the Kidney Disease Improving Global Outcomes (KDIGO) working group suggest that bone disease—including turnover, mineralization, volume, linear growth, and strength—as well as cardiovascular disease be evaluated in all patients with CKD. Although few studies have examined bone histology after renal transplantation, current data suggest that bone turnover and mineralization are altered in the majority of patients and that biochemical parameters are poor predictors of bone histology in this population. Dual energy X-ray absorptiometry (DXA) scanning, although widely performed, has significant limitations in the pediatric transplant population and values have not been shown to correlate with fracture risk; thus, DXA is not recommended as a tool for the assessment of bone density. Newer imaging techniques, including computed tomography (quantitative CT (QCT), peripheral QCT (pQCT), high resolution pQCT (HR-pQCT) and magnetic resonance imaging (MRI)), which provide volumetric assessments of bone density and are able to discriminate bone microarchitecture, show promise in the assessment of bone strength; however, future studies are needed to define the value of these techniques in the diagnosis and treatment of renal osteodystrophy in pediatric renal transplant recipients
    corecore