360 research outputs found

    (Mis)understanding alcohol use disorder: Making the case for a public health first approach

    Get PDF
    ‘Alcohol use disorder’ (AUD) is used by several contemporary conceptualizations to identify, treat and prevent problems associated with alcohol use. Such conceptualizations encompass diagnostic classifications and broader frameworks for policy and practice. However, current AUD concepts are subject to multiple tensions and limitations in capturing and responding to the complex and heterogeneous nature of alcohol problems. Further, public understandings of alcohol problems are heavily divergent from professional AUD concepts and remain embedded within an ‘alcoholism’ master narrative in which disease model stereotypes come with multiple costs for prevention and ‘recovery’. The persistence of a problematic ‘alcoholism’ paradigm reflects the coalescing of multiple forces including the cognitive appeal of reductionism, motives to stigmatize and ‘other’, and an over-emphasis on AUD as an individually located biomedical problem. Public misperceptions of AUD as a matter of the individual, the individual’s essence, and misconceived notions of responsibility and control have been bolstered by industry interests and the ascension of neuroscience and genetics, in turn diverting attention from the importance of the environmental and commercial determinants of health and the effectiveness of under-utilized public health policies. We call for multiple stakeholders to support efforts to prioritize a public health first approach to advancing AUD research, policy and treatment in order to make significant advances in AUD prevention and treatment. We offer several recommendations to assist in shifting public understanding and scientific limitations in AUD concepts and responses

    The effect of dietary calcium inclusion on broiler gastrointestinal pH: quantification and method optimization

    Get PDF
    There is little consensus as to the most appropriate methodology for the measurement of gastrointestinal pH in chickens. An experiment was conducted to establish the optimum sampling method for the determination of broiler digesta pH in birds fed differing levels of dietary calcium. Ross 308 broilers (n = 60) were fed one of two experimental diets, one containing 0.8% monocalcium phosphate and 2% limestone and one containing 0.4% monocalcium phosphate and 1% limestone. Four factors were investigated to determine the most appropriate method of measuring broiler gastrointestinal digesta pH: removal from the tract, prolonged air exposure, altering the temperature of the assay, and controlling the water content of the digesta. The conditions were assessed at bird ages from 7 to 42 d post hatch. Dietary Ca content had no significant effect on in situ pH, but it contributed towards variance in ex situ pH of both gizzard and duodenum digesta

    Fast coarsening in unstable epitaxy with desorption

    Full text link
    Homoepitaxial growth is unstable towards the formation of pyramidal mounds when interlayer transport is reduced due to activation barriers to hopping at step edges. Simulations of a lattice model and a continuum equation show that a small amount of desorption dramatically speeds up the coarsening of the mound array, leading to coarsening exponents between 1/3 and 1/2. The underlying mechanism is the faster growth of larger mounds due to their lower evaporation rate.Comment: 4 pages, 4 PostScript figure

    Learning from COVID-19 related trial adaptations to inform efficient trial design—a sequential mixed methods study

    Get PDF
    Background Many clinical trial procedures were often undertaken in-person prior to the COVID-19 pandemic, which has resulted in adaptations to these procedures to enable trials to continue. The aim of this study was to understand whether the adaptations made to clinical trials by UK Clinical Trials Units (CTUs) during the pandemic have the potential to improve the efficiency of trials post-pandemic. Methods This was a mixed methods study, initially involving an online survey administered to all registered UK CTUs to identify studies that had made adaptations due to the pandemic. Representatives from selected studies were qualitatively interviewed to explore the adaptations made and their potential to improve the efficiency of future trials. A literature review was undertaken to locate published evidence concerning the investigated adaptations. The findings from the interviews were reviewed by a group of CTU and patient representatives within a workshop, where discussions focused on the potential of the adaptations to improve the efficiency of future trials. Results Forty studies were identified by the survey. Fourteen studies were selected and fifteen CTU staff were interviewed about the adaptations. The workshop included 15 CTU and 3 patient representatives. Adaptations were not seen as leading to direct efficiency savings for CTUs. However, three adaptations may have the potential to directly improve efficiencies for trial sites and participants beyond the pandemic: a split remote-first eligibility assessment, recruitment outside the NHS via a charity, and remote consent. There was a lack of published evidence to support the former two adaptations, however, remote consent is widely supported in the literature. Other identified adaptations may benefit by improving flexibility for the participant. Barriers to using these adaptations include the impact on scientific validity, limitations in the role of the CTU, and participant’s access to technology. Conclusions Three adaptations (a split remote-first eligibility assessment, recruitment outside the NHS via a charity, and remote consent) have the potential to improve clinical trials but only one (remote consent) is supported by evidence. These adaptations could be tested in future co-ordinated ‘studies within a trial’ (SWAT)

    Optimal designs for rational function regression

    Full text link
    We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and Φp\Phi_p-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well established numerical optimization methods. In contrast to previous optimization-based methods proposed for similar design problems, it also has theoretical guarantee of its algorithmic efficiency; in fact, the running times of all numerical examples considered in the paper are negligible. The stability of the method is demonstrated in an example involving high degree polynomials. After discussing linear models, applications for finding locally optimal designs for nonlinear regression models involving rational functions are presented, then extensions to robust regression designs, and trigonometric regression are shown. As a corollary, an upper bound on the size of the support set of the minimally-supported optimal designs is also found. The method is of considerable practical importance, with the potential for instance to impact design software development. Further study of the optimality conditions of the main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory and additional example

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    An investigation of the hadronic final state in diffractive and non--diffractive deep--inelastic electron--proton scattering at HERA is presented, where diffractive data are selected experimentally by demanding a large gap in pseudo --rapidity around the proton remnant direction. The transverse energy flow in the hadronic final state is evaluated using a set of estimators which quantify topological properties. Using available Monte Carlo QCD calculations, it is demonstrated that the final state in diffractive DIS exhibits the features expected if the interaction is interpreted as the scattering of an electron off a current quark with associated effects of perturbative QCD. A model in which deep--inelastic diffraction is taken to be the exchange of a pomeron with partonic structure is found to reproduce the measurements well. Models for deep--inelastic epep scattering, in which a sizeable diffractive contribution is present because of non--perturbative effects in the production of the hadronic final state, reproduce the general tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
    corecore