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ABSTRACT
We present an investigation of the convergence behaviour of the local second-order Møller-Plesset
perturbation theory (MP2) correlation energy toward the canonical result for three insulating crystals
with either projected atomic orbitals (PAOs) or various orthonormal representations of the virtual
orbital space. Echoing recent results for finite molecular systems, we find that significantly fewer
PAOs than localised orthonormal virtual orbitals are required to reproduce the canonical correlation
energy. We find no clear-cut correlation between conventional measures of orbital locality and the
ability of the representation to span the excitation space of local domains. We show that the PAOs of
the reference unit cell span parts of the excitation space that can only be reached with distant local
orthonormal virtual orbitals.
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1. Introduction

Orbital localisation is a powerful tool in molecular
and solid-state quantum chemistry, providing both intu-
itively appealing interpretations and visualisations of
electronic structure [1–3], and opportunities for effi-
cient implementations of correlated theories. Spatially
localised orbitals can be obtained either by a suitably

CONTACT A. S. Hansen a.s.hansen@kjemi.uio.no Hylleraas Centre for QuantumMolecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033 Blindern, Oslo N-0315, Norway

chosen unitary transformation of the inherently delo-
calised canonical Hartree-Fock (HF) or Kohn-Sham
orbitals [4] or directly through a restrained noncanon-
ical self-consistent optimisation [5]. From an algorith-
mic perspective, localised orbitals pave the way for the
implementation of orbital-based embedding/fragment
schemes [6, 7] and for exploiting the short-range char-
acter of electron correlation effects to greatly reduce the
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computational complexity of post-HF methods [8–10].
In this work, we will be concerned with the latter aspect.

The concept of ‘localized orbitals’ is not uniquely
defined, however, and different localisation function-
als have been proposed. Among the oldest and most
widely used proposals are the Foster-Boys [11, 12], Pipek-
Mezey [13], and Edmiston-Ruedenberg [14, 15] func-
tionals, which produce localised orbitals that minimise
the orbital spread, maximise the orbital partial Mulliken
charges over as few atoms as possible, and maximise the
Coulomb self-repulsion of the orbitals, respectively. Nei-
ther of these locality measures is directly related to the
electron-correlation problem, i.e. they are not defined
through a quantity that directly enters an expression
for the correlation energy. Consequently, it is far from
obvious which localisation functional leads to the most
efficient general-purpose local-correlation algorithm.

Local electron-correlationmethods rely on at least two
features:

(1) The occupied and virtual orbitals should be confined
within a small volume in space [16], such that the
differential overlap between them decay as rapidly as
possible with distance.

(2) At the same time, the virtual orbitals should be con-
structed in such a way that a very small number of
them is sufficient to accurately represent the excita-
tion space of each pair of occupied orbitals.

The latter has been tackled mainly through the intro-
duction of orbital-specific [17] or pair-specific [18] vir-
tual orbitals. These sets are constructed from an initial set
of localised virtual orbitals by means of first-order esti-
mates of the correlation amplitudes – that is, they are con-
structed directly from features of the electron correlation
effects of the system at hand.

Much effort has been devoted to point (1), albeit
usingmeasures not directly related to electron correlation
effects. It is an open question whether nonorthonormal
local orbitals are preferable to orthonormal ones [19–21].
Relaxing the orthogonality constraint leads to sim-
pler nodal structures, which, in particular, may lead to
smoother and more rapid decay of the tails of the func-
tions. At the same time, however, the resulting set will be
linearly dependent, which one might fear can lead to a
larger number of orbitals required to span a given sub-
space. The most widely-used approach in local correla-
tion theories is to choose an orthonormal set for the occu-
pied space, obtained through localisation of the occupied
HF orbitals, while nonorthogonal, linearly dependent
projected atomic orbitals (PAOs) are used to represent the
virtual manifold. The PAOs are easily computed from the
converged HF density matrix and, historically, the choice

of PAOs as virtual orbital basis has more to do with the
lack of robust algorithms for the localisation of orthonor-
mal virtual orbitals than superior performance in local
correlation treatments.With the robust localisation algo-
rithms developed in recent years by Høyvik, Jørgensen,
and coworkers [4, 22–24], orthonormal virtual-orbital
localisation can be performed reliably and efficiently,
warranting a comparison of the performance of PAOs
versus localised orthonormal virtual orbitals (LVOs) in
local correlation treatments.

