10,121 research outputs found

    Effect of high temperatures on sandstone: a computed tomography scan study

    Get PDF
    The impact of high temperatures on rocks is a topic of growing importance in geotechnical engineering due to its relevance to applications such as underground nuclear fuel storage, geothermal energy resource exploration and underground coal gasification. This paper presents results from tests performed on samples of sandstone treated to a range of temperatures between 20 and 1000°C. Sandstone samples obtained from underground coal gasification trial sites in Poland were selected for the tests. Multistage triaxial tests were used to determine the mechanical properties of the samples. X-ray diffraction and thermal analyses were performed to investigate the changes in physical and chemical properties of the samples under increasing temperature. Micro-computed tomography analyses were carried out on selected samples in order to show the microstructural changes that take place as a result of the heating process. Three-dimensional characterisation of sample porosity and pore-size distribution was performed to obtain a quantitative comparison between samples subjected to different temperature treatments. The relationship between microstructure and macro-mechanical characteristics of sandstone at high temperatures is discussed. The results illustrate that the mechanical properties of sandstone are closely related to alterations of microstructure that result from increased temperatures

    Upregulation of chondroitin 6-sulphotransferase-1 facilities Schwann cell migration during axonal growth

    Get PDF
    Cell migration is central to development and posttraumatic regeneration. The differential increase in 6-sulphated chondroitins during axonal growth in both crushed sciatic nerves and brain development suggests that chondroitin 6-sulphotransferase-1 (C6ST-1) is a key enzyme that mediates cell migration in the process. We have cloned the cDNA of the C6ST-1 gene (C6st1) (GenBank accession number AF178689) from crushed sciatic nerves of adult rats and produced ribonucleotide probes accordingly to track signs of 6-sulphated chondroitins at the site of injury. We found C6st1 mRNA expression in Schwann cells emigrating from explants of both sciatic nerve segments and embryonic dorsal root ganglia. Immunocytochemistry indicated pericellular 6-sulphated chondroitin products around C6ST-1-expressing frontier cells. Motility analysis of frontier cells in cultures subjected to staged treatment with chondroitinase ABC indicated that freshly produced 6-sulphated chondroitin moieties facilitated Schwann cell motility, unlike restrictions resulting from proteoglycan interaction with matrix components. Sciatic nerve crush provided further evidence of in vivo upregulation of the C6ST-1 gene in mobile Schwann cells that guided axonal regrowth 1-14 days post crush; downregulation then accompanied declining mobility of Schwann cells as they engaged in the myelination of re-growing axons. These findings are the first to identify upregulated C6st1 gene expression correlating with the motility of Schwann cells that guide growing axons through both developmental and injured environments.published_or_final_versio

    Meteor trail characteristics observed by high time resolution lidar

    Get PDF
    We report and analyse the characteristics of 1382 meteor trails based on a sodium data set of ∟680 h. The observations were made at Yanqing (115.97° E, 40.47° N), China by a ground-based Na fluorescence lidar. The temporal resolution of the raw profiles is 1.5 s and the altitude resolution is 96 m. We discover some characteristics of meteor trails different from those presented in previous reports. The occurrence heights of the trails follow a double-peak distribution with the peaks at ∟83.5 km and at ∟95.5 km, away from the peak height of the regular Na layer. 4.7% of the trails occur below 80 km, and 3.25% above 100 km. 75% of the trails are observed in only one 1.5 s profile, suggesting that the dwell time in the laser beam is not greater than 1.5 s. The peak density of the trails as a function of height is similar to that of the background sodium layer. The raw occurrence height distribution is corrected taking account of three factors which affect the relative lifetime of a trail as a function of height: the meteoroid velocity (which controls the ratio of Na / Na+ ablated); diffusional spreading of the trail; and chemical removal of Na. As a result, the bi-modal distribution is more pronounced. Modelling results show that the higher peak corresponds to a meteoroid population with speeds between 20 and 30 km s?1, whereas the lower peak should arise from much slower particles in a near-prograde orbit. It is inferred that most meteoroids in this data set have masses of ∟1 mg, in order for ablation to produce sufficient Na atoms to be detected by lidar. Finally, the evolution of longer-duration meteor trails is investigated. Signals at each altitude channel consist of density enhancement bursts with the growth process usually faster than the decay process, and there exists a progressive phase shift among these altitude channels

