2,435 research outputs found
Conservation Laws and 2D Black Holes in Dilaton Gravity
A very general class of Lagrangians which couple scalar fields to gravitation
and matter in two spacetime dimensions is investigated. It is shown that a
vector field exists along whose flow lines the stress-energy tensor is
conserved, regardless of whether or not the equations of motion are satisfied
or if any Killing vectors exist. Conditions necessary for the existence of
Killing vectors are derived. A new set of 2D black hole solutions is obtained
for one particular member within this class of Lagrangians. One such solution
bears an interesting resemblance to the 2D string-theoretic black hole, yet
contains markedly different thermodynamic properties.Comment: 11 pgs. WATPHYS-TH92/0
Thermodynamics of a Kerr Newman de Sitter Black Hole
We compute the conserved quantities of the four-dimensional Kerr-Newman-dS
(KNdS) black hole through the use of the counterterm renormalization method,
and obtain a generalized Smarr formula for the mass as a function of the
entropy, the angular momentum and the electric charge. The first law of
thermodynamics associated to the cosmological horizon of KNdS is also
investigated. Using the minimal number of intrinsic boundary counterterms, we
consider the quasilocal thermodynamics of asymptotic de Sitter
Reissner-Nordstrom black hole, and find that the temperature is equal to the
product of the surface gravity (divided by ) and the Tolman redshift
factor. We also perform a quasilocal stability analysis by computing the
determinant of Hessian matrix of the energy with respect to its thermodynamic
variables in both the canonical and the grand-canonical ensembles and obtain a
complete set of phase diagrams. We then turn to the quasilocal thermodynamics
of four-dimensional Kerr-Newman-de Sitter black hole for virtually all possible
values of the mass, the rotation and the charge parameters that leave the
quasilocal boundary inside the cosmological event horizon, and perform a
quasilocal stability analysis of KNdS black hole.Comment: REVTEX4, 12 pages, 12 figures, references added and some points in
Sec II have been clarified, version to appear in Can. J. Phy
Collection of Press Receipts Advertising for Volunteer Soldiers
An assortment of vouchers and receipts made out to Capts. J.C. Grafton and R.B. Brown in the 2nd Massachusetts Volunteer Regiment advertising for new recruits, 1863-4.
Taken from the Paul W. Bean Collection, Box no. 278, f.29https://digitalcommons.library.umaine.edu/paul_bean_papers/1044/thumbnail.jp
Liouville Black Holes
The dynamics of Liouville fields coupled to gravity are investigated by
applying the principle of general covariance to the Liouville action in the
context of a particular form of two-dimensional dilaton gravity. The resultant
field equations form a closed system for the Liouville/gravity interaction. A
large class of asymptotically flat solutions to the field equations is
obtained, many of which can be interpreted as black hole solutions. The
temperature of such black holes is proportional to their mass-parameters. An
exact solution to the back reaction problem is obtained to one-loop order, both
for conformally coupled matter fields and for the quantized metric/Liouville
system. Quantum effects are shown to map the space of classical solutions into
one another. A scenario for the end-point of black-hole radiation is discussed.Comment: 32 pgs., WATPHYS-TH93/03 (Latex plus two postscript figures appended
Entropic N-bound and Maximal Mass Conjecture Violations in Four Dimensional Taub-Bolt(NUT)-dS Spacetimes
We show that the class of four-dimensional Taub-Bolt(NUT) spacetimes with
positive cosmological constant for some values of NUT charges are stable and
have entropies that are greater than that of de Sitter spacetime, in violation
of the entropic N-bound conjecture. We also show that the maximal mass
conjecture, which states "any asymptotically dS spacetime with mass greater
than dS has a cosmological singularity", can be violated as well. Our
calculation of conserved mass and entropy is based on an extension of the path
integral formulation to asymptotically de Sitter spacetimes.Comment: 37 pages, 22 figures, 3 tables, few typos corrected, version to
appear in Nucl. Phys.
Thermodynamics of Black Holes in Two (and Higher) Dimensions
A comprehensive treatment of black hole thermodynamics in two-dimensional
dilaton gravity is presented. We derive an improved action for these theories
and construct the Euclidean path integral. An essentially unique boundary
counterterm renders the improved action finite on-shell, and its variational
properties guarantee that the path integral has a well-defined semi-classical
limit. We give a detailed discussion of the canonical ensemble described by the
Euclidean partition function, and examine various issues related to stability.
Numerous examples are provided, including black hole backgrounds that appear in
two dimensional solutions of string theory. We show that the Exact String Black
Hole is one of the rare cases that admits a consistent thermodynamics without
the need for an external thermal reservoir. Our approach can also be applied to
certain higher-dimensional black holes, such as Schwarzschild-AdS,
Reissner-Nordstrom, and BTZ.Comment: 63 pages, 3 pdf figures, v2: added reference
Duality between Electric and Magnetic Black Holes
A number of attempts have recently been made to extend the conjectured
duality of Yang Mills theory to gravity. Central to these speculations has been
the belief that electrically and magnetically charged black holes, the solitons
of quantum gravity, have identical quantum properties. This is not obvious,
because although duality is a symmetry of the classical equations of motion, it
changes the sign of the Maxwell action. Nevertheless, we show that the chemical
potential and charge projection that one has to introduce for electric but not
magnetic black holes exactly compensate for the difference in action in the
semi-classical approximation. In particular, we show that the pair production
of electric black holes is not a runaway process, as one might think if one
just went by the action of the relevant instanton. We also comment on the
definition of the entropy in cosmological situations, and show that we need to
be more careful when defining the entropy than we are in an asymptotically-flat
case.Comment: 23 pages, revtex, no figures. Major revision: two sections on the
electric Ernst solution adde
Quasilocal equilibrium condition for black ring
We use the conservation of the renormalized boundary stress-energy tensor to
obtain the equilibrium condition for a general (thin or fat) black ring
solution. We also investigate the role of the spatial stress in the
thermodynamics of deformation within the quasilocal formalism of Brown and York
and discuss the relation with other methods. In particular, we discuss the
quantum statistical relation for the unbalanced black ring solution.Comment: v2: refs. added, matches the published versio
A quasilocal calculation of tidal heating
We present a method for computing the flux of energy through a closed surface
containing a gravitating system. This method, which is based on the quasilocal
formalism of Brown and York, is illustrated by two applications: a calculation
of (i) the energy flux, via gravitational waves, through a surface near
infinity and (ii) the tidal heating in the local asymptotic frame of a body
interacting with an external tidal field. The second application represents the
first use of the quasilocal formalism to study a non-stationary spacetime and
shows how such methods can be used to study tidal effects in isolated
gravitating systems.Comment: REVTex, 4 pages, 1 typo fixed, standard sign convention adopted for
the Newtonian potential, a couple of lines added to the discussion of gauge
dependent term
Many worlds in one
A generic prediction of inflation is that the thermalized region we inhabit
is spatially infinite. Thus, it contains an infinite number of regions of the
same size as our observable universe, which we shall denote as \O-regions. We
argue that the number of possible histories which may take place inside of an
\O-region, from the time of recombination up to the present time, is finite.
Hence, there are an infinite number of \O-regions with identical histories up
to the present, but which need not be identical in the future. Moreover, all
histories which are not forbidden by conservation laws will occur in a finite
fraction of all \O-regions. The ensemble of \O-regions is reminiscent of
the ensemble of universes in the many-world picture of quantum mechanics. An
important difference, however, is that other \O-regions are unquestionably
real.Comment: 9 pages, 2 figures, comments and references adde
- …