1,018 research outputs found
Surface Superconductivity in Niobium for Superconducting RF Cavities
A systematic study is presented on the superconductivity (sc) parameters of
the ultrapure niobium used for the fabrication of the nine-cell 1.3 GHz
cavities for the linear collider project TESLA. Cylindrical Nb samples have
been subjected to the same surface treatments that are applied to the TESLA
cavities: buffered chemical polishing (BCP), electrolytic polishing (EP),
low-temperature bakeout (LTB). The magnetization curves and the complex
magnetic susceptibility have been measured over a wide range of temperatures
and dc magnetic fields, and also for di erent frequencies of the applied ac
magnetic field. The bulk superconductivity parameters such as the critical
temperature Tc = 9.26 K and the upper critical field Bc2(0) = 410 mT are found
to be in good agreement with previous data. Evidence for surface
superconductivity at fields above Bc2 is found in all samples. The critical
surface field exceeds the Ginzburg-Landau field Bc3 = 1.695Bc2 by about 10% in
BCP-treated samples and increases even further if EP or LTB are applied. From
the field dependence of the susceptibility and a power-law analysis of the
complex ac conductivity and resistivity the existence of two different phases
of surface superconductivity can be established which resemble the Meissner and
Abrikosov phases in the bulk: (1) coherent surface superconductivity, allowing
sc shielding currents flowing around the entire cylindrical sample, for
external fields B in the range between Bc2 and Bcohc3, and (2) incoherent
surface superconductivity with disconnected sc domains between Bcohc3 and Bc3.
The coherent critical surface field separating the two phases is found to be
Bcoh c3 = 0.81Bc3 for all samples. The exponents in the power law analysis are
different for BCP and EP samples, pointing to different surface topologies.Comment: 15 pages, 21 figures, DESY-Report 2004-02
Asymmetric vortex merger: mechanism and criterion
The merging of two unequal co-rotating vortices in a viscous fluid is investigated. Two-dimensional numerical simulations of initially equal sized Lamb-Oseen vortices with differing relative strengths are performed. Results show how the disparity in deformation rates between the vortices alters the interaction. Key physical mechanisms associated with vortex merging are identified. A merging criterion is formulated in terms of the relative timing of core detrainment and destruction. A critical strain parameter is defined to characterize the establishment of core detrainment. This parameter is shown to be directly related to the critical aspect ratio in the case of symmetric merger
Efficient Raman Sideband Generation in a Coherent Atomic Medium
We demonstrate the efficient generation of Raman sidebands in a medium
coherently prepared in a dark state by continuous-wave low-intensity laser
radiation. Our experiment is performed in sodium vapor excited in
configuration on the D line by two laser fields of resonant frequencies
and , and probed by a third field .
First-order sidebands for frequencies , and up to the
third-order sidebands for frequency are observed. The generation
starts at a power as low as 10 microwatt for each input field. Dependencies of
the intensities of both input and generated waves on the frequency difference
(), on the frequency and on the optical
density are investigated.Comment: 7 pages, 6 figure
de Haas-van Alphen effect investigations of the electronic structure of pure and aluminum-doped MgB_2
Understanding the superconducting properties of MgB_2 is based strongly on
knowledge of its electronic structure. In this paper we review experimental
measurements of the Fermi surface parameters of pure and Al-doped MgB_2 using
the de Haas-van Alphen (dHvA) effect. In general, the measurements are in
excellent agreement with the theoretical predictions of the electronic
structure, including the strength of the electron-phonon coupling on each Fermi
surface sheet. For the Al doped samples, we are able to measure how the band
structure changes with doping and again these are in excellent agreement with
calculations based on the virtual crystal approximation. We also review work on
the dHvA effect in the superconducting state.Comment: Contribution to the special issue of Physica C "Superconductivity in
MgB2: Physics and Applications" (10 Pages with figures
Evolution of chiral-odd spin-independent fracture functions in Quantum Cromodynamics
We construct the evolution equations for the twist-3 chiral-odd spin
independent fracture functions in QCD. The Gribov-Lipatov reciprocity relation
is fulfilled at the one-loop level for the quasi-partonic two-particle cut
vertices only. It is found that the rang of the anomalous dimensions matrix is
infinite for any given moment of the three-parton fracture function as
distinguished from the case of DIS-distributions where the rang of the matrix
was finite and increases with the number of the moment. In the multicolour
limit the evolution equation for the quark-gluon-quark
correlation function decouples from another equation in the system and becomes
homogeneous provided we discard the quark mass effects. This fact provides an
opportunity to find its analytic solution explicitly in nonlocal form similarly
to the DIS.Comment: 16 pages, latex, no figure
Limits on the monopole magnetic field from measurements of the electric dipole moments of atoms, molecules and the neutron
A radial magnetic field can induce a time invariance violating electric
dipole moment (EDM) in quantum systems. The EDMs of the Tl, Cs, Xe and Hg atoms
and the neutron that are produced by such a field are estimated. The
contributions of such a field to the constants, of the T,P-odd
interactions and are also estimated for the TlF, HgF and YbF molecules (where
() is the electron (nuclear) spin and is the molecular
axis). The best limit on the contact monopole field can be obtained from the
measured value of the Tl EDM. The possibility of such a field being produced
from polarization of the vacuum of electrically charged magnetic monopoles
(dyons) by a Coulomb field is discussed, as well as the limit on these dyons.