Recently,Werner and coworkers [25–27] reported that
PAOs outperform LVOs inmolecular calculations.While
the LVOs are more local than PAOs in terms of orbital
spread, significantly fewer PAOs than LVOs are required
in the excitation domains to recover the same fraction of
the exact correlation energy. The authors did not present
a definitive reason for this somewhat counterintuitive
result, however.

The central role of locality in electron correlation
treatments is evenmore pertinent in 3Dperiodic systems,
where the canonical orbitals are forced by translation
symmetry to be delocalised over the entire infinite solid.
The dense packing of 3D periodic systems enhances
the effectiveness of locality-based screening procedures,
leading to even more pronounced computational savings
than for finite molecular systems.

In this work, we compare the performance of PAOs
and different sets of LVOs for local second-order Møller-
Plesset (MP2) theory of representative insulators: the
covalent diamond crystal, the ionic lithium hydride crys-
tal, and the molecular prussic acid crystal.

2. Theoretical background

The electronic correlation energy of a weakly correlated
system can be written in the coupled-cluster (CC) for-
malism as [28]

Ec =
∑
ij

∑
ab

(tabij − tai t
b
j )(2(ia | jb) − (ib | ja)), (1)

where we have assumed a closed-shell system for sim-
plicity. We use latin letters i, j, k to denote occupied
spatial orbitals and a, b, c to denote virtual spatial
orbitals obtained from a preceedingHF calculation.With
real orbitals, the electron repulsion integrals (ERIs) are
defined as

(ia | jb) =
∫∫

ϕi(r)ϕa(r)ϕj(r′)ϕb(r′)
|r − r′| dr′ dr. (2)

The single- and double-excitation amplitudes, tai and t
ab
ij ,

respectively, are determined from a nonlinear equation
system that, for an n-electron system, may involve up
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to n-tuple excitations, depending on the chosen CC
model. The simplest model is second-order Møller-
Plesset (MP2) theory [28] where the single-excitation
amplitudes vanish due to the Brillouin condition. The
double-excitation amplitudes are obtained from the set
of equations [23]

rabij =
∑
c

(
factcbij + tacij fcb

)
−
∑
k

(
fiktabkj + tabik fkj

)

+ (ia | jb) = 0, (3)

where f is the Fock matrix and all orbitals are assumed
to be orthonormal. Solving the MP2 equations scales
as O(N5) with N a measure of system size such as the
number of atom-centred basis functions used to expand
the occupied and virtual orbitals. The MP2 energy,
Equation (1), and amplitude equations, Equation (3), are
invariant to rotations among occupied and among virtual
orbitals separately. For insulators, this can be exploited
to bring forth significant sparsity in the Fock matrix
and ERIs which, in turn, imply sparsity in the ampli-
tudes. This observation dates back to Pulay [8] and forms
the basis for linear-scaling implementations that today
approach a near-black-box level of sophistication [23, 27,
29–33].

