9 research outputs found

    Occupational cooling practices of emergency first responders in the United States: A survey

    Get PDF
    This is an accepted manuscript of an article published by Taylor & Francis in Temperature on 29/07/2018, available online: https://doi.org/10.1080/23328940.2018.1493907 The accepted version of the publication may differ from the final published version.© 2018 Informa UK Limited, trading as Taylor & Francis Group. Despite extensive documentation directed specifically toward mitigating thermal strain of first responders, we wished to ascertain the degree to which first responders applied cooling strategies, and what opinions are held by the various agencies/departments within the United States. An internet-based survey of first responders was distributed to the International Association of Fire Chiefs, International Association of Fire Firefighters, National Bomb Squad Advisory Board and the USA Interagency Board and their subsequent departments and branches. Individual first responder departments were questioned regarding the use of pre-, concurrent, post-cooling, types of methods employed, and/or reasons why they had not incorporated various methods in first responder deployment. Completed surveys were collected from 119 unique de-identified departments, including those working in law enforcement (29%), as firefighters (29%), EOD (28%) and HAZMAT technicians (15%). One-hundred and eighteen departments (99%) reported heat strain/illness to be a risk to employee safety during occupational duties. The percentage of departments with at least one case of heat illness in the previous year were as follows: fire (39%) HAZMAT (23%), EOD (20%) and law enforcement (18%). Post-cooling was the scheduled cooling method implemented the most (63%). Fire departments were significantly more likely to use post-cooling, as well as combine two types of scheduled cooling compared to other departments. Importantly, 25% of all departments surveyed provided no cooling whatsoever. The greatest barriers to personnel cooling were as follows–availability, cost, logistics, and knowledge. Our findings could aid in a better understanding of current practices and perceptions of heat illness and injury prevention in United States first responders. Abbreviations: EOD: explosive ordnance disposal; HAZMAT: hazardous materials.This project is financially supported by the United States Government through the United States Department of Defense (DOD).Published versio

    Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing

    Get PDF
    Lack of assurance of quality with additively manufactured (AM) parts is a key technological barrier that prevents manufacturers from adopting AM technologies, especially for high-value applications where component failure cannot be tolerated. Developments in process control have allowed significant enhancement of AM techniques and marked improvements in surface roughness and material properties, along with a reduction in inter-build variation and the occurrence of embedded material discontinuities. As a result, the exploitation of AM processes continues to accelerate. Unlike established subtractive processes, where in-process monitoring is now commonplace, factory-ready AM processes have not yet incorporated monitoring technologies that allow discontinuities to be detected in process. Researchers have investigated new forms of instrumentation and adaptive approaches which, when integrated, will allow further enhancement to the assurance that can be offered when producing AM components. The state-of-the-art with respect to inspection methodologies compatible with AM processes is explored here. Their suitability for the inspection and identification of typical material discontinuities and failure modes is discussed with the intention of identifying new avenues for research and proposing approaches to integration into future generations of AM systems

    Surface finishing of additively manufactured Inconel 625 complex internal channels: A case study using a multi-jet hydrodynamic approach

    No full text
    The surface roughness of components built using the laser powder bed fusion (L-PBF) process is poor. Surface finishing the internal channels of L-PBF components is a challenge. We propose a multi-jet hydrodynamic approach to enhance the surface finish quality of the internal channels. We investigate the hydrodynamic finishing on L-PBF Inconel 625 linear, stepped, and non-linear internal channels with diameters 5 to 1 mm and length up to 100 mm (replicating the geometries in rocket injectors, fuel nozzles, and cooling channels). The multi-jet hydrodynamic finishing approach improved the surface quality by 60–90 % (final Ra, Sa ≤ 1 μm and Rz, Sz ≤ 20 μm), using an abrasive concentration of ≤1 % in 15 min. of processing time. Areal surface texture parameters Sdr and roughness ratio r ≈1, evidenced the uniformity of the surface finish with dominant abrasive microcuts, regardless of the initial non-uniform additive manufactured surface. Most of the surface finished channels had excellent dimensional integrity and internal contour circularity. We then discussed the advancements required in metal additive manufacturing and internal surface finishing—to safely deploy L-PBF components with micro internal channels in fuel injection and fluid transfer applications.Nanyang Technological UniversityNational Research Foundation (NRF)This work was performed within the Rolls-Royce@NTU Corporate Fig. 28. Surface defects in additive manufacturing and residue after hydrodynamic finishing. (a) surface undulation, (b) surface cracks, (c,d) surface pores in as-built condition, (e) residue pores and crack, (f) residue powder cake, (g) surface undulation and (h) abrasive fragment in hydrodynamically finished D1 linear and nonlinear channels. A.P. Nagalingam and S.H. Yeo Additive Manufacturing 36 (2020) 101428 Lab with support from the National Research Foundation (NRF) of Singapore under the Corp Lab@University Scheme. The authors thank Moiz Vohra for his contributions in the apparatus development, and Vijay Santhanam for his assistance in the experiments and workpiec
    corecore