547 research outputs found

    The pulmonary effects of intravenous adenosine in asthmatic subjects

    Get PDF
    BACKGROUND: We have shown that intravenous adenosine in normal subjects does not cause bronchospasm, but causes dyspnea, most likely by an effect on vagal C fibers in the lungs [Burki et al. J Appl Physiol 2005; 98:180-5]. Since airways inflammation and bronchial hyperreactivity are features of asthma, it is possible that intravenous adenosine may be associated with an increased intensity of dyspnea, and may cause bronchospasm, as noted anecdotally in previous reports. METHODS: We compared the effects of placebo and 10 mg intravenous adenosine, in 6 normal and 6 asthmatic subjects. RESULTS: Placebo injection had no significant (p > 0.05) effect on the forced expiratory spirogram, heart rate, minute ventilation (Ve), or respiratory sensation. Similarly, adenosine injection caused no significant changes (p > 0.05) in the forced expiratory spirogram; however, there was a rapid development of dyspnea as signified visually on a modified Borg scale, and a significant (p < 0.05) tachycardia in each subject (Asthmatics +18%, Normals + 34%), and a significant (p < 0.05) increase in Ve (Asthmatics +93%, Normals +130%). The intensity of dyspnea was significantly greater (p < 0.05) in the asthmatic subjects. CONCLUSION: These data indicate that intravenous adenosine does not cause bronchospasm in asthmatic subjects, and supports the concept that adenosine-induced dyspnea is most likely secondary to stimulation of vagal C fibers in the lungs. The increased intensity of adenosine-induced dyspnea in the asthmatic subjects suggests that airways inflammation may have sensitized the vagal C fibers

    Proliferative kidney disease (PKD) of rainbow trout: temperature- and time-related changes of Tetracapsuloides bryosalmonae DNA in the kidney

    Get PDF
    Proliferative kidney disease (PKD) of salmonids, caused by Tetracapsuloides bryosalmonae, can lead to high mortalities at elevated water temperature. We evaluated the hypothesis that this mortality is caused by increasing parasite intensity. T. bryosalmonae-infected rainbow trout (Oncorhynchus mykiss) were reared at different water temperatures and changes in parasite concentrations in the kidney were compared to cumulative mortalities. Results of parasite quantification by a newly developed real-time PCR agreed with the number of parasites detected by immunohistochemistry, except for very low or very high parasite loads because of heterogenous distribution of the parasites in the kidney. Two experiments were performed, where fish were exposed to temperatures of 12, 14, 16, 18 or 19°C after an initial exposure to an infectious environment at 12-16°C resulting in 100% prevalence of infected fish after 5 to 14 days of exposure. While mortalities differed significantly between all investigated water temperatures, significant differences in final parasite loads were only found between fish kept at 12°C and all other groups. Differences in parasite load between fish kept at 14°C to 19°C were not significant. These findings provide evidence that there is no direct link between parasite intensity and fish mortalit

    Collodictyon—An Ancient Lineage in the Tree of Eukaryotes

    Get PDF
    The current consensus for the eukaryote tree of life consists of several large assemblages (supergroups) that are hypothesized to describe the existing diversity. Phylogenomic analyses have shed light on the evolutionary relationships within and between supergroups as well as placed newly sequenced enigmatic species close to known lineages. Yet, a few eukaryote species remain of unknown origin and could represent key evolutionary forms for inferring ancient genomic and cellular characteristics of eukaryotes. Here, we investigate the evolutionary origin of the poorly studied protist Collodictyon (subphylum Diphyllatia) by sequencing a cDNA library as well as the 18S and 28S ribosomal DNA (rDNA) genes. Phylogenomic trees inferred from 124 genes placed Collodictyon close to the bifurcation of the “unikont” and “bikont” groups, either alone or as sister to the potentially contentious excavate Malawimonas. Phylogenies based on rDNA genes confirmed that Collodictyon is closely related to another genus, Diphylleia, and revealed a very low diversity in environmental DNA samples. The early and distinct origin of Collodictyon suggests that it constitutes a new lineage in the global eukaryote phylogeny. Collodictyon shares cellular characteristics with Excavata and Amoebozoa, such as ventral feeding groove supported by microtubular structures and the ability to form thin and broad pseudopods. These may therefore be ancient morphological features among eukaryotes. Overall, this shows that Collodictyon is a key lineage to understand early eukaryote evolution