Linear scaling can be achieved as the following sim-
ple argument shows. Given suitably localised occupied
and virtual orbitals, the integral (ia | jb) will be negligi-
ble unless a is centred in the vicinity of i in the sense that
the product ϕi(r)ϕa(r) must be non-vanishing in some
region of space for the integral to be nonzero. A similar
argument applies to j and b, of course. This alone leads
to quadratic scaling of the number of significant ERIs.
Furthermore, multipole expansion of (ia | jb) reveals an
asymptotic decay rate proportional to R−3, where R is a
measure of the distance between i and j, leading to lin-
ear scaling of the number of significant integrals [34, 35].
The amplitudes and the residuals in Equation (3) inherit
the decay property of the integrals, paving the way for
a linear-scaling algorithm. By the same token, it follows
that the correlation-energy contribution from pairs of
occupied orbitals decays asymptotically as R−6, consis-
tent with the decay of London dispersion forces. This
argument can be extended to cover also higher-order CC
models.

The arguments underpinning linear-scaling correla-
tion treatments thus rely heavily on the concept of orbital
locality. As mentioned in the Introduction, this concept
is not uniquely defined and a number of localisation
functionals have been proposed. In this work, we will
consider the central-moment functionals of Høyvik and
Jørgensenalong with their statistics-based measures of
orbital locality [4]. The mth power of the second central

moment (PSM-m) functionals are defined in terms of the
second moment orbital spread of each orbital p,

σ2(p) = 〈p| (r − 〈p|r|p〉)2 |p〉1/2, (4)

as

ξPSM−m =
∑
p

σ2(p)2m, (5)

where the summation over orbitals should be restricted
to either occupied or virtual orbitals to maintain the
Brillouin condition. The PSM-1 functional is identical
to the Foster-Boys functional [36, 37]. Minimising the
PSM-1 functional with respect to unitary rotations of the
(orthonormal) orbitals leads to the set of orbitals with the
smallest possible sum of orbital spreads. In the context of
periodic systems, such orbitals are commonly referred to
as maximally localised Wannier functions [38].

Similarly, the PSM-2 orbitals are computed byminimi-
sing the objective function in Equation (5) with m = 2.
The PSM-2 objective function reduces the spread of the
least local orbitals at the expense of the most local ones.
The motivation behind the PSM-2 functional is the con-
jecture that the least local orbitals in the PSM-1 set lead
to excessive computational effort in a local correlation
treatment [22]. Increasing the value of m does not bring
any further advantages with respect to the least local
orbital(s).

The PSM-m objective functions do not address the
problem of long-range tails of the orbitals. The tail of
orbital p can be measured by the fourth moment orbital
spread σ4:

σ4(p) = 〈p| (r − 〈p|r|p〉)4 |p〉1/4, (6)

and letting this quantity take the role of σ2(p) leads to the
mth power of the fourth central moment (PFM-m) class
of localisation functionals [4, 16]

ξPFM−m =
∑
p

σ4(p)4m. (7)

Minimising the PFM-1 objective function leads to ‘mini-
mally tailed’ orthonormal orbitals and, in analogy with
the PSM-2 case above, heavy-tailed outliers may be
removed by putting m = 2. Following Høyvik and Jør-
gensen [4], we use the tail spread β(p), defined as the
fourth root of the kurtosis,

β(p) = σ4(p)
σ2(p)

, (8)

to measure tail thickness. The more heavy-tailed an
orbital is, the greater the value of its tail spread.
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In this work, we will focus on orthonormal orbitals
obtained by minimising the PSM-1, PSM-2, and PFM-2
objective functions.

The by far most commonly used virtual basis is com-
posed of PAOs [8], which are straightforwardly con-
structed by projecting out the occupied orbitals from the
atomic orbital (AO) basis, so that a normalised PAO |μ̃〉
is given by

|μ̃〉 = Nμ

(
1 −

∑
i

|i〉〈i|
)

|μ〉, (9)

where |μ〉 are the AOs and Nμ = 〈μ|(1 −∑
i |i〉

〈i|)|μ〉−1/2. In this way, a redundant set of orbitals is
obtained, having in principle the same size as the AO
basis. The PAOs inherit a certain degree of locality from
theHF densitymatrix used for the projection and are free
from the delocalisation (tail) effects resulting from the
orthogonality constraint [24].

