1,004 research outputs found

    Surface Superconductivity in Niobium for Superconducting RF Cavities

    Full text link
    A systematic study is presented on the superconductivity (sc) parameters of the ultrapure niobium used for the fabrication of the nine-cell 1.3 GHz cavities for the linear collider project TESLA. Cylindrical Nb samples have been subjected to the same surface treatments that are applied to the TESLA cavities: buffered chemical polishing (BCP), electrolytic polishing (EP), low-temperature bakeout (LTB). The magnetization curves and the complex magnetic susceptibility have been measured over a wide range of temperatures and dc magnetic fields, and also for di erent frequencies of the applied ac magnetic field. The bulk superconductivity parameters such as the critical temperature Tc = 9.26 K and the upper critical field Bc2(0) = 410 mT are found to be in good agreement with previous data. Evidence for surface superconductivity at fields above Bc2 is found in all samples. The critical surface field exceeds the Ginzburg-Landau field Bc3 = 1.695Bc2 by about 10% in BCP-treated samples and increases even further if EP or LTB are applied. From the field dependence of the susceptibility and a power-law analysis of the complex ac conductivity and resistivity the existence of two different phases of surface superconductivity can be established which resemble the Meissner and Abrikosov phases in the bulk: (1) coherent surface superconductivity, allowing sc shielding currents flowing around the entire cylindrical sample, for external fields B in the range between Bc2 and Bcohc3, and (2) incoherent surface superconductivity with disconnected sc domains between Bcohc3 and Bc3. The coherent critical surface field separating the two phases is found to be Bcoh c3 = 0.81Bc3 for all samples. The exponents in the power law analysis are different for BCP and EP samples, pointing to different surface topologies.Comment: 15 pages, 21 figures, DESY-Report 2004-02

    Asymmetric vortex merger: mechanism and criterion

    Get PDF
    The merging of two unequal co-rotating vortices in a viscous fluid is investigated. Two-dimensional numerical simulations of initially equal sized Lamb-Oseen vortices with differing relative strengths are performed. Results show how the disparity in deformation rates between the vortices alters the interaction. Key physical mechanisms associated with vortex merging are identified. A merging criterion is formulated in terms of the relative timing of core detrainment and destruction. A critical strain parameter is defined to characterize the establishment of core detrainment. This parameter is shown to be directly related to the critical aspect ratio in the case of symmetric merger

    Efficient Raman Sideband Generation in a Coherent Atomic Medium

    Get PDF
    We demonstrate the efficient generation of Raman sidebands in a medium coherently prepared in a dark state by continuous-wave low-intensity laser radiation. Our experiment is performed in sodium vapor excited in Λ\Lambda configuration on the D1_{1} line by two laser fields of resonant frequencies ω1\omega_{1} and ω2\omega_{2}, and probed by a third field % \omega_{3}. First-order sidebands for frequencies ω1\omega_{1}, ω2\omega_{2} and up to the third-order sidebands for frequency ω3\omega_{3} are observed. The generation starts at a power as low as 10 microwatt for each input field. Dependencies of the intensities of both input and generated waves on the frequency difference (ω1−ω2\omega_{1}-\omega_{2}), on the frequency ω3\omega_{3} and on the optical density are investigated.Comment: 7 pages, 6 figure

    de Haas-van Alphen effect investigations of the electronic structure of pure and aluminum-doped MgB_2

    Full text link
    Understanding the superconducting properties of MgB_2 is based strongly on knowledge of its electronic structure. In this paper we review experimental measurements of the Fermi surface parameters of pure and Al-doped MgB_2 using the de Haas-van Alphen (dHvA) effect. In general, the measurements are in excellent agreement with the theoretical predictions of the electronic structure, including the strength of the electron-phonon coupling on each Fermi surface sheet. For the Al doped samples, we are able to measure how the band structure changes with doping and again these are in excellent agreement with calculations based on the virtual crystal approximation. We also review work on the dHvA effect in the superconducting state.Comment: Contribution to the special issue of Physica C "Superconductivity in MgB2: Physics and Applications" (10 Pages with figures

    Evolution of chiral-odd spin-independent fracture functions in Quantum Cromodynamics

    Full text link
    We construct the evolution equations for the twist-3 chiral-odd spin independent fracture functions in QCD. The Gribov-Lipatov reciprocity relation is fulfilled at the one-loop level for the quasi-partonic two-particle cut vertices only. It is found that the rang of the anomalous dimensions matrix is infinite for any given moment of the three-parton fracture function as distinguished from the case of DIS-distributions where the rang of the matrix was finite and increases with the number of the moment. In the multicolour limit Nc→∞N_c \to \infty the evolution equation for the quark-gluon-quark correlation function decouples from another equation in the system and becomes homogeneous provided we discard the quark mass effects. This fact provides an opportunity to find its analytic solution explicitly in nonlocal form similarly to the DIS.Comment: 16 pages, latex, no figure

    Limits on the monopole magnetic field from measurements of the electric dipole moments of atoms, molecules and the neutron

