224 research outputs found

    The Developmental Significance of Adolescent Romantic Relationships: Parent and Peer Predictors of Engagement and Quality at Age 15

    Get PDF
    From a longitudinal sample (n = 957; 49.9% male; 77.3% White/non-Hispanic) of participants studied from infancy through age 15, adolescents’ depth of engagement in, and quality of romantic relationships were predicted from early and contemporaneous parent–child interactive quality and peer social competence. High quality maternal parenting and peer experiences prior to and during adolescence tended to be negatively associated with the depth of engagement in this domain for the full sample, yet positively associated with the quality of adolescents’ romantic relationships for the sub-set of individuals currently dating at age 15. Results reconcile contrasting views of the origins of romantic relationship engagement and quality and the positive versus negative developmental salience of romantic relationships in adolescence

    Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders

    Get PDF
    Non-transferrin-bound iron and its labile (redox active) plasma iron component are thought to be potentially toxic forms of iron originally identified in the serum of patients with iron overload. We compared ten worldwide leading assays (6 for non-transferrin-bound iron and 4 for labile plasma iron) as part of an international inter-laboratory study. Serum samples from 60 patients with four different iron-overload disorders in various treatment phases were coded and sent in duplicate for analysis to five different laboratories worldwide. Some laboratories provided multiple assays. Overall, highest assay levels were observed for patients with untreated hereditary hemochromatosis and beta-thalassemia intermedia, patients with transfusion-dependent myelodysplastic syndromes and patients with transfusion-dependent and chelated beta-thalassemia major. Absolute levels differed considerably between assays and were lower for labile plasma iron than for non-transferrin-bound iron. Four assays also reported negative values. Assays were reproducible with high between-sample and low within-sample variation. Assays correlated and correlations were highest within the group of non-transferrin-bound iron assays and within that of labile plasma iron assays. Increased transferrin saturation, but not ferritin, was a good indicator of the presence of forms of circulating non-transferrin-bound iron. The possibility of using non-transferrin-bound iron and labile plasma iron measures as clinical indicators of overt iron overload and/or of treatment efficacy would largely depend on the rigorous validation and standardization of assay

    Assessment of the multidisciplinary education for a major change in clinical practice; a prospective cohort study

    Get PDF
    Background: New approaches are often introduced to the neonatal intensive care unit (NICU) and other areas of the health service in either a haphazard or cataclysmic fashion. The needs of staff education are often addressed incompletely or too late. Rarely is education assessed after the introduction of a major change. We changed the basis of our NICU respiratory support. We conducted a major educational and support program before this intervention. This study documented and assessed the educational components of this change in our health service provision. Methods: Senior medical and nursing staff attended training abroad and an education program was applied for one year prior to the change. Multidisciplinary educational support for doctors, nurses and allied health was continued after the change. Assessment was by anonymous questionnaire, prior to change, at one and at nine months. Our hypothesis was that dissatisfaction with education would be greatest at one month. Results: Both theory education and practical education aspects of the new approach were rated as good to very good and this did not change with time. Difficulty of applying the technique was rated as ambivalent initially but decreased significantly over 9 months until it was rated easy to very easy (p < 0.001). Over all, the change was rated by staff as beneficial, both at the end of the education period and at nine months, with no decrease at one month. Conclusion: If education and training reaches all staff, with a system of mutual and continued support, even large changes in clinical practice can be achieved without the dissatisfaction with the educational process that is often otherwise seen

    Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    Get PDF
    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus include the key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure

    PI3Kδ and PI3Kγ isoforms have distinct functions in regulating pro-tumoural signalling in the multiple myeloma microenvironment