We are in this work mainly interested in the impact of
the choice of virtual orbitals on the efficiency and accu-
racy of periodic local MP2 calculations. Although the
choice of virtual orbitals can not be entirely decoupled
from the choice of localised occupied orbitals, we will
use the PSM-1 localised occupied orbitals in conjunction
with different sets of either LVOs or PAOs. As proposed
by Pinski et al. [30], we may then characterise the so-
called multiplicative sparsity between the occupied and
virtual sets of orbitals through differential overlap inte-
grals (DOIs). The DOI for an occupied orbital ϕi and a
virtual orbital ϕa is defined as

�ia =
√∫

ϕi(r)2ϕa(r)2 dr. (10)

The DOIs measure the extent to which the occupied
and virtual orbitals have a non-vanishing intersection
in R

3 and thus can be used to map the sparsity of
the ERIs, Equation (2), with the chosen virtual orbital
basis.

While the focus of the localising objective functions
and construction procedures is on the spatial distribu-
tion of the orbitals, they are each implicitly assumed
to bring forth a condition where the significant part
of the correlation can be attributed to a subset of the
full amplitude space, determined from locality consid-
erations. Although most modern implementations of
local correlation theories reduce the impact of the initial
choice of virtual basis through further refinements like
orbital-specific virtuals [39] or pair-natural orbitals [30,
32, 33], it is of fundamental importance to compare the
behaviour of PAOs and orthonormal virtual orbitals in
the context of computing the ground-state correlation

energy. It is, however, not trivial to devise a fair com-
parison between different types of orbitals (orthonormal
or non-orthonormal, atom-centred or not), where the
correlation energy is closely related to the number of vir-
tual orbitals used in the calculation. In this work, we
have chosen to treat the excitation space in the following
manner:

(1) For each occupied orbital a list of atomic centres
in its vicinity is compiled, and PAOs centred on
such atoms constitute the initial excitation domain.
This list is built by taking the n atoms closest to
the occupied-orbital centroid, and then rounding
up such that all atoms within the same distance are
included (within a numerical threshold).

(2) Through the orbital-specific virtuals (OSV)method-
ology [39], a set of virtuals is built as a linear com-
bination of the initial set by diagonalising the MP2
pair density matrices Dii corresponding to diagonal
pairs ii in the reference unit cell:

Dii
ab =

∑
c

tacii t
cb
ii (11)

(3) The resulting set of orbitals is trimmed to keep the
error in the total correlation energy within a thresh-
old.

(4) The number of OSVs retained for each domain is
then a function of (i) the size of the original PAO
domain, and (ii) the number of orbitals significantly
contributing to the correlation energy.

(5) Finally, the virtual space of a local pair domain
(which, for diagonal pairs, coincides with the orbital
domain) is transformed into a local orthonor-
mal (LON) space for the pair-domain ampli-
tudes, in which redundant orbitals are discarded
according to a threshold of 10−4 on the overlap
eigenvalue.

While thresholds on the LON redundancy check in
point (5) above are generally tighter in molecular appli-
cations, the closer packing of bulk solids makes the
algorithm more sensitive to linear dependencies and, by
experience, the chosen value is reasonable. Sets of LON
orbitals are constructed in the same manner starting
from each initial set of LVOs (PSM-1, PSM-2, or PFM-
2 LVOs). In this procedure, each LVO is associated with
the atom nearest to its orbital centroid. The convergence
of the local MP2 correlation energy toward the exact
(canonical) result as a function of the average number of
LON orbitals retained in the diagonal domains provides
a measure of the ability of the initial virtual-orbital (PAO
or LVO) set to capture the main correlation effects.
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3. Computational details

We shall considerMP2 energy calculations for three sim-
ple bulk insulators: diamond, LiH, and HCN. These are
chosen as representatives of the different chemical sit-
uations that can be found in a nonmetallic (and non-
magnetic) solid: a purely covalently bonded, a purely
ionic, and a molecular crystal. The systems are also cho-
sen to keep the complexity low enough to facilitate analy-
sis of the orbitals and their effect on correlation energies.

