50 research outputs found

    Extracellular ATP released by osteoblasts is a key local inhibitor of bone mineralisation

    Get PDF
    Previous studies have shown that exogenous ATP (>1µM) prevents bone formation in vitro by blocking mineralisation of the collagenous matrix. This effect is thought to be mediated via both P2 receptor-dependent pathways and a receptor-independent mechanism (hydrolysis of ATP to produce the mineralisation inhibitor pyrophosphate, PPi). Osteoblasts are also known to release ATP constitutively. To determine whether this endogenous ATP might exert significant biological effects, bone-forming primary rat osteoblasts were cultured with 0.5-2.5U/ml apyrase (which sequentially hydrolyses ATP to ADP to AMP + 2Pi). Addition of 0.5U/ml apyrase to osteoblast culture medium degraded extracellular ATP to <1% of control levels within 2 minutes; continuous exposure to apyrase maintained this inhibition for up to 14 days. Apyrase treatment for the first 72 hours of culture caused small decreases (≤25%) in osteoblast number, suggesting a role for endogenous ATP in stimulating cell proliferation. Continuous apyrase treatment for 14 days (≥0.5U/ml) increased mineralisation of bone nodules by up to 3-fold. Increases in bone mineralisation were also seen when osteoblasts were cultured with the ATP release inhibitors, NEM and brefeldin A, as well as with P2X1 and P2X7 receptor antagonists. Apyrase decreased alkaline phosphatase (TNAP) activity by up to 60%, whilst increasing the activity of the PPi-generating ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs) up to 2.7-fold. Both collagen production and adipocyte formation were unaffected. These data suggest that nucleotides released by osteoblasts in bone could act locally, via multiple mechanisms, to limit mineralisation

    Lack of effect of adenosine on the function of rodent osteoblasts and osteoclasts in vitro

    Get PDF
    Extracellular ATP, signalling through P2 receptors, exerts well-documented effects on bone cells, inhibiting mineral deposition by osteoblasts and stimulating the formation and resorptive activity of osteoclasts. The aims of this study were to determine the potential osteotropic effects of adenosine, the hydrolysis product of ATP, on primary bone cells in vitro. We determined the effect of exogenous adenosine on (1) the growth, alkaline phosphatase (TNAP) activity and bone-forming ability of osteoblasts derived from the calvariae of neonatal rats and mice and the marrow of juvenile rats and (2) the formation and resorptive activity of osteoclasts from juvenile mouse marrow. Reverse transcription polymerase chain reaction (RT-PCR) analysis showed marked differences in the expression of P1 receptors in osteoblasts from different sources. Whilst mRNA for the A1 and A2B receptors was expressed by all primary osteoblasts, A2A receptor expression was limited to rat bone marrow and mouse calvarial osteoblasts and the A3 receptor to rat bone marrow osteoblasts. We found that adenosine had no detectable effects on cell growth, TNAP activity or bone formation by rodent osteoblasts in vitro. The analogue 2-chloroadenosine, which is hydrolysed more slowly than adenosine, had no effects on rat or mouse calvarial osteoblasts but increased TNAP activity and bone formation by rat bone marrow osteoblasts by 30–50 % at a concentration of 1 μM. Osteoclasts were found to express the A2A, A2B and A3 receptors; however, neither adenosine (≤100 μM) nor 2-chloroadenosine (≤10 μM) had any effect on the formation or resorptive activity of mouse osteoclasts in vitro. These results suggest that adenosine, unlike ATP, is not a major signalling molecule in the bone

    c-Fos induction by gut hormones and extracellular ATP in osteoblastic-like cell lines

    Get PDF
    It is widely accepted that the c-Fos gene has a role in proliferation and differentiation of bone cells. ATP-induced c-Fos activation is relevant to bone homeostasis, because nucleotides that are present in the environment of bone cells can contribute to autocrine/paracrine signalling. Gut hormones have previously been shown to have an effect on bone metabolism. In this study, we used the osteoblastic Saos-2 cell line transfected with a c-Fos-driven reporter stimulated with five gut hormones: glucose inhibitory peptide (GIP), glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), ghrelin and obestatin, in the presence or absence of ATP. In addition, TE-85 cells were used to determine the time course of c-Fos transcript induction following stimulation with GLP-1, and GLP-2 with or without ATP, using reverse transcription qPCR. The significant results from the experiments are as follows: higher level of c-Fos induction in presence of GIP, obestatin (p = 0.019 and p = 0.011 respectively), and GIP combined with ATP (p < 0.001) using the luciferase assay; GLP-1 and GLP-2 combined with ATP (p = 0.034 and p = 0.002, respectively) and GLP-2 alone (p < 0.001) using qPCR. In conclusion, three of the gut peptides induced c-Fos, providing a potential mechanism underlying the actions of these hormones in bone which can be directed or enhanced by the presence of ATP

    The Abundance of Pink-Pigmented Facultative Methylotrophs in the Root Zone of Plant Species in Invaded Coastal Sage Scrub Habitat

    Get PDF
    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 102 to 105 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems

