21 research outputs found

    Representation of the virtual space in extended systems – a correlation energy convergence study

    Get PDF
    We present an investigation of the convergence behaviour of the local second-order MĂžller-Plesset perturbation theory (MP2) correlation energy toward the canonical result for three insulating crystals with either projected atomic orbitals (PAOs) or various orthonormal representations of the virtual orbital space. Echoing recent results for finite molecular systems, we find that significantly fewer PAOs than localised orthonormal virtual orbitals are required to reproduce the canonical correlation energy. We find no clear-cut correlation between conventional measures of orbital locality and the ability of the representation to span the excitation space of local domains. We show that the PAOs of the reference unit cell span parts of the excitation space that can only be reached with distant local orthonormal virtual orbitals

    Computational Nuclear Physics and Post Hartree-Fock Methods

    Full text link
    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions on strategies for porting the code to present and planned high-performance computing facilities.Comment: 82 pages, to appear in Lecture Notes in Physics (Springer), "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor

    Linking morphological and molecular taxonomy for the identification of poultry house, soil, and nest dwelling mites in the Western Palearctic

    Get PDF
    Because of its ability to expedite specimen identification and species delineation, the barcode index number (BIN) system presents a powerful tool to characterize hyperdiverse invertebrate groups such as the Acari (mites). However, the congruence between BINs and morphologically recognized species has seen limited testing in this taxon. We therefore apply this method towards the development of a barcode reference library for soil, poultry litter, and nest dwelling mites in the Western Palearctic. Through analysis of over 600 specimens, we provide DNA barcode coverage for 35 described species and 70 molecular taxonomic units (BINs). Nearly 80% of the species were accurately identified through this method, but just 60% perfectly matched (1:1) with BINs. High intraspecific divergences were found in 34% of the species examined and likely reflect cryptic diversity, highlighting the need for revision in these taxa. These findings provide a valuable resource for integrative pest management, but also highlight the importance of integrating morphological and molecular methods for fine-scale taxonomic resolution in poorly-known invertebrate lineages

    Linking morphological and molecular taxonomy for the identification of poultry house, soil, and nest dwelling mites in the Western Palearctic

    No full text
    Because of its ability to expedite specimen identification and species delineation, the barcode index number (BIN) system presents a powerful tool to characterize hyperdiverse invertebrate groups such as the Acari (mites). However, the congruence between BINs and morphologically recognized species has seen limited testing in this taxon. We therefore apply this method towards the development of a barcode reference library for soil, poultry litter, and nest dwelling mites in the Western Palearctic. Through analysis of over 600 specimens, we provide DNA barcode coverage for 35 described species and 70 molecular taxonomic units (BINs). Nearly 80% of the species were accurately identified through this method, but just 60% perfectly matched (1:1) with BINs. High intraspecific divergences were found in 34% of the species examined and likely reflect cryptic diversity, highlighting the need for revision in these taxa. These findings provide a valuable resource for integrative pest management, but also highlight the importance of integrating morphological and molecular methods for fine-scale taxonomic resolution in poorly-known invertebrate lineages

    Urbanization drives cross‐taxon declines in abundance and diversity at multiple spatial scales

    Get PDF
    Abstract The increasing urbanization process is hypothesized to drastically alter (semi‐)natural environments with a concomitant major decline in species abundance and diversity. Yet, studies on this effect of urbanization, and the spatial scale at which it acts, are at present inconclusive due to the large heterogeneity in taxonomic groups and spatial scales at which this relationship has been investigated among studies. Comprehensive studies analysing this relationship across multiple animal groups and at multiple spatial scales are rare, hampering the assessment of how biodiversity generally responds to urbanization. We studied aquatic (cladocerans), limno‐terrestrial (bdelloid rotifers) and terrestrial (butterflies, ground beetles, ground‐ and web spiders, macro‐moths, orthopterans and snails) invertebrate groups using a hierarchical spatial design wherein three local‐scale (200 m × 200 m) urbanization levels were repeatedly sampled across three landscape‐scale (3 km × 3 km) urbanization levels. We tested for local and landscape urbanization effects on abundance and species richness of each group, whereby total richness was partitioned into the average richness of local communities and the richness due to variation among local communities. Abundances of the terrestrial active dispersers declined in response to local urbanization, with reductions up to 85% for butterflies, while passive dispersers did not show any clear trend. Species richness also declined with increasing levels of urbanization, but responses were highly heterogeneous among the different groups with respect to the richness component and the spatial scale at which urbanization impacts richness. Depending on the group, species richness declined due to biotic homogenization and/or local species loss. This resulted in an overall decrease in total richness across groups in urban areas. These results provide strong support to the general negative impact of urbanization on abundance and species richness within habitat patches and highlight the importance of considering multiple spatial scales and taxa to assess the impacts of urbanization
    corecore