    Envelope Ejection: an Alternative Process for some Early Case B Binaries

    Full text link
    We discuss the evolution of binaries with moderately high masses (about 10 - 30 solar masses), and with periods of about 3 - 300d, corresponding mostly to early Case B. These are usually thought to evolve either by reasonably conservative Roche-lobe overflow, if the initial mass ratio is fairly mild, or else by highly non-conservative common-envelope evolution, with spiral-in to short periods (hours, typically), if the initial mass ratio is rather extreme. We discuss here a handful of binaries from part of this period range (about 50 - 250d), which appear to have followed a different path: we argue that they must have lost a large proportion of initial mass (about 70 - 80%), but without shortening their periods at all. We suggest that their behaviour may be due to the fact that stars of such masses, when evolved also to rather large radii, are not far from the Humphreys-Davidson limit where single stars lose their envelopes spontaneously in P Cygni winds, and so have envelopes which are only lightly bound to the core. These envelopes therefore may be relatively easily dissipated by the perturbing effect of a companion. In addition, some or all of the stars considered here may have been close to the Cepheid instability strip when they filled their Roche lobes. One or other, or both, of high luminosity and Cepheid instability, in combination with an appropriately close binary companion, may be implicated

    A deep UVBRI CCD photometric study of open clusters Tr 1 and Be 11

    Full text link
    We present deep UBVRIUBVRI CCD photometry for the young open star clusters Tr 1 and Be 11. The CCD data for Be 11 is obtained for the first time. The sample consists of \sim 1500 stars reaching down to VV \sim 21 mag. Analysis of the radial distribution of stellar surface density indicates that radius values for Tr 1 and Be 11 are 2.3 and 1.5 pc respectively. The interstellar extinction across the face of the imaged clusters region seems to be non-uniform with a mean value of E(BV)E(B-V) = 0.60±\pm0.05 and 0.95±\pm0.05 mag for Tr 1 and Be 11 respectively. A random positional variation of E(BV)E(B-V) is present in both the clusters. In the cluster Be 11, the reason of random positional variation may be apparent association of the HII region (S 213). The 2MASS JHKJHK data in combination with the optical data in the cluster Be 11 yields E(JK)E(J-K) = 0.40±\pm0.20 mag and E(VK)E(V-K) = 2.20±\pm0.20 mag. Colour excess diagrams indicate a normal interstellar extinction law in the direction of cluster Be 11. The distances of Tr 1 and Be 11 are estimated as 2.6±\pm0.10 and 2.2±\pm0.10 Kpc respectively, while the theoretical stellar evolutionary isochrones fitted to the bright cluster members indicate that the cluster Tr 1 and Be 11 are 40±\pm10 and 110±\pm10 Myr old. The mass functions corrected for both field star contamination and data incompleteness are derived for both the clusters. The slopes 1.50±0.401.50\pm0.40 and 1.22±0.241.22\pm0.24 for Tr 1 and Be 11 respectively are in agreement with the Salpeter's value. Observed mass segregations in both clusters may be due to the result of dynamical evolutions or imprint of star formation processes or both.Comment: 15 pages, 13 figures. Accepted for publication in MNRA

    Statistical properties of a sample of periodically variable B-type supergiants - Evidence for opacity-driven gravity-mode oscillations

    Get PDF
    We have studied a sample of 28 periodically variable B-type supergiants selected from the HIPPARCOS mission and 12 comparison stars covering the whole B-type spectral range. Our goal is to test if their variability is compatible with opacity-driven non-radial oscillations. We have used the NLTE atmosphere code FASTWIND to derive the atmospheric and wind parameters of the complete sample through line profile fitting. We applied the method to selected H, He and Si line profiles, measured with the high resolution CES spectrograph attached to the ESO CAT telescope in La Silla, Chile. From the location of the stars in the (log Teff, log g) diagram, we suggest that variability of our sample supergiants is indeed due to the gravity modes resulting from the opacity mechanism. We find nine of the comparison stars to be periodically variable as well, and suggest them to be new alpha Cyg variables. We find marginal evidence of a correlation between the amplitude of the photometric variability and the wind density. We investigate the Wind Momentum Luminosity Relation for the whole range of B spectral type supergiants, and find that the later types (> B5) perfectly follow the relation for A supergiants. Additionally, we provide a new spectral type - Teff calibration for B supergiants. Our results imply the possibility to probe internal structure models of massive stars of spectral type B through seismic tuning of gravity modes.Comment: 33 pages (including 14 pages online material). Accepted for publication in Astronomy & Astrophysic