    The speed of increasing milk feeds: a randomised controlled trial

    Get PDF
    BACKGROUND In the UK, 1-2% of infants are born very preterm (<32 weeks of gestation) or have very low birth weight (<1500 g). Very preterm infants are initially unable to be fed nutritional volumes of milk and therefore require intravenous nutrition. Milk feeding strategies influence several long and short term health outcomes including growth, survival, infection (associated with intravenous nutrition) and necrotising enterocolitis (NEC); with both infection and NEC being key predictive factors of long term disability. Currently there is no consistent strategy for feeding preterm infants across the UK. The SIFT trial will test two speeds of increasing milk feeds with the primary aim of determining effects on survival without moderate or severe neurodevelopmental disability at 24 months of age, corrected for prematurity. The trial will also examine many secondary outcomes including infection, NEC, time taken to reach full feeds and growth. METHODS/DESIGN Two thousand eight hundred very preterm or very low birth weight infants will be recruited from approximately 30 hospitals across the UK to a randomised controlled trial. Infants with severe congenital anomaly or no realistic chance of survival will be excluded. Infants will be randomly allocated to either a faster (30 ml/kg/day) or slower (18 ml/kg/day) rate of increase in milk feeds. Data will be collected during the neonatal hospital stay on weight, infection rates, episodes of NEC, length of stay and time to reach full milk feeds. Long term health outcomes comprising vision, hearing, motor and cognitive impairment will be assessed at 24 months of age (corrected for prematurity) using a parent report questionnaire. DISCUSSION Extensive searches have found no active or proposed studies investigating the rate of increasing milk feeds. The results of this trial will have importance for optimising incremental milk feeding for very preterm and/or very low birth weight infants. No additional resources will be required to implement an optimal feeding strategy, and therefore if successful, the trial results could rapidly be adopted across the NHS at low cost. TRIAL REGISTRATION ISRCTN Registry; ISRCTN76463425 on 5 March, 2013

    Polymorphisms in the P2X7 receptor gene are associated with low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women

    Get PDF
    The P2X7 receptor gene (P2RX7) is highly polymorphic with five previously described loss-of-function (LOF) single-nucleotide polymorphisms (SNP; c.151+1G>T, c.946G>A, c.1096C>G, c.1513A>C and c.1729T>A) and one gain-of-function SNP (c.489C>T). The purpose of this study was to determine whether the functional P2RX7 SNPs are associated with lumbar spine (LS) bone mineral density (BMD), a key determinant of vertebral fracture risk, in post-menopausal women. We genotyped 506 post-menopausal women from the Aberdeen Prospective Osteoporosis Screening Study (APOSS) for the above SNPs. Lumbar spine BMD was measured at baseline and at 6–7 year follow-up. P2RX7 genotyping was performed by homogeneous mass extension. We found association of c.946A (p.Arg307Gln) with lower LS-BMD at baseline (P=0.004, β=−0.12) and follow-up (P=0.002, β=−0.13). Further analysis showed that a combined group of subjects who had LOF SNPs (n=48) had nearly ninefold greater annualised percent change in LS-BMD than subjects who were wild type at the six SNP positions (n=84; rate of loss=−0.94%/year and −0.11%/year, respectively, P=0.0005, unpaired t-test). This is the first report that describes association of the c.946A (p.Arg307Gln) LOF SNP with low LS-BMD, and that other LOF SNPs, which result in reduced or no function of the P2X7 receptor, may contribute to accelerated bone loss. Certain polymorphic variants of P2RX7 may identify women at greater risk of developing osteoporosis

    A Companion Cell–Dominant and Developmentally Regulated H3K4 Demethylase Controls Flowering Time in Arabidopsis via the Repression of FLC Expression

    Get PDF
    Flowering time relies on the integration of intrinsic developmental cues and environmental signals. FLC and its downstream target FT are key players in the floral transition in Arabidopsis. Here, we characterized the expression pattern and function of JMJ18, a novel JmjC domain-containing histone H3K4 demethylase gene in Arabidopsis. JMJ18 was dominantly expressed in companion cells; its temporal expression pattern was negatively and positively correlated with that of FLC and FT, respectively, during vegetative development. Mutations in JMJ18 resulted in a weak late-flowering phenotype, while JMJ18 overexpressors exhibited an obvious early-flowering phenotype. JMJ18 displayed demethylase activity toward H3K4me3 and H3K4me2, and bound FLC chromatin directly. The levels of H3K4me3 and H3K4me2 in chromatins of FLC clade genes and the expression of FLC clade genes were reduced, whereas FT expression was induced and the protein expression of FT increased in JMJ18 overexpressor lines. The early-flowering phenotype caused by the overexpression of JMJ18 was mainly dependent on the functional FT. Our findings suggest that the companion cell–dominant and developmentally regulated JMJ18 binds directly to the FLC locus, reducing the level of H3K4 methylation in FLC chromatin and repressing the expression of FLC, thereby promoting the expression of FT in companion cells to stimulate flowering

    Evolution of Multilevel Social Systems in Nonhuman Primates and Humans

    Full text link
    corecore