The localised occupied orbitals are obtained from
the Wannierization algorithm [40] implemented in the
Crystal program [41]. This procedure includes a Foster-
Boys localisation [11, 12] that minimises the PSM-1
objective function given in Equation (5). The PAOs are
constructed as in Equation (9) and those with norm
below 10−3 are discarded.

As opposed to many other codes developed for ab
initio studies of solid-state materials, Crystal adopts
atom-centred Gaussian basis sets, making it comparable

with molecular programs – and, in fact, fully equiva-
lent when zero–dimensional periodicity is invoked. A
6-31G∗∗ basis was used for HCN [42, 43], 6-21G∗ for
diamond [44], while a simpler basis set was adopted for
LiH (3-11G∗∗ on H [45], 6-1G∗∗ on Li [46]). Detailed
structures (nuclear coordinates, unit cell parameters) and
technical details regarding the initial HF calculations
are provided in the Appendix. In all cases the experi-
mental lattice parameters have ben adopted. The lattice
constants of the cubic diamond and LiH crystal struc-
tures are 3.56679Å [47] and 4.0834Å [48], respectively,
while those of the tetragonal HCN crystal structure are
a = 4.13Å, b = 4.85Å, and c = 4.34Å [49]. Note that
we use primitive unit cells in all calculations.

The LVO orbitals are generated by the sameWannier-
ization algorithm in Crystal, yielding the PSM-1 LVOs
(see theAppendix formore technical details). The PSM-2
and PFM-2 LVOs are obtained by further optimisation
of the PSM-1 LVOs in a stochastic procedure where only

Figure 1. Convergence of the MP2 correlation energy with respect to the average number of LON orbitals in the diagonal pairs. The
panels from top to bottom show results for bulk diamond, LiH and HCN, respectively, for the PAO and various LVO sets.
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unitary transformations amongst the virtual orbitals in
the reference unit cell are permitted. The LVOs associated
with all other unit cells of the crystal are then obtained by
simple translations.

For each representation of the virtual space, we quan-
tify locality by computing second- and fourth moment
orbital spreads, Equations (4) and (6), as well as the
tail spread, Equation (8). Further analysis of sparsity in
the orbital sets is performed by estimating the DOIs,
Equation (10), using theMonte Carlo integration scheme
outlined in appendix II.

Periodic local MP2 calculations are performed with
the Cryscor suite [50–54]. Within the present Cryscor
implementation [54], the initial excitation domains are
constructed by means of the OSV method as outlined in
the previous section with the default number of neigh-
bouring atoms n = 30. This number is incrementally
increased for each of the systems under consideration,
recording the local MP2 correlation energy as a function
of the average number of LON orbitals in the domains
of diagonal pairs. As in Refs. [17, 54], symmetric OSV
pair domains are used in the evaluation of the MP2
correlation energy.

4. Results and discussion

Figure 1 shows the convergence behaviour of the local
MP2 correlation energy with respect to the average size
of the LON space for each set of initial virtual orbitals.
The convergence is strikingly better with PAOs than with
LVOs for all three systems. Across a range of chemi-
cally distinct systems – covalent diamond, ionic LiH and
molecular HCN – we thus observe that the PAOs capture
more of the correlation energy within smaller domains
than the PSM-1, PSM-2, and PFM-2 LVOs.Overall, the
performance of the three LVO sets is equally poor. For
LiH, the PAO set yields an essentially converged corre-
lation energy with an average LON dimension of about
40, whereas roughly twice as many LON orbitals are
required with the LVO sets. For HCN, the LON dimen-
sion required for convergence with the LVO sets is
roughly thrice that of the PAO set. The diamond crystal
is more challenging, also with PAOs, which yield conver-
gence at a LON dimension just below 150, wheras LVOs
require at least about 350 LON orbitals.