    Get PDF
    Phosphoinositide-3-kinase and protein kinase B (PI3K-AKT) is upregulated in multiple myeloma (MM). Using a combination of short hairpin RNA (shRNA) lentivirus-mediated knockdown and pharmacologic isoform-specific inhibition we investigated the role of the PI3K p110γ (PI3Kγ) subunit in regulating MM proliferation and bone marrow microenvironment-induced MM interactions. We compared this with inhibition of the PI3K p110δ (PI3kδ) subunit and with combined PI3kδ/γ dual inhibition. We found that MM cell adhesion and migration were PI3Kγ-specific functions, with PI3kδ inhibition having no effect in MM adhesion or migration assays. At concentration of the dual PI3Kδ/γ inhibitor duvelisib, which can be achieved in vivo we saw a decrease in AKT phosphorylation at s473 after tumour activation by bone marrow stromal cells (BMSC) and interleukin-6. Moreover, after drug treatment of BMSC/tumour co-culture activation assays only dual PI3kδ/γ inhibition was able to induce MM apoptosis. shRNA lentiviral-mediated targeting of either PI3Kδ or PI3Kγ alone, or both in combination, increased survival of NSG mice xeno-transplanted with MM cells. Moreover, treatment with duvelisib reduced MM tumour burden in vivo. We report that PI3Kδ and PI3Kγ isoforms have distinct functions in MM and that combined PI3kδ/γ isoform inhibition has anti-MM activity. Here we provide a scientific rationale for trials of dual PI3kδ/γ inhibition in patients with MM

    The PI3-kinase delta inhibitor idelalisib (GS-1101) targets integrin-mediated adhesion of chronic lymphocytic leukemia (CLL) cell to endothelial and marrow stromal cells

    Get PDF
    CLL cell trafficking between blood and tissue compartments is an integral part of the disease process. Idelalisib, a phosphoinositide 3-kinase delta (PI3K\u3b4) inhibitor causes rapid lymph node shrinkage, along with an increase in lymphocytosis, prior to inducing objective responses in CLL patients. This characteristic activity presumably is due to CLL cell redistribution from tissues into the blood, but the underlying mechanisms are not fully understood. We therefore analyzed idelalisib effects on CLL cell adhesion to endothelial and bone marrow stromal cells (EC, BMSC). We found that idelalisib inhibited CLL cell adhesion to EC and BMSC under static and shear flow conditions. TNF\u3b1-induced VCAM-1 (CD106) expression in supporting layers increased CLL cell adhesion and accentuated the inhibitory effect of idelalisib. Co-culture with EC and BMSC also protected CLL from undergoing apoptosis, and this EC- and BMSC-mediated protection was antagonized by idelalisib. Furthermore, we demonstrate that CLL cell adhesion to EC and VLA-4 (CD49d) resulted in the phosphorylation of Akt, which was sensitive to inhibition by idelalisib. These findings demonstrate that idelalisib interferes with integrin-mediated CLL cell adhesion to EC and BMSC, providing a novel mechanism to explain idelalisib-induced redistribution of CLL cells from tissues into the blood

    Deficiency of Vasodilator-Stimulated Phosphoprotein (VASP) Increases Blood-Brain-Barrier Damage and Edema Formation after Ischemic Stroke in Mice

    Get PDF
    Background: Stroke-induced brain edema formation is a frequent cause of secondary infarct growth and deterioration of neurological function. The molecular mechanisms underlying edema formation after stroke are largely unknown. Vasodilator-stimulated phosphoprotein (VASP) is an important regulator of actin dynamics and stabilizes endothelial barriers through interaction with cell-cell contacts and focal adhesion sites. Hypoxia has been shown to foster vascular leakage by downregulation of VASP in vitro but the significance of VASP for regulating vascular permeability in the hypoxic brain in vivo awaits clarification. Methodology/Principal Findings: Focal cerebral ischemia was induced in Vasp2/2 mice and wild-type (WT) littermates by transient middle cerebral artery occlusion (tMCAO). Evan’s Blue tracer was applied to visualize the extent of blood-brainbarrier (BBB) damage. Brain edema formation and infarct volumes were calculated from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain slices. Both mouse groups were carefully controlled for anatomical and physiological parameters relevant for edema formation and stroke outcome. BBB damage (p,0.05) and edema volumes (1.7 mm360.5 mm3 versus 0.8 mm360.4 mm3; p,0.0001) were significantly enhanced in Vasp2/2 mice compared to controls on day 1 after tMCAO. This was accompanied by a significant increase in infarct size (56.1 mm3617.3 mm3 versus 39.3 mm3610.7 mm3, respectively; p,0.01) and a non significant trend (p.0.05) towards worse neurological outcomes. Conclusion: Our study identifies VASP as critical regulator of BBB maintenance during acute ischemic stroke. Therapeutic modulation of VASP or VASP-dependent signalling pathways could become a novel strategy to combat excessive edema formation in ischemic brain damage

    Rapid Sampling of Molecular Motions with Prior Information Constraints

    Get PDF
    Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT). Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion
    corecore