    Molecular cloning, expression analysis and assignment of the porcine tumor necrosis factor superfamily member 10 gene (TNFSF10) to SSC13q34 -> q36 by fluorescence in situ hybridization and radiation hybrid mapping

    Get PDF
    We have cloned the complete coding region of the porcine TNFSF10 gene. The porcine TNFSF10 cDNA has an ORF of 870 nucleotides and shares 85 % identity with human TNFSF10, and 75% and 72% identity with rat and mouse Tnfsf10 coding sequences, respectively. The deduced porcine TNFSF10 protein consists of 289 amino acids with the calculated molecular mass of 33.5 kDa and a predicted pI of 8.15. The amino acid sequence similarities correspond to 86, 72 and 70% when compared with human, rat and mouse sequences, respectively. Nor-them blot analysis detected TNFSF10-specific transcripts (similar to 1.7 kb) in various organs of a 10-week-old pig, suggesting ubiquitous expression. Real-time RT-PCR studies of various organs from fetal (days 73 and 98) and postnatal stages (two weeks, eight months) demonstrated developmental and tissue-specific regulation of TNFSF10 mRNA abundance. The chromosomal location of the porcine TNFSF10 gene was determined by FISH of a specific BAC clone to metaphase chromosomes. This TNFSF10 BAC clone has been assigned to SSC13q34 -> q36. Additionally, the localization of the TNFSF10 gene was verified by RH mapping on the porcine IMpRH panel. Copyright (c) 2005S. KargerAG, Basel

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    Large Eddy Simulation based Analysis of Complex Flow Structures within the Volute of a Vaneless Centrifugal Pump

    Get PDF
    Centrifugal pumps are very common in many fluid handling industrial applications, such as petrochemicals, oil and gas etc. Although the design practices for centrifugal pumps are well established, efforts are directed towards optimising such systems for better operational efficiencies. In order to optimally design centrifugal pumps, it is beneficial to first understand the complex flow phenomena within different sections of the pump for a variety of operating conditions. This is normally achieved through the use of modern techniques, such as Computational Fluid Dynamics (CFD), where the flow within centrifugal pumps can be numerically modelled and important flow features can be analysed for better understanding of interactions amongst different process variables. CFD offers different turbulence modelling techniques with an aim to predict realistic flow approximations. Larger Eddy Simulation (LES) offers a more accurate solution to this, in which the larger eddies are resolved while smaller eddies are modelled, hence predictions using LES are more realistic. Further to turbulence modelling within centrifugal pumps, it is also important to model the complete interaction amongst different variables rather than a simplistic single blade passage flow analysis. In the present work, the complex blade-tongue interactions, and their consequent effects on the pressure fluctuations within the volute have been evaluated. It is seen that the secondary flow features in the near tongue regions due to blade interactions with the tongue, affect the flow characteristics within the volute considerably

    Role of PII proteins in nitrogen fixation control of Herbaspirillum seropedicae strain SmR1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The PII protein family comprises homotrimeric proteins which act as transducers of the cellular nitrogen and carbon status in prokaryotes and plants. In <it>Herbaspirillum seropedicae</it>, two PII-like proteins (GlnB and GlnK), encoded by the genes <it>glnB </it>and <it>glnK</it>, were identified. The <it>glnB </it>gene is monocistronic and its expression is constitutive, while <it>glnK </it>is located in the <it>nlmAglnKamtB </it>operon and is expressed under nitrogen-limiting conditions.</p> <p>Results</p> <p>In order to determine the involvement of the <it>H. seropedicae glnB </it>and <it>glnK </it>gene products in nitrogen fixation, a series of mutant strains were constructed and characterized. The <it>glnK<sup>- </sup></it>mutants were deficient in nitrogen fixation and they were complemented by plasmids expressing the GlnK protein or an N-truncated form of NifA. The nitrogenase post-translational control by ammonium was studied and the results showed that the <it>glnK </it>mutant is partially defective in nitrogenase inactivation upon addition of ammonium while the <it>glnB </it>mutant has a wild-type phenotype.</p> <p>Conclusions</p> <p>Our results indicate that GlnK is mainly responsible for NifA activity regulation and ammonium-dependent post-translational regulation of nitrogenase in <it>H. seropedicae</it>.</p