As apparent from the locality measures compiled in
Figure 2, the superior convergence of the PAOs can not
be unambiguously attributed to their being more local
or light-tailed than the LVOs.The σ2 data show that the
PAOs are on average the least local choice and, conse-
quently, orbital spreads can not explain the very different
convergence behaviours. This agrees with the observa-
tions for molecules by Krause and Werner [25]. Nor

Figure 2. Second- and fourth moment orbital spreads and tail
spreads for the various sets of virtual orbitals for diamond, LiH, and
HCN. Horizontal lines give the value for each orbital in each set,
while average values are indicated by the horizontal black lines.

can a clear distinction of the PAOs be made from the
σ4 data. While the PAOs do have the smallest aver-
age σ4 for LiH and HCN, they also show the greatest
maximum value for LiH and diamond. In all cases, the
smallest maximum σ4 is observed for the PFM-2 set.
The average β values, on the other hand, are smaller
for the PAOs than for the LVO sets across all three sys-
tems. While this is fully consistent with the observed
correlation-energy convergence behaviour in Figure 1,
we note that the maximum β value is greater for the
PAOs than for the PFM-2 sets for both diamond and LiH.
Judging from the β values alone, one would expect the
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Figure 3. Differential overlap integrals between the occupied
orbitals of the reference unit cell and the PAO and PSM-1 virtual
orbital spaces for diamond (top), LiH (center), and HCN (bottom),
as a function of the inter-orbital distance ria between occupied
orbitals in the reference cell and PAOs or PSM-1 virtual orbitals
throughout the crystal. The graphs show the maximum DOI for
each orbital set above a given distance.

correlation-energy convergence behaviour to be similar
for PAOs and either of the LVO sets in the case of dia-
mond, while the PAOs should be vastly superior to the
LVOs in the case ofHCN.As seen fromFigure 1, however,
the LVO sets struggle even more for diamond than for
HCN and LiH. We thus conclude that neither second
moment spread, fourth moment spread, nor tail spread

can unambiguously explain the observed convergence
behaviour.

An alternative explanation might be that the PAOs
provide greater multiplicative sparsity, translating into
smaller diagonal excitation domains by allowing for
a smaller cutoff distance from each occupied orbital.
According to this hypothesis, the PAOs should show few
important DOIs at short range followed by rapid decay
at longer distances, whereas the LVOs should decay more
slowly with distance. The estimated DOIs for PAOs and
PSM-1 virtual orbitals are plotted in Figure 3. For each
crystal, the overall DOI decay rates are comparable for
both sets of virtual orbitals, although the DOIs of the
PAOs are more scattered with values at each distance
both above and below those of the PSM-1 orbitals. A
DOI cutoff threshold of 10−2, as recommended by Pin-
ski et al. [30], would suggest that about the same or even
more PAOs than PSM-1 orbitals must be included in the
correlation treatment.

Evidently, neither the statistics-based locality mea-
sures nor the DOIs provide a clear-cut explanation of
the more rapid correlation-energy convergence with the
PAOs. Although the LVOs span the same space as the
PAOs when the entire crystal is considered, a distance-
based truncation of the PAOs clearly capturesmore of the
correlation energy. From the viewpoint of the LVOs, this
implies that the PAOs of a given cell must contain com-
ponents that are only present in more distant orbitals in
the orthonormal representation. To investigate this effect,
we expand the PAOs of the reference unit cell, denoted
|0μ̃〉 where 0 indicates that the parent AO |μ〉 is located
in the reference unit cell, in a basis defined by a given set
of LVOs,

|0μ̃〉 =
∑
L

∑
a

|La〉〈La | 0μ̃〉 ≡
∑
L

∑
a

|La〉CL
aμ̃, (12)

where L is a lattice index (including 0, the reference
unit cell). The expansion coefficients can be computed
directly from their definition. In order to measure the
extent to which distant LVOs are represented in the PAO
set of the reference unit cell, we introduce the ‘weight’ of
each virtual orbital |La〉 as the square of the correspond-
ing expansion coefficient,

WL
aμ̃ =

(
CL
aμ̃

)2
. (13)

These weights are plotted in Figure 4 as a function of
the inter-orbital distance rμ̃a between the PAOs in the
reference cell and PSM-1 LVOs throughout the crystal.