    The MACHO Project LMC Variable Star Inventory. VI. The Second-overtone Mode of Cepheid Pulsation From First/Second Overtone (FO/SO) Beat Cepheids

    Full text link
    MACHO Project photometry of 45 LMC FO/SO beat Cepheids which pulsate in the first and second overtone (FO and SOo, respectively) has been analysed to determine the lightcurve characteristics for the SO mode of Cepheid pulsation. We predict that singly-periodic SO Cepheids will have nearly sinusoidal lightcurves; that we will only be able to discern SO Cepheids from fundamental (F) and (FO) Cepheids for P <= 1.4 days; and that the SO distribution will overlap the short-period edge of the LMC FO Cepheid period-luminosity relation (when both are plotted as a function of photometric period). We also report the discovery of one SO Cepheid candidate, MACHO*05:03:39.6-70:04:32, with a photometric period of 0.775961 +/- 0.000019 days and an instrumental amplitude of 0.047 +/- 0.009 mag in V.Comment: 23 pages, 7 Encapsulated PostScript figures. Accepted for publication in the Astrophysical Journa

    Functional significance may underlie the taxonomic utility of single amino acid substitutions in conserved proteins

    Get PDF
    We hypothesized that some amino acid substitutions in conserved proteins that are strongly fixed by critical functional roles would show lineage-specific distributions. As an example of an archetypal conserved eukaryotic protein we considered the active site of ß-tubulin. Our analysis identified one amino acid substitution—ß-tubulin F224—which was highly lineage specific. Investigation of ß-tubulin for other phylogenetically restricted amino acids identified several with apparent specificity for well-defined phylogenetic groups. Intriguingly, none showed specificity for “supergroups” other than the unikonts. To understand why, we analysed the ß-tubulin Neighbor-Net and demonstrated a fundamental division between core ß-tubulins (plant-like) and divergent ß-tubulins (animal and fungal). F224 was almost completely restricted to the core ß-tubulins, while divergent ß-tubulins possessed Y224. Thus, our specific example offers insight into the restrictions associated with the co-evolution of ß-tubulin during the radiation of eukaryotes, underlining a fundamental dichotomy between F-type, core ß-tubulins and Y-type, divergent ß-tubulins. More broadly our study provides proof of principle for the taxonomic utility of critical amino acids in the active sites of conserved proteins

    The evolution of photosynthesis in chromist algae through serial endosymbioses

    Get PDF
    Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity

    Period and light curve fluctuations of the Kepler Cepheid V1154 Cyg

    Get PDF
    We present a detailed period analysis of the bright Cepheid-type variable star V1154 Cygni (V =9.1 mag, P~4.9 d) based on almost 600 days of continuous observations by the Kepler space telescope. The data reveal significant cycle-to-cycle fluctuations in the pulsation period, indicating that classical Cepheids may not be as accurate astrophysical clocks as commonly believed: regardless of the specific points used to determine the O-C values, the cycle lengths show a scatter of 0.015-0.02 days over the 120 cycles covered by the observations. A very slight correlation between the individual Fourier parameters and the O-C values was found, suggesting that the O - C variations might be due to the instability of the light curve shape. Random fluctuation tests revealed a linear trend up to a cycle difference 15, but for long term, the period remains around the mean value. We compare the measurements with simulated light curves that were constructed to mimic V1154 Cyg as a perfect pulsator modulated only by the light travel time effect caused by low-mass companions. We show that the observed period jitter in V1154 Cyg represents a serious limitation in the search for binary companions. While the Kepler data are accurate enough to allow the detection of planetary bodies in close orbits around a Cepheid, the astrophysical noise can easily hide the signal of the light-time effect.Comment: published in MNRAS: 8 pages, 7 figure
    corecore