63 research outputs found

    The Role of the Primary Sensory Cortices in Early Language Processing.

    Get PDF
    The results of this magnetoencephalography study challenge two long-standing assumptions regarding the brain mechanisms of language processing: First, that linguistic processing proper follows sensory feature processing effected by bilateral activation of the primary sensory cortices that lasts about 100 msec from stimulus onset. Second, that subsequent linguistic processing is effected by left hemisphere networks outside the primary sensory areas, including Broca's and Wernicke's association cortices. Here we present evidence that linguistic analysis begins almost synchronously with sensory, prelinguistic verbal input analysis and that the primary cortices are also engaged in these linguistic analyses and become, consequently, part of the left hemisphere language network during language tasks. These findings call for extensive revision of our conception of linguistic processing in the brain

    Blood pressure alterations in burn patients with septic shock under hydrocortisone treatment

    Get PDF
    Background and Objectives: Hydrocortisone is widely used in septic shock cases resistant to fluid and vasopressor therapy. It may result in increased blood pressure and survival. However the efficacy is no established among patients with severe burn and septic shock. Accordingly it was assessed in this study. Materials and Methods: The patients older than 14 years of age with resistant septic shock were enrolled during one-year period. The hydrocortisone was prescribed 100 mg three times per day and the alterations in systolic and diastolic blood pressures were recorded. Results: Twenty-nine patients were enrolled including 19 men and 10 women. The mean age was 37 ± 19 years and the mean burn surface area was 60 ± 20. Fourteen patients had positive blood culture. The most common isolated microorganism were Pseudomonas aeuroginosa in 34.6(10 cases), and then Acinetobacter in 13.8(4 cases). The infection was from wound in 79 and the remaining 21 had pneumonia. Twenty-one patients had good response to hydrocortisone and the increase in systolic and diastolic blood pressures was significant; but the mortality rate was similar. Conclusion: Treatment with hydrocortisone would result in increase in systolic and diastolic blood pressure in burn patients with resistant septic shock. © 2015, Tehran University of Medical Science. All rights reserved

    Analysis of the effect of subcutaneous injection of omental-derived cells on the healing of third degree burns in rats: A preliminary study Effet de l�injection sous-cutanée de cellules épiploïques sur la cicatrisation de brûlures du troisième degré chez le rat: �tude préliminaire

    Get PDF
    Burn injury is considered a global health issue. Third degree burn wounds do not heal spontaneously and require skin grafts. Some factors could contribute to wound healing. In this study we assessed the effect of non-fatty omental cells in burn wound healing. Similar third degree burn wounds were induced on the back of 192 rats. Forty-eight of these rats were put in a control group that did not receive any treatment. The rest of the rats were put in 3 groups, each receiving a different treatment regime. Rats in group 2 had a daily application of silver sulfadiazine; group 3 rats were injected with omental cells, and group 4 rats were injected with phosphate buffer saline (PBS) once, followed by daily application of Vaseline to the burned region. Parameters such as open epidermis length, number of epidermal cell layers, granulation tissue thickness (GTT) and neutrophil density were evaluated in each group. The average open epidermis length in the omental cell group was less than in the other groups on days 10 and 20 (P<0.05). The thickness of epidermal cell layers in the group receiving cells was greater than in the other groups on all days. On the 20th day, there was a significant difference in GTT between the four groups (P<0.05). The injection of non-fatty omental cells has a positive effect on third degree burn wounds in rats. © 2018, Mediterranean Club for Burns and Fire Disasters. All rights reserved

    A Low Dimensional Description of Globally Coupled Heterogeneous Neural Networks of Excitatory and Inhibitory Neurons

    Get PDF
    Neural networks consisting of globally coupled excitatory and inhibitory nonidentical neurons may exhibit a complex dynamic behavior including synchronization, multiclustered solutions in phase space, and oscillator death. We investigate the conditions under which these behaviors occur in a multidimensional parametric space defined by the connectivity strengths and dispersion of the neuronal membrane excitability. Using mode decomposition techniques, we further derive analytically a low dimensional description of the neural population dynamics and show that the various dynamic behaviors of the entire network can be well reproduced by this reduced system. Examples of networks of FitzHugh-Nagumo and Hindmarsh-Rose neurons are discussed in detail

    Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma

    Get PDF
    Abstract Background This paper presents a three-dimensional (3D) method for segmenting corpus callosum in normal subjects and brain cancer patients with glioblastoma. Methods Nineteen patients with histologically confirmed treatment naïve glioblastoma and eleven normal control subjects underwent DTI on a 3T scanner. Based on the information inherent in diffusion tensors, a similarity measure was proposed and used in the proposed algorithm. In this algorithm, diffusion pattern of corpus callosum was used as prior information. Subsequently, corpus callosum was automatically divided into Witelson subdivisions. We simulated the potential rotation of corpus callosum under tumor pressure and studied the reproducibility of the proposed segmentation method in such cases. Results Dice coefficients, estimated to compare automatic and manual segmentation results for Witelson subdivisions, ranged from 94% to 98% for control subjects and from 81% to 95% for tumor patients, illustrating closeness of automatic and manual segmentations. Studying the effect of corpus callosum rotation by different Euler angles showed that although segmentation results were more sensitive to azimuth and elevation than skew, rotations caused by brain tumors do not have major effects on the segmentation results. Conclusions The proposed method and similarity measure segment corpus callosum by propagating a hyper-surface inside the structure (resulting in high sensitivity), without penetrating into neighboring fiber bundles (resulting in high specificity)

    Bayesian Comparison of Neurovascular Coupling Models Using EEG-fMRI

    Get PDF
    Functional magnetic resonance imaging (fMRI), with blood oxygenation level-dependent (BOLD) contrast, is a widely used technique for studying the human brain. However, it is an indirect measure of underlying neuronal activity and the processes that link this activity to BOLD signals are still a topic of much debate. In order to relate findings from fMRI research to other measures of neuronal activity it is vital to understand the underlying neurovascular coupling mechanism. Currently, there is no consensus on the relative roles of synaptic and spiking activity in the generation of the BOLD response. Here we designed a modelling framework to investigate different neurovascular coupling mechanisms. We use Electroencephalographic (EEG) and fMRI data from a visual stimulation task together with biophysically informed mathematical models describing how neuronal activity generates the BOLD signals. These models allow us to non-invasively infer the degree of local synaptic and spiking activity in the healthy human brain. In addition, we use Bayesian model comparison to decide between neurovascular coupling mechanisms. We show that the BOLD signal is dependent upon both the synaptic and spiking activity but that the relative contributions of these two inputs are dependent upon the underlying neuronal firing rate. When the underlying neuronal firing is low then the BOLD response is best explained by synaptic activity. However, when the neuronal firing rate is high then both synaptic and spiking activity are required to explain the BOLD signal

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden
    corecore