Only plots for the PSM-1 set are shown. Essen-
tially identical plots are obtained for the PSM-2 and
PFM-2 sets. While the weights decay quite rapidly, sig-
nificant contributions (WL

aμ̃ � 10−3) may indeed be
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Figure 4. Expansion coefficients squared, Equation (13), of the
PSM-1 virtual orbitals for the reference-cell PAOs as a function
of the distance between the reference cell PAOs and each virtual
orbital for diamond (top panel), LiH (middle panel), and HCN (bot-
tom panel). Green points indicate expansion coefficients that are
required to recover 99.9% of the norm of every single PAO. There
are 26, 11 and 32 such PAOs for diamond, LiH, and HCN, respec-
tively. The most distant orbital that has to be included to capture
the same span is indicated with a vertical green line.

observed between 5 and 10 bohr from the origin of
the reference cell. This is consistent with the observed
correlation-energy convergence behaviour. Furthermore,
it is evident from the vertical lines of Figure 4 that a
distance-based truncation of the LVOs leads to the inclu-
sion of a large number of redundant components, ulti-
mately resulting in inefficient (but still linear-scaling)

calculations of the MP2 correlation energy. Interestingly,
the distribution of the green points suggests that a more
sparse subspace of LVOs may be chosen based on their
importance in spanning the same space as the reference-
cell PAOs.

5. Concluding remarks

Wehave studied the impact of the initial choice of virtual-
orbital basis, PAOs and three different sets of LVOs, on
the convergence of the local MP2 correlation energy
toward the canonical result for three insulating crystals
with qualitatively different chemical bonding situations,
diamond (covalent crystal), LiH (ionic crystal), andHCN
(molecular crystal). Our results confirm recent findings
by Werner and coworkers [25–27] for molecules: the
performance of PAOs is significantly better than LVOs.

This result is somewhat counterintuitive since the
LVOs are generally more local according to second
moment orbital spread data, have thinner tails accord-
ing to fourth moment orbital spread data, and provide
comparable or even greatermultiplicative sparsity in con-
junction with localised orthonormal occupied orbitals
than the PAOs. Although we do observe a certain agree-
ment with tail spread data for the PAOs and LVOs, cor-
rectly indicating superiority of the former, there is no
one-to-one mapping between β values and the observed
convergence behaviour. Inspecting the expansion of the
reference-cell PAOs in the LVO basis, we find that the
PAOs contain surprisingly large components of distant
LVOs. It seems, therefore, that the efficiency of the PAOs
can be traced to their being sufficiently local and linearly
dependent such that by choosing a subset of them based
on the location of the atomic centres of the parent AOs,
we get a greater fraction of the excitation space than we
would have obtained with the LVOs centred in the same
spatial region.
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Appendices

Appendix 1. Geometries

The reader is referred to the Crystal manual [55] for details
regarding the keywords given in the following discussion. All
calculations was performed for 3D periodicity. In all cases
the two-electron integrals was treated exactly (invoked with
keyword NOBIPOLA) when setting up the Fock-matrix.

Diamond was computed with space group 227 and lattice
parameter 3.56679Å. With a standard shift of the origin (IFSO
set to 1), a carbon was placed in rC = (0, 0, 0). The Hartree-
Fock optimisation was performed with SHRINK set to 8 and
an energy tolerance of 10−10. The intergral tolerances was 8 8
8 10 20. For the Wannierization, we used a NEWK of 9.

