22 research outputs found

    Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile

    Get PDF
    Biosphere-atmosphere water and carbon fluxes depend on ecosystem structure, and their magnitudes and seasonal behavior are driven by environmental and biological factors. We studied the seasonal behavior of net ecosystem CO2 exchange (NEE), Gross Primary Productivity (GPP), Ecosystem Respiration (RE), and actual evapotranspiration (ETa) obtained by eddy covariance measurements during two years in a Mediterranean Acacia savanna ecosystem (Acacia caven) in Central Chile. The annual carbon balance was −53 g C m−2 in 2011 and −111 g C m−2 in 2012, showing that the ecosystem acts as a net sink of CO2, notwithstanding water limitations on photosynthesis observed in this particularly dry period. Total annual ETa was of 128 mm in 2011 and 139 mm in 2012. Both NEE and ETa exhibited strong seasonality with peak values recorded in the winter season (July to September), as a result of ecosystem phenology, soil water content and rainfall occurrence. Consequently, the maximum carbon assimilation rate occurred in wintertime. Results show that soil water content is a major driver of GPP and RE, defining their seasonal patterns and the annual carbon assimilation capacity of the ecosystem, and also modulating the effect that solar radiation and air temperature have on NEE components at shorter time scales.This work was funded by FONDECYT projects 1120713 and 1170429, a grant from the Inter-American Institute for Global Change Research (IAI) [grant number CRN3056], which is supported by the US National Science Foundation [grant number GEO-1128040], and the Spanish Ministry of Economy and Competitiveness project GEI Spain (CGL2014-52838-C2-1-R), including ERDF founds. F. Bravo-Martínez is grateful to CONICYT for the grants “Formación de Capital Humano Avanzado-2009′′, “Beca de Apoyo al término de la tesis doctoral-2012′′, and CORFO INNOVA Grant N° 09CN14-5704. We thank to Enrique Pérez Sanchez-Cañete and Borja Ruíz- Reverter for technical support. We also thank “CODELCO–División Andina” for use of the site. C. Montes acknowledges the NASA Postdoctoral Program and to Universities Space Research Association

    Effects of calorie restriction on life span of microorganisms

    Get PDF
    Calorie restriction (CR) in microorganisms such as budding and fission yeasts has a robust and well-documented impact on longevity. In order to efficiently utilize the limited energy during CR, these organisms shift from primarily fermentative metabolism to mitochondrial respiration. Respiration activates certain conserved longevity factors such as sirtuins and is associated with widespread physiological changes that contribute to increased survival. However, the importance of respiration during CR-mediated longevity has remained controversial. The emergence of several novel metabolically distinct microbial models for longevity has enabled CR to be studied from new perspectives. The majority of CR and life span studies have been conducted in the primarily fermentative Crabtree-positive yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, but studies in primarily respiratory Crabtree-negative yeast and obligate aerobes can offer complementary insight into the more complex mammalian response to CR. Not only are microorganisms helping characterize a conserved cellular mechanism for CR-mediated longevity, but they can also directly impact mammalian metabolism as part of the natural gut flora. Here, we discuss the contributions of microorganisms to our knowledge of CR and longevity at the level of both the cell and the organism

    Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data

    Full text link
    The following authors were omitted from the original version of this Data Descriptor: Markus Reichstein and Nicolas Vuichard. Both contributed to the code development and N. Vuichard contributed to the processing of the ERA-Interim data downscaling. Furthermore, the contribution of the co-author Frank Tiedemann was re-evaluated relative to the colleague Corinna Rebmann, both working at the same sites, and based on this re-evaluation a substitution in the co-author list is implemented (with Rebmann replacing Tiedemann). Finally, two affiliations were listed incorrectly and are corrected here (entries 190 and 193). The author list and affiliations have been amended to address these omissions in both the HTML and PDF versions

    The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data.

    Full text link
    The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Structural basis of the resistance of an insect carboxypeptidase to plant protease inhibitors

    No full text
    Corn earworm (Helicoverpa zea), also called tomato fruitworm, is a common pest of many Solanaceous plants. This insect is known to adapt to the ingestion of plant serine protease inhibitors by using digestive proteases that are insensitive to inhibition. We have now identified a B-type carboxypeptidase of H. zea (CPBHz) insensitive to potato carboxypeptidase inhibitor (PCI) in corn earworm. To elucidate the structural features leading to the adaptation of the insect enzyme, the crystal structure of the recombinant CPBHz protein was determined by x-ray diffraction. CPBHz is a member of the A/B subfamily of metallocarboxypeptidases, which displays the characteristic metallocarboxypeptidase α/β-hydrolase fold, and does not differ essentially from the previously described Helicoverpa armigera CPA, which is very sensitive to PCI. The data provide structural insight into several functional properties of CPBHz. The high selectivity shown by CPBHz for C-terminal lysine residues is due to residue changes in the S1′ substrate specificity pocket that render it unable to accommodate the side chain of an arginine. The insensitivity of CPBHz to plant inhibitors is explained by the exceptional positioning of two of the main regions that stabilize other carboxypeptidase–PCI complexes, the β8-α9 loop, and α7 together with the α7-α8 loop. The rearrangement of these two regions leads to a displacement of the active-site entrance that impairs the proper interaction with PCI. This report explains a crystal structure of an insect protease and its adaptation to defensive plant protease inhibitors
    corecore