    Full text link
    A radial magnetic field can induce a time invariance violating electric dipole moment (EDM) in quantum systems. The EDMs of the Tl, Cs, Xe and Hg atoms and the neutron that are produced by such a field are estimated. The contributions of such a field to the constants, χ\chi of the T,P-odd interactions χeN⋅s/s\chi_e {\bf N} \cdot {\bf s}/s and χNN⋅I/I\chi_N {\bf N} \cdot {\bf I}/I are also estimated for the TlF, HgF and YbF molecules (where s{\bf s} (I{\bf I}) is the electron (nuclear) spin and N{\bf N} is the molecular axis). The best limit on the contact monopole field can be obtained from the measured value of the Tl EDM. The possibility of such a field being produced from polarization of the vacuum of electrically charged magnetic monopoles (dyons) by a Coulomb field is discussed, as well as the limit on these dyons. An alternative mechanism involves chromomagnetic and chromoelectric fields in QCD.Comment: Uses RevTex, 16 pages, 4 postscript figures. An explanation of why there is no orbital contribution to the EDM has been added, and the presentation has been improved in genera

    A dual point description of mesoscopic superconductors

    Full text link
    We present an analysis of the magnetic response of a mesoscopic superconductor, i.e. a system of sizes comparable to the coherence length and to the London penetration depth. Our approach is based on special properties of the two dimensional Ginzburg-Landau equations, satisfied at the dual point (κ=12).(\kappa = \frac{1}{\sqrt{2}}). Closed expressions for the free energy and the magnetization of the superconductor are derived. A perturbative analysis in the vicinity of the dual point allows us to take into account vortex interactions, using a new scaling result for the free energy. In order to characterize the vortex/current interactions, we study vortex configurations that are out of thermodynamical equilibrium. Our predictions agree with the results of recent experiments performed on mesoscopic aluminium disks.Comment: revtex, 20 pages, 9 figure

    Measuring Parton Densities in the Pomeron

    Get PDF
    We present a program to measure the parton densities in the pomeron using diffractive deep inelastic scattering and diffractive photoproduction, and to test the resulting parton densities by applying them to other processes such as the diffractive production of jets in hadron-hadron collisions. Since QCD factorization has been predicted NOT to apply to hard diffractive scattering, this program of fitting and using parton densities might be expected to fail. Its success or failure will provide useful information on the space-time structure of the pomeron.Comment: Contains revisions based on Phys. Rev. D referee comments. RevTeX version 3, epsf, 31 pages. Uuencoded compressed postscript figures appended. Uncompressed postscript files available at ftp://ftp.phys.psu.edu/pub/preprint/psuth136

    An ALMA survey of CO in submillimetre galaxies: companions, triggering, and the environment in blended sources

    Get PDF
    We present ALMA observations of the mid-J 12CO emission from six single-dish selected 870-μm sources in the Extended Chandra Deep Field-South and UKIDSS Ultra-Deep Survey fields. These six single-dish submillimetre sources were selected based on previous ALMA continuum observations, which showed that each comprised a blend of emission from two or more individual submillimetre galaxies (SMGs), separated on 5–10 arcsec scales. The six single-dish submillimetre sources targeted correspond to a total of 14 individual SMGs, of which seven have previously measured robust optical/near-infrared spectroscopic redshifts, which were used to tune our ALMA observations. We detect CO(3–2) or CO(4–3) at z = 2.3–3.7 in 7 of the 14 SMGs, and in addition serendipitously detect line emission from three gas-rich companion galaxies, as well as identify four new 3.3 mm selected continuum sources in the six fields. Joint analysis of our CO spectroscopy and existing data suggests that 64(±18)percent of the SMGs in blended submillimetre sources are unlikely to be physically associated. However, three of the SMG fields (50 per cent) contain new, serendipitously detected CO-emitting (but submillimetre-faint) sources at similar redshifts to the 870 μm selected SMGs we targeted. These data suggest that the SMGs inhabit overdense regions, but that these are not sufficiently overdense on ∼100 kpc scales to influence the source blending given the short lifetimes of SMGs. We find that 21±12percent of SMGs have spatially distinct and kinematically close companion galaxies (∼8–150 kpc and ≲ 300 km s−1), which may have enhanced their star formation via gravitational interactions

    Vortex Lattice Melting into Disentangled Liquid Followed by the 3D-2D Decoupling Transition in YBa_2Cu_4O_8 Single Crystals

    Full text link
    A sharp resistance drop associated with vortex lattice melting was observed in high quality YBa_2Cu_4O_8 single crystals. The melting line is well described well by the anisotropic GL theory. Two thermally activated flux flow regions, which were separated by a crossover line B_cr=1406.5(1-T/T_c)/T (T_c=79.0 K, B_cr in T), were observed in the vortex liquid phase. Activation energy for each region was obtained and the corresponding dissipation mechanism was discussed. Our results suggest that the vortex lattice in YBa_2Cu_4O_8 single crystal melts into disentangled liquid, which then undergoes a 3D-2D decoupling transition.Comment: 5 pages, 4 eps figures, RevTex (Latex2.09
    • …
    corecore