An alternative mechanism involves chromomagnetic and chromoelectric fields in
QCD.Comment: Uses RevTex, 16 pages, 4 postscript figures. An explanation of why
there is no orbital contribution to the EDM has been added, and the
presentation has been improved in genera
A dual point description of mesoscopic superconductors
We present an analysis of the magnetic response of a mesoscopic
superconductor, i.e. a system of sizes comparable to the coherence length and
to the London penetration depth. Our approach is based on special properties of
the two dimensional Ginzburg-Landau equations, satisfied at the dual point
Closed expressions for the free energy and the
magnetization of the superconductor are derived. A perturbative analysis in the
vicinity of the dual point allows us to take into account vortex interactions,
using a new scaling result for the free energy. In order to characterize the
vortex/current interactions, we study vortex configurations that are out of
thermodynamical equilibrium. Our predictions agree with the results of recent
experiments performed on mesoscopic aluminium disks.Comment: revtex, 20 pages, 9 figure
Measuring Parton Densities in the Pomeron
We present a program to measure the parton densities in the pomeron using
diffractive deep inelastic scattering and diffractive photoproduction, and to
test the resulting parton densities by applying them to other processes such as
the diffractive production of jets in hadron-hadron collisions. Since QCD
factorization has been predicted NOT to apply to hard diffractive scattering,
this program of fitting and using parton densities might be expected to fail.
Its success or failure will provide useful information on the space-time
structure of the pomeron.Comment: Contains revisions based on Phys. Rev. D referee comments. RevTeX
version 3, epsf, 31 pages. Uuencoded compressed postscript figures appended.
Uncompressed postscript files available at
ftp://ftp.phys.psu.edu/pub/preprint/psuth136
An ALMA survey of CO in submillimetre galaxies: companions, triggering, and the environment in blended sources
We present ALMA observations of the mid-J 12CO emission from six single-dish selected 870-μm sources in the Extended Chandra Deep Field-South and UKIDSS Ultra-Deep Survey fields. These six single-dish submillimetre sources were selected based on previous ALMA continuum observations, which showed that each comprised a blend of emission from two or more individual submillimetre galaxies (SMGs), separated on 5–10 arcsec scales. The six single-dish submillimetre sources targeted correspond to a total of 14 individual SMGs, of which seven have previously measured robust optical/near-infrared spectroscopic redshifts, which were used to tune our ALMA observations. We detect CO(3–2) or CO(4–3) at z = 2.3–3.7 in 7 of the 14 SMGs, and in addition serendipitously detect line emission from three gas-rich companion galaxies, as well as identify four new 3.3 mm selected continuum sources in the six fields. Joint analysis of our CO spectroscopy and existing data suggests that 64(±18)percent of the SMGs in blended submillimetre sources are unlikely to be physically associated. However, three of the SMG fields (50 per cent) contain new, serendipitously detected CO-emitting (but submillimetre-faint) sources at similar redshifts to the 870 μm selected SMGs we targeted. These data suggest that the SMGs inhabit overdense regions, but that these are not sufficiently overdense on ∼100 kpc scales to influence the source blending given the short lifetimes of SMGs. We find that 21±12percent of SMGs have spatially distinct and kinematically close companion galaxies (∼8–150 kpc and ≲ 300 km s−1), which may have enhanced their star formation via gravitational interactions
Vortex Lattice Melting into Disentangled Liquid Followed by the 3D-2D Decoupling Transition in YBa_2Cu_4O_8 Single Crystals
A sharp resistance drop associated with vortex lattice melting was observed
in high quality YBa_2Cu_4O_8 single crystals. The melting line is well
described well by the anisotropic GL theory. Two thermally activated flux flow
regions, which were separated by a crossover line B_cr=1406.5(1-T/T_c)/T
(T_c=79.0 K, B_cr in T), were observed in the vortex liquid phase. Activation
energy for each region was obtained and the corresponding dissipation mechanism
was discussed. Our results suggest that the vortex lattice in YBa_2Cu_4O_8
single crystal melts into disentangled liquid, which then undergoes a 3D-2D
decoupling transition.Comment: 5 pages, 4 eps figures, RevTex (Latex2.09
- …