2,390 research outputs found

    Conservation Laws and 2D Black Holes in Dilaton Gravity

    Full text link
    A very general class of Lagrangians which couple scalar fields to gravitation and matter in two spacetime dimensions is investigated. It is shown that a vector field exists along whose flow lines the stress-energy tensor is conserved, regardless of whether or not the equations of motion are satisfied or if any Killing vectors exist. Conditions necessary for the existence of Killing vectors are derived. A new set of 2D black hole solutions is obtained for one particular member within this class of Lagrangians. One such solution bears an interesting resemblance to the 2D string-theoretic black hole, yet contains markedly different thermodynamic properties.Comment: 11 pgs. WATPHYS-TH92/0

    Thermodynamics of a Kerr Newman de Sitter Black Hole

    Get PDF
    We compute the conserved quantities of the four-dimensional Kerr-Newman-dS (KNdS) black hole through the use of the counterterm renormalization method, and obtain a generalized Smarr formula for the mass as a function of the entropy, the angular momentum and the electric charge. The first law of thermodynamics associated to the cosmological horizon of KNdS is also investigated. Using the minimal number of intrinsic boundary counterterms, we consider the quasilocal thermodynamics of asymptotic de Sitter Reissner-Nordstrom black hole, and find that the temperature is equal to the product of the surface gravity (divided by 2π2\pi) and the Tolman redshift factor. We also perform a quasilocal stability analysis by computing the determinant of Hessian matrix of the energy with respect to its thermodynamic variables in both the canonical and the grand-canonical ensembles and obtain a complete set of phase diagrams. We then turn to the quasilocal thermodynamics of four-dimensional Kerr-Newman-de Sitter black hole for virtually all possible values of the mass, the rotation and the charge parameters that leave the quasilocal boundary inside the cosmological event horizon, and perform a quasilocal stability analysis of KNdS black hole.Comment: REVTEX4, 12 pages, 12 figures, references added and some points in Sec II have been clarified, version to appear in Can. J. Phy

    Collection of Press Receipts Advertising for Volunteer Soldiers

    Get PDF
    An assortment of vouchers and receipts made out to Capts. J.C. Grafton and R.B. Brown in the 2nd Massachusetts Volunteer Regiment advertising for new recruits, 1863-4. Taken from the Paul W. Bean Collection, Box no. 278, f.29https://digitalcommons.library.umaine.edu/paul_bean_papers/1044/thumbnail.jp

    Liouville Black Holes

    Full text link
    The dynamics of Liouville fields coupled to gravity are investigated by applying the principle of general covariance to the Liouville action in the context of a particular form of two-dimensional dilaton gravity. The resultant field equations form a closed system for the Liouville/gravity interaction. A large class of asymptotically flat solutions to the field equations is obtained, many of which can be interpreted as black hole solutions. The temperature of such black holes is proportional to their mass-parameters. An exact solution to the back reaction problem is obtained to one-loop order, both for conformally coupled matter fields and for the quantized metric/Liouville system. Quantum effects are shown to map the space of classical solutions into one another. A scenario for the end-point of black-hole radiation is discussed.Comment: 32 pgs., WATPHYS-TH93/03 (Latex plus two postscript figures appended

    Entropic N-bound and Maximal Mass Conjecture Violations in Four Dimensional Taub-Bolt(NUT)-dS Spacetimes

    Full text link
    We show that the class of four-dimensional Taub-Bolt(NUT) spacetimes with positive cosmological constant for some values of NUT charges are stable and have entropies that are greater than that of de Sitter spacetime, in violation of the entropic N-bound conjecture. We also show that the maximal mass conjecture, which states "any asymptotically dS spacetime with mass greater than dS has a cosmological singularity", can be violated as well. Our calculation of conserved mass and entropy is based on an extension of the path integral formulation to asymptotically de Sitter spacetimes.Comment: 37 pages, 22 figures, 3 tables, few typos corrected, version to appear in Nucl. Phys.

    Thermodynamics of Black Holes in Two (and Higher) Dimensions

    Get PDF
    A comprehensive treatment of black hole thermodynamics in two-dimensional dilaton gravity is presented. We derive an improved action for these theories and construct the Euclidean path integral. An essentially unique boundary counterterm renders the improved action finite on-shell, and its variational properties guarantee that the path integral has a well-defined semi-classical limit. We give a detailed discussion of the canonical ensemble described by the Euclidean partition function, and examine various issues related to stability. Numerous examples are provided, including black hole backgrounds that appear in two dimensional solutions of string theory. We show that the Exact String Black Hole is one of the rare cases that admits a consistent thermodynamics without the need for an external thermal reservoir. Our approach can also be applied to certain higher-dimensional black holes, such as Schwarzschild-AdS, Reissner-Nordstrom, and BTZ.Comment: 63 pages, 3 pdf figures, v2: added reference

    Duality between Electric and Magnetic Black Holes

    Get PDF
    A number of attempts have recently been made to extend the conjectured SS duality of Yang Mills theory to gravity. Central to these speculations has been the belief that electrically and magnetically charged black holes, the solitons of quantum gravity, have identical quantum properties. This is not obvious, because although duality is a symmetry of the classical equations of motion, it changes the sign of the Maxwell action. Nevertheless, we show that the chemical potential and charge projection that one has to introduce for electric but not magnetic black holes exactly compensate for the difference in action in the semi-classical approximation. In particular, we show that the pair production of electric black holes is not a runaway process, as one might think if one just went by the action of the relevant instanton. We also comment on the definition of the entropy in cosmological situations, and show that we need to be more careful when defining the entropy than we are in an asymptotically-flat case.Comment: 23 pages, revtex, no figures. Major revision: two sections on the electric Ernst solution adde

    Quasilocal equilibrium condition for black ring

    Full text link
    We use the conservation of the renormalized boundary stress-energy tensor to obtain the equilibrium condition for a general (thin or fat) black ring solution. We also investigate the role of the spatial stress in the thermodynamics of deformation within the quasilocal formalism of Brown and York and discuss the relation with other methods. In particular, we discuss the quantum statistical relation for the unbalanced black ring solution.Comment: v2: refs. added, matches the published versio

    A quasilocal calculation of tidal heating

    Full text link
    We present a method for computing the flux of energy through a closed surface containing a gravitating system. This method, which is based on the quasilocal formalism of Brown and York, is illustrated by two applications: a calculation of (i) the energy flux, via gravitational waves, through a surface near infinity and (ii) the tidal heating in the local asymptotic frame of a body interacting with an external tidal field. The second application represents the first use of the quasilocal formalism to study a non-stationary spacetime and shows how such methods can be used to study tidal effects in isolated gravitating systems.Comment: REVTex, 4 pages, 1 typo fixed, standard sign convention adopted for the Newtonian potential, a couple of lines added to the discussion of gauge dependent term

    Many worlds in one

    Get PDF
    A generic prediction of inflation is that the thermalized region we inhabit is spatially infinite. Thus, it contains an infinite number of regions of the same size as our observable universe, which we shall denote as \O-regions. We argue that the number of possible histories which may take place inside of an \O-region, from the time of recombination up to the present time, is finite. Hence, there are an infinite number of \O-regions with identical histories up to the present, but which need not be identical in the future. Moreover, all histories which are not forbidden by conservation laws will occur in a finite fraction of all \O-regions. The ensemble of \O-regions is reminiscent of the ensemble of universes in the many-world picture of quantum mechanics. An important difference, however, is that other \O-regions are unquestionably real.Comment: 9 pages, 2 figures, comments and references adde
    corecore