7 research outputs found

    Weight and height z-scores improve after initiating ART among HIV-infected children in rural Zambia: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deficits in growth observed in HIV-infected children in resource-poor settings can be reversed with antiretroviral treatment (ART). However, many of the studies have been conducted in urban areas with older pediatric populations. This study was undertaken to evaluate growth patterns after ART initiation in a young pediatric population in rural Zambia with a high prevalence of undernutrition.</p> <p>Methods</p> <p>Between 2007 and 2009, 193 HIV-infected children were enrolled in a cohort study in Macha, Zambia. Children were evaluated every 3 months, at which time a questionnaire was administered, height and weight were measured, and blood specimens were collected. Weight- and height-for-age z-scores were constructed from WHO growth standards. All children receiving ART at enrollment or initiating ART during the study were included in this analysis. Linear mixed effects models were used to model trajectories of weight and height-for-age z-scores.</p> <p>Results</p> <p>A high proportion of study children were underweight (59%) and stunted (72%) at treatment initiation. Improvements in both weight- and height-for-age z-scores were observed, with weight-for-age z-scores increasing during the first 6 months of treatment and then stabilizing, and height-for-age z-scores increasing consistently over time. Trajectories of weight-for-age z-scores differed by underweight status at treatment initiation, with children who were underweight experiencing greater increases in z-scores in the first 6 months of treatment. Trajectories of height-for-age z-scores differed by age, with children older than 5 years of age experiencing smaller increases over time.</p> <p>Conclusions</p> <p>Some of the effects of HIV on growth were reversed with ART initiation, although a high proportion of children remained underweight and stunted after two years of treatment. Partnerships between treatment and nutrition programs should be explored so that HIV-infected children can receive optimal nutritional support.</p

    Bringing analysis of gender and social–ecological resilience together in small-scale fisheries research: Challenges and opportunities

    Get PDF
    The demand for gender analysis is now increasingly orthodox in natural resource programming, including that for small-scale fisheries. Whilst the analysis of social–ecological resilience has made valuable contributions to integrating social dimensions into research and policy-making on natural resource management, it has so far demonstrated limited success in effectively integrating considerations of gender equity. This paper reviews the challenges in, and opportunities for, bringing a gender analysis together with social–ecological resilience analysis in the context of small-scale fisheries research in developing countries. We conclude that rather than searching for a single unifying framework for gender and resilience analysis, it will be more effective to pursue a plural solution in which closer engagement is fostered between analysis of gender and social-ecological resilience whilst preserving the strengths of each approach. This approach can make an important contribution to developing a better evidence base for small-scale fisheries management and policy

    The new mutation theory of phenotypic evolution

    No full text
    Recent studies of developmental biology have shown that the genes controlling phenotypic characters expressed in the early stage of development are highly conserved and that recent evolutionary changes have occurred primarily in the characters expressed in later stages of development. Even the genes controlling the latter characters are generally conserved, but there is a large component of neutral or nearly neutral genetic variation within and between closely related species. Phenotypic evolution occurs primarily by mutation of genes that interact with one another in the developmental process. The enormous amount of phenotypic diversity among different phyla or classes of organisms is a product of accumulation of novel mutations and their conservation that have facilitated adaptation to different environments. Novel mutations may be incorporated into the genome by natural selection (elimination of preexisting genotypes) or by random processes such as genetic and genomic drift. However, once the mutations are incorporated into the genome, they may generate developmental constraints that will affect the future direction of phenotypic evolution. It appears that the driving force of phenotypic evolution is mutation, and natural selection is of secondary importance

    Health effects of resistant starch

    No full text
    corecore