461 research outputs found

    ‘Priming’ exercise and O2 uptake kinetics during treadmill running

    Get PDF
    We tested the hypothesis that priming exercise would speed kinetics during treadmill running. Eight subjects completed a square-wave protocol, involving two bouts of treadmill running at 70% of the difference between the running speeds at lactate threshold (LT) and max, separated by 6-min of walking at 4 km h−1, on two occasions. Oxygen uptake was measured breath-by-breath and subsequently modelled using non-linear regression techniques. Heart rate and blood lactate concentration were significantly elevated prior to the second exercise bout compared to the first. However, kinetics was not significantly different between the first and second exercise bouts (mean ± S.D., phase II time constant, Bout 1: 16 ± 3 s vs. Bout 2: 16 ± 4 s; slow component amplitude, Bout 1: 0.24 ± 0.10 L min−1vs. Bout 2: 0.20 ± 0.12 L min−1; mean response time, Bout 1: 34 ± 4 s vs. Bout 2: 34 ± 6 s; P > 0.05 for all comparisons). These results indicate that, contrary to previous findings with other exercise modalities, priming exercise does not alter kinetics during high-intensity treadmill running, at least in physically active young subjects. We speculate that the relatively fast kinetics and the relatively small slow component in the control (‘un-primed’) condition negated any enhancement of kinetics by priming exercise in this exercise modality

    Initial Acoustoelastic Measurements in Olivine: Investigating the Effect of Stress on P- and S-Wave Velocities

    Get PDF
    It is well known that elasticity is a key physical property in the determination of the structure and composition of the Earth and provides critical information for the interpretation of seismic data. This study investigates the stress-induced variation in elastic wave velocities, known as the acoustoelastic effect, in San Carlos olivine. A recently developed experimental ultrasonic acoustic system, the Directly Integrated Acoustic System Combined with Pressure Experiments (DIASCoPE), was used with the D-DIA multi-anvil apparatus to transmit ultrasonic sound waves and collect the reflections. We use the DIASCoPE to obtain longitudinal (P) and shear (S) elastic wave velocities from San Carlos olivine at pressures ranging from 3.2–10.5 GPa and temperatures from 450–950°C which we compare to the stress state in the D-DIA derived from synchrotron X-ray diffraction. We use elastic-plastic self-consistent (EPSC) numerical modeling to forward model X-ray diffraction data collected in D-DIA experiments to obtain the macroscopic stress on our sample. We can observe the relationship between the relative elastic wave velocity change (ΔV/V) and macroscopic stress to determine the acoustoelastic constants, and interpret our observations using the linearized first-order equation based on the model proposed by Hughes and Kelly (1953), https://doi.org/10.1103/physrev.92.1145. This work supports the presence of the acoustoelastic effect in San Carlos olivine, which can be measured as a function of pressure and temperature. This study will aid in our understanding of the acoustoelastic effect and provide a new experimental technique to measure the stress state in elastically deformed geologic materials at high pressure conditions

    Power-duration relationship: physiology, fatigue and the limits of human performance

    Get PDF
    The duration that exercise can be maintained decreases as the power requirements increase. In this review we describe the power-duration (PD) relationship across the full range of attainable power outputs in humans. We show that a remarkably small range of power outputs are sustainable (power outputs below the critical power, CP). We also show that the origin of neuromuscular fatigue differs considerably depending on the exercise intensity domain in which exercise is performed. In the moderate domain (below the lactate threshold, LT), fatigue develops slowly and is predominantly of central origin (residing in the central nervous system). In the heavy domain (above LT but below CP), both central and peripheral (muscle) fatigue are observed. In this domain, fatigue is frequently correlated with the depletion of muscle glycogen. Severe-intensity exercise (above the CP) is associated with progressive derangements of muscle metabolic homeostasis and consequent peripheral fatigue. To counter these effects, muscle activity increases progressively, as does pulmonary oxygen uptake (VO2), with task failure being associated with the attainment of VO2max. Although the loss of homeostasis and thus fatigue develop more rapidly the higher the power output is above CP, the metabolic disturbance and the degree of peripheral fatigue reach similar values at task failure. We provide evidence that the failure to continue severe-intensity exercise is a physiological phenomenon involving multiple interacting mechanisms which indicate a mismatch between neuromuscular power demand and instantaneous power supply. Valid integrative models of fatigue must account for the PD relationship and its physiological basis

    Refinement of atomic models in high resolution EM reconstructions using Flex-EM and local assessment

    Get PDF
    As the resolutions of Three Dimensional Electron Microscopic reconstructions of biological macromolecules are being improved, there is a need for better fitting and refinement methods at high resolutions and robust approaches for model assessment. Flex-EM/MODELLER has been used for flexible fitting of atomic models in intermediate-to-low resolution density maps of different biological systems. Here, we demonstrate the suitability of the method to successfully refine structures at higher resolutions (2.5–4.5 Å) using both simulated and experimental data, including a newly processed map of Apo-GroEL. A hierarchical refinement protocol was adopted where the rigid body definitions are relaxed and atom displacement steps are reduced progressively at successive stages of refinement. For the assessment of local fit, we used the SMOC (segment-based Manders’ overlap coefficient) score, while the model quality was checked using the Qmean score. Comparison of SMOC profiles at different stages of refinement helped in detecting regions that are poorly fitted. We also show how initial model errors can have significant impact on the goodness-of-fit. Finally, we discuss the implementation of Flex-EM in the CCP-EM software suite

    Fatigue reduces the complexity of knee extensor torque during fatiguing sustained isometric contractions

    Get PDF
    The temporal structure, or complexity, of muscle torque output reflects the adaptability of motor control to changes in task demands. This complexity is reduced by neuromuscular fatigue during intermittent isometric contractions. We tested the hypothesis that sustained fatiguing isometric contractions would result in a similar loss of complexity. To that end, nine healthy participants performed, on separate days, sustained isometric contractions of the knee extensors at 20% MVC to task failure and at 100% MVC for 60 s. Torque and surface EMG signals were sampled continuously. Complexity and fractal scaling were quantified by calculating approximate entropy (ApEn) and the detrended fluctuation analysis (DFA) α scaling exponent. Global, central and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. Fatigue reduced the complexity of both submaximal (ApEn from 1.02 ± 0.06 to 0.41 ± 0.04, P < 0.05) and maximal contractions (ApEn from 0.34 ± 0.05 to 0.26 ± 0.04, P < 0.05; DFA α from 1.41 ± 0.04 to 1.52 ± 0.03, P < 0.05). The losses of complexity were accompanied by significant global, central and peripheral fatigue (all P < 0.05). These results demonstrate that a fatigue-induced loss of torque complexity is evident not only during fatiguing intermittent isometric contractions, but also during sustained fatiguing contractions
    • …
    corecore