    Molecular details of quinolone–DNA interactions: solution structure of an unusually stable DNA duplex with covalently linked nalidixic acid residues and non-covalent complexes derived from it

    Get PDF
    Quinolones are antibacterial drugs that are thought to bind preferentially to disturbed regions of DNA. They do not fall into the classical categories of intercalators, groove binders or electrostatic binders to the backbone. We solved the 3D structure of the DNA duplex (ACGCGU-NA)(2), where NA denotes a nalidixic acid residue covalently linked to the 2′-position of 2′-amino-2′-deoxyuridine, by NMR and restrained torsion angle molecular dynamics (MD). In the complex, the quinolones stack on G:C base pairs of the core tetramer and disrupt the terminal A:U base pair. The displaced dA residues can stack on the quinolones, while the uracil rings bind in the minor groove. The duplex-bridging interactions of the drugs and the contacts of the displaced nucleotides explain the high UV-melting temperature for d(ACGCGU-NA)(2) of up to 53°C. Further, non-covalently linked complexes between quinolones and DNA of the sequence ACGCGT can be generated via MD using constraints obtained for d(ACGCGU-NA)(2). This is demonstrated for unconjugated nalidixic acid and its 6-fluoro derivative. The well-ordered and tightly packed structures thus obtained are compatible with a published model for the quinolone–DNA complex in the active site of gyrases

    Celecoxib exerts protective effects in the vascular endothelium via COX-2-independent activation of AMPK-CREB-Nrf2 signalling

    Get PDF
    Although concern remains about the athero-thrombotic risk posed by cyclo-oxygenase (COX)-2-selective inhibitors, recent data implicates rofecoxib, while celecoxib appears equivalent to NSAIDs naproxen and ibuprofen. We investigated the hypothesis that celecoxib activates AMP kinase (AMPK) signalling to enhance vascular endothelial protection. In human arterial and venous endothelial cells (EC), and in contrast to ibuprofen and naproxen, celecoxib induced the protective protein heme oxygenase-1 (HO-1). Celecoxib derivative 2,5-dimethyl-celecoxib (DMC) which lacks COX-2 inhibition also upregulated HO-1, implicating a COX-2-independent mechanism. Celecoxib activated AMPKα(Thr172) and CREB-1(Ser133) phosphorylation leading to Nrf2 nuclear translocation. Importantly, these responses were not reproduced by ibuprofen or naproxen, while AMPKα silencing abrogated celecoxib-mediated CREB and Nrf2 activation. Moreover, celecoxib induced H-ferritin via the same pathway, and increased HO-1 and H-ferritin in the aortic endothelium of mice fed celecoxib (1000 ppm) or control chow. Functionally, celecoxib inhibited TNF-α-induced NF-κB p65(Ser536) phosphorylation by activating AMPK. This attenuated VCAM-1 upregulation via induction of HO-1, a response reproduced by DMC but not ibuprofen or naproxen. Similarly, celecoxib prevented IL-1β-mediated induction of IL-6. Celecoxib enhances vascular protection via AMPK-CREB-Nrf2 signalling, a mechanism which may mitigate cardiovascular risk in patients prescribed celecoxib. Understanding NSAID heterogeneity and COX-2-independent signalling will ultimately lead to safer anti-inflammatory drugs
    • …
    corecore