43 research outputs found

    Estimation of potential evapotranspiration from extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern Great Plains, USA

    Get PDF
    The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central driver of simulated plant growth in many ecological models. PET is influenced by solar and long wave radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature alone. This approach can cause biases in projections of future climate impacts in part because it confounds the effects of warming due to increased greenhouse gases with that which would be caused by increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened by continuing woody encroachment. Both the new and the standard temperature-dependent MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a much more gradual increase in PET over the 21st century for three contrasting future climates. This difference led to lower simulated drought effects and hence greater woody encroachment with the new algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing with climate change

    Estimation of potential evapotranspiration from extraterrestrial radiation, air temperature and humidity to assess future climate change effects on the vegetation of the Northern Great Plains, USA

    Get PDF
    The potential evapotranspiration (PET) that would occur with unlimited plant access to water is a central driver of simulated plant growth in many ecological models. PET is influenced by solar and long wave radiation, temperature, wind speed, and humidity, but it is often modeled as a function of temperature alone. This approach can cause biases in projections of future climate impacts in part because it confounds the effects of warming due to increased greenhouse gases with that which would be caused by increased radiation from the sun. We developed an algorithm for linking PET to extraterrestrial solar radiation (incoming top-of atmosphere solar radiation), as well as temperature and atmospheric water vapor pressure, and incorporated this algorithm into the dynamic global vegetation model MC1. We tested the new algorithm for the Northern Great Plains, USA, whose remaining grasslands are threatened by continuing woody encroachment. Both the new and the standard temperature-dependent MC1 algorithm adequately simulated current PET, as compared to the more rigorous PenPan model of Rotstayn et al. (2006). However, compared to the standard algorithm, the new algorithm projected a much more gradual increase in PET over the 21st century for three contrasting future climates. This difference led to lower simulated drought effects and hence greater woody encroachment with the new algorithm, illustrating the importance of more rigorous calculations of PET in ecological models dealing with climate change

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Rubin-Euclid Derived Data Products:Initial Recommendations

    Get PDF
    This report is the result of a joint discussion between the Rubin and Euclid scientific communities. The work presented in this report was focused on designing and recommending an initial set of Derived Data products (DDPs) that could realize the science goals enabled by joint processing. All interested Rubin and Euclid data rights holders were invited to contribute via an online discussion forum and a series of virtual meetings. Strong interest in enhancing science with joint DDPs emerged from across a wide range of astrophysical domains: Solar System, the Galaxy, the Local Volume, from the nearby to the primaeval Universe, and cosmology

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    The Response of Vegetation Distribution, Ecosystem Productivity, and Fire in California to Future Climate Scenarios Simulated by the MC1 Dynamic Vegetation Model

    No full text
    The objective of this study was to dynamically simulate the response of vegetation distribution, carbon, and fire to three scenarios of future climate change for California using the MAPSSCENTURY (MC1) dynamic general vegetation model. Under all three scenarios, Alpine/Subalpine Forest cover declined with increased growing season length and warmth, and increases in the productivity of evergreen hardwoods with increased temperature led to the displacement of Evergreen Conifer Forest by Mixed Evergreen Forest. The simulated responses to changes in precipitation were complex, involving not only the effect on vegetation productivity, but also changes in tree-grass competition mediated by fire. Grassland expanded, largely at the expense of Woodland and Shrubland, even under the relatively cool and moist PCM-A2 climate scenario where increased woody plant production was offset by increased wildfire. Increases in net primary productivity (NPP) under the PCM-A2 climate scenario contributed to a simulated carbon sink of about 321 teragrams (353.8 million tons) for California by the end of the century. Declines in net primary productivity (NPP) under the two warmer and drier GFDL climate scenarios, most evident under the GFDL-A2 scenario, contributed to a net loss of carbon ranging from about 76 to 129 Tg (83.8 to 142.2 million tons) by the end of the century. Total annual area burned in California increased under all three scenarios, ranging from 9%–15% above the historical norm by the end of the century. Regional variation in the simulated changes in area burned was largely a product of changes in vegetation productivity and shifts in the relative dominance of woody plants and grasses. Annual biomass consumption by fire by the end of the century was about 18% greater than the historical norm under the more productive PCM-A2 scenario. Under the warmer and drier GFDL scenarios, simulated biomass consumption was also greater than normal for the first few decades of the century as droughtstressed woodlands and shrublands burned and were converted to grassland. After this transitional period, lower than normal NPP produced less fuel, and biomass consumed was at, or below, the historical norm by the end of the century under the GFDL scenarios. Considerable uncertainty exists with respect to regional-scale impacts of global warming on the natural ecosystem of California. Much of this uncertainty resides in the differences among different GCM climate scenarios and assumed trajectories of future greenhouse gas emissions as illustrated in this study. In addition, ecosystem models and their response to projected climate change can always be improved through careful testing and enhancement of model processes. The direct effects of increasing CO2 on ecosystem productivity and water use, and assumptions regarding fire suppression and the availability of ignition sources, were identified as sources of uncertainty to be addressed through further model testing and development
    corecore