239 research outputs found

    Inside UNLV

    Full text link

    Inside UNLV

    Full text link

    Technical report: Modeling nitrate leaching risk from specialty crop fields during on-farm managed floodwater recharge in the Kings Groundwater Basin and the potential for its management

    Get PDF
    This project has focused on better understanding the potential impact of On-Farm Flood Capture and Recharge (OFFCR) on groundwater quality pertaining to salts and nitrate and on assessing potential management opportunities. To achieve these goals, we used a combination of field and modeling studies. For the field study, soil cores were taken to a depth of 30 feet in replicate across fields with three different specialty crops identified as important to the San Joaquin Valley (tomatoes, almonds, vineyards) and with potential suitability for OFFCR. A prime goal of the field study was to provide data for parameterizing two models developed to assess nitrate, salt and water transport through the vadose zone, prior to percolating into the groundwater aquifer. However, the field study also resulted in key findings that show its value as a stand-alone study: 1) Nitrate concentrations are highest in the upper vadose zone and affected by texture. Those effects are not evident in the deeper vadose zone. 2) Vadose zone nitrate concentrations are affected by the crop grown. These results suggest an opportunity for lower legacy mass transport for grapes and higher legacy mass transport for both tomatoes and almonds. 3) Variability in individual farmers’ past and present fertilizer and water management practices contributes to different legacy salt and nitrate loads in the vadose zone. Data from the field study and other related and concurrent OFFCR field efforts were used during model development. The overall modeling approach was designed to model nitrate and salt transport for lands under OFFCR operation for different crop types, vadose zone characteristics and groundwater characteristics. The defined goals of this design and modeling approach were to: 1) model nitrate and salt movement through the vadose zone and into groundwater; 2) test the model against scenarios that consider different recharge rates, cultural practices, soil types, and depths to groundwater, assessing the timing and magnitude of loading through the vadose zone and the effects on underlying groundwater; and 3) recommend management practices to mitigate potential groundwater impacts. To achieve these goals, two models were integrated to simulate nitrate and salt transport through the vadose zone to groundwater under different scenarios: a 1D Hydrus model and an analytical groundwater model (AGM)

    Exposure to Household Air Pollution from Biomass-Burning Cookstoves and HbA1c and Diabetic Status Among Honduran Women

    Full text link
    Household air pollution from biomass cookstoves is estimated to be responsible for more than two and a half million premature deaths annually, primarily in low and middle‐income countries where cardiometabolic disorders, such as Type II Diabetes, are increasing. Growing evidence supports a link between ambient air pollution and diabetes, but evidence for household air pollution is limited. This cross‐sectional study of 142 women (72 with traditional stoves and 70 with cleaner‐burning Justa stoves) in rural Honduras evaluated the association of exposure to household air pollution (stove type, 24‐hour average kitchen and personal fine particulate matter [PM2.5] mass and black carbon) with glycated hemoglobin (HbA1c) levels and diabetic status based on HbA1c levels. The prevalence ratio (PR) per interquartile range increase in pollution concentration indicated higher prevalence of prediabetes/diabetes (vs normal HbA1c) for all pollutant measures (eg, PR per 84 μg/m3 increase in personal PM2.5, 1.49; 95% confidence interval [CI], 1.11‐2.01). Results for HbA1c as a continuous variable were generally in the hypothesized direction. These results provide some evidence linking household air pollution with the prevalence of prediabetes/diabetes, and, if confirmed, suggest that the global public health impact of household air pollution may be broader than currently estimated

    Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California

    Get PDF
    A growing population and an increased demand for water resources have resulted in a global trend of groundwater depletion. Arid and semi-arid climates are particularly susceptible, often relying on groundwater to support large population centers or irrigated agriculture in the absence of sufficient surface water resources. In an effort to increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the approach of intentionally harvesting and infiltrating water to recharge depleted aquifer storage. California is a prime example of this growing problem, with three cities that have over a million residents and an agricultural industry that was valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over 100 km3 (since 1962) indicates a clear disparity between surface water supply and water demand within the state. In the face of groundwater overdraft and the anticipated effects of climate change, many new MAR projects are being constructed or investigated throughout California, adding to those that have existed for decades. Some common MAR types utilized in California include injection wells, infiltration basins (also known as spreading basins, percolation basins, or recharge basins), and low-impact development. An emerging MAR type that is actively being investigated is the winter flooding of agricultural fields using existing irrigation infrastructure and excess surface water resources, known as agricultural MAR. California therefore provides an excellent case study to look at the historical use and performance of MAR, ongoing and emerging challenges, novel MAR applications, and the potential for expansion of MAR. Effective MAR projects are an essential tool for increasing groundwater security, both in California and on a global scale. This chapter aims to provide an overview of the most common MAR types and applications within the State of California and neighboring semi-arid regions

    Long noncoding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease, and RNAi in fission yeast.

    Get PDF
    Long noncoding RNAs (lncRNAs), which are longer than 200 nucleotides but often unstable, contribute a substantial and diverse portion to pervasive noncoding transcriptomes. Most lncRNAs are poorly annotated and understood, although several play important roles in gene regulation and diseases. Here we systematically uncover and analyze lncRNAs in Schizosaccharomyces pombe. Based on RNA-seq data from twelve RNA-processing mutants and nine physiological conditions, we identify 5775 novel lncRNAs, nearly 4× the previously annotated lncRNAs. The expression of most lncRNAs becomes strongly induced under the genetic and physiological perturbations, most notably during late meiosis. Most lncRNAs are cryptic and suppressed by three RNA-processing pathways: the nuclear exosome, cytoplasmic exonuclease, and RNAi. Double-mutant analyses reveal substantial coordination and redundancy among these pathways. We classify lncRNAs by their dominant pathway into cryptic unstable transcripts (CUTs), Xrn1-sensitive unstable transcripts (XUTs), and Dicer-sensitive unstable transcripts (DUTs). XUTs and DUTs are enriched for antisense lncRNAs, while CUTs are often bidirectional and actively translated. The cytoplasmic exonuclease, along with RNAi, dampens the expression of thousands of lncRNAs and mRNAs that become induced during meiosis. Antisense lncRNA expression mostly negatively correlates with sense mRNA expression in the physiological, but not the genetic conditions. Intergenic and bidirectional lncRNAs emerge from nucleosome-depleted regions, upstream of positioned nucleosomes. Our results highlight both similarities and differences to lncRNA regulation in budding yeast. This broad survey of the lncRNA repertoire and characteristics in S. pombe, and the interwoven regulatory pathways that target lncRNAs, provides a rich framework for their further functional analyses

    Impact of gaming disorder on first episode psychosis patients' evolution: Protocol for a multicentered prospective study.

    Get PDF
    The objective of this study is to underline the impact of Gaming Disorder on the clinical evolution of patients with First Episode Psychosis. The specific aims of the study are to determine the prevalence of gaming disorder among those patients and assess the consequences of gaming on their clinical trajectory. This is a prospective multicenter cohort study that will enrol 800 patients diagnosed with a first episode psychosis, with a follow-up period of up to 3 years. Using a systematic screening procedure for gaming disorder, the clinical staff will assess patients gaming habits at admission and every 6 months thereafter. Information from patients' medical records will also be extracted using the same timeframe. The patients' characteristics at admission and during follow-up will be presented in the form of descriptive statistics and compared between different subgroups of patients using uni- and multivariate logistic regression models. Repeated measures ANCOVA will also be performed to analyse the impact of gaming disorders on patients' clinical path as assessed by the Positive and Negative Syndrome Scale and the Clinical Global Impression scale, considering covariates such as psychiatric diagnosis, pharmacological treatment, age, sex/gender, and duration of untreated psychosis. These findings will guide the development of prevention, detection, and treatment strategies for the comorbidity between gaming disorder and first episode psychosis, ultimately improving the patients' recovery
    corecore