For LiH we used space group 225 with lattice parameter
4.0834Å. Lithium was placed at rLi = (0, 0, 0) and hydrogen at
rH = ( 12 ,

1
2 ,

1
2 ), both in units given as fractions of the lattice vec-

tors. For theHartree-Fock optimisationwe used a SHRINK fac-
tor of 7 with a convergence tolerance on the energy (TOLDEE)
10−12. Integral tolerances (ITOL) was set to 8 8 8 25 50. For the
Wannierization we used a NEWK of 11.

For HCN we used space group 44 and lattice parame-
ters 4.13Å, 4.85Å, 4.34Å, 90◦, 90◦, and 90◦. The fractional
coordinates of hydrogen, carbon and nitrogen were rH =
(0, 0,−0.2459793977425), rC = (0, 0, 0.003572703972826),
and rN = (0, 0, 0.2701066937697), respectively. For theHartree-
Fock optimisation we used a SHRINK factor of 7 and integral
tolerances of 7 7 7 20 40. The energy tolerance (TOLDEE) was
set to 10−10. The subsequent Wannierization was performed
with NEWK 11.

Appendix 2. DOI estimates

The differential overlap integrals (DOIs) [30] were estimated
usingMonte Carlo (MC) integration [56] within finite volumes
of the full integration domain (R3).

Figure A1. Illustration ofMonte Carlo integrationwithin concen-
tric shells. The density of samples is higher in the centre. The final
integral is estimated by I = ∑Nshells

n=1 In.

Figure A2. Absolute difference of analytical and MC estimates
for the PAO-LVO (Sμa) overlap matrix elements. The elements are
sorted into bins depending on the absolute value of the MC-
estimates, whereby the average errorwithin each bin is calculated
and plotted. The diagonal line shows where the absolute devia-
tion equals theMC-estimate. The intersection between the diago-
nal and theaverage canbeused to identify a lowerboundatwhich
the loss of precision in the MC estimates becomes too severe to
draw any conclusions. This intersection appears well below 10−4

in all three cases.

For each pair of unit cells, the full integration domain
is divided into concentric spherical shells as illustrated in
Figure A1, with their origin situated halfway between the lattice
vectors associated with the relevant cells. The outermost layer
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is placed at 50 Bohr, with its interior divided into 121 shells
uniformly spaced in the radial direction.

The overlap and differential overlap integrals are computed
20 times for all orbitals associated with the two cells using MC
integration with 2000 random samples uniformly distributed
inside every finite volume. The integrals over every volume
are then summed, and the final integrals are estimated as the
average of the 20 separate estimates.

In total, each integrand is sampled in 4.84 × 106 coordi-
nates. The discretisation of the integration domain can be
considered a discrete importance sampling [56], with the con-
sequence of more dense sampling in regions where higher
variance in the integrand is expected. The assumption of the
concentric spherical shells being a reasonable sample distribu-
tion thus relies on the orbitals being localised to their associ-
ated cells, so that the products of orbitals have most of their
significant distribution between the cells.

Confidence in the estimates can be established by (1) assess-
ment of the error in the PAO-LVO overlap matrix, and (2)
assuming that the same error applies to the DOIs due to the
similarities in the integrand with respect to variance. While
we can not directly infer the error in the DOIs from the
error in the PAO-LVO overlaps, it is clear that the regions
with most variance in the integrands coincide in these cases.
Hence, if the sampled coordinates has the ability to reproduce
the overlaps they should be an equally reasonable choice for
the DOIs.

The absolute deviation of the MC estimates of the PAO-
LVO overlap matrix elements is compared to their magnitude
in Figure A2, where we observe a significant loss of relative
accuracy below 10−4 for diamond, and below 10−6 for LiH and
HCN. We thus conclude that the DOI estimates presented in
Figure 3 are reliable.
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