197 research outputs found

    The initial-final mass relationship of white dwarfs in common proper motion pairs

    Get PDF
    A promising approach to decrease the uncertainties in the initial-final mass relationship, which is still poorly constrained, is to study white dwarfs for which external constraints are available, for instance, white dwarfs in common proper motion pairs (CPMPs). Important information of the white dwarf can be inferred from the study of the companion, since they were born at the same time and with the same initial chemical composition. In this contribution, we report new results obtained from spectroscopic observations of both members of several CPMPs composed of a F, G or K type star and a DA white dwarf

    The white dwarf cooling sequence of NGC 6791: a unique tool for stellar evolution

    Get PDF
    NGC 6791 is a well-studied, metal-rich open cluster that is so close to us that can be imaged down to luminosities fainter than that of the termination of its white dwarf cooling sequence, thus allowing for an in-depth study of its white dwarf population. We use a Monte Carlo simulator that employs up-to-date evolutionary cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, with carbon-oxygen and helium cores. The cooling sequences for carbon-oxygen cores account for the delays introduced by both Ne^22 sedimentation in the liquid phase and by carbon-oxygen phase separation upon crystallization. We do not find evidence for a substantial fraction of helium-core white dwarfs, and hence our results support the suggestion that the origin of the bright peak of the white dwarf luminosity function can only be attributed to a population of unresolved binary white dwarfs. Moreover, our results indicate that the number distribution of secondary masses of the population of unresolved binaries has to increase with increasing mass ratio between the secondary and primary components of the progenitor system. We also find that the observed cooling sequence appears to be able to constrain the presence of progenitor sub-populations with different chemical compositions and the fraction of non-DA white dwarfs. Our simulations place interesting constraints on important characteristics of the stellar populations of NGC 6791. In particular, we find that the fraction of single helium-core white dwarfs must be smaller than 5%, that a sub-population of stars with zero metallicity must be <12%, while if the adopted metallicity of the sub-population is solar the upper limit is ~8%. Finally, we also find that the fraction of non-DA white dwarfs in this particular cluster is surprinsingly small <6%.Comment: 9 pages, 14 figures, accepted for publication in Astronomy & Astrophysic

    New chemical profiles for the asteroseismology of ZZ Ceti stars

    Get PDF
    We compute new chemical profiles for the core and envelope of white dwarfs appropriate for pulsational studies of ZZ Ceti stars. These profiles are extracted from the complete evolution of progenitor stars, evolved through the main sequence and the thermally-pulsing asymptotic giant branch (AGB) stages, and from time-dependent element diffusion during white dwarf evolution. We discuss the importance of the initial-final mass relationship for the white dwarf carbon-oxygen composition. In particular, we find that the central oxygen abundance may be underestimated by about 15% if the white dwarf mass is assumed to be the hydrogen-free core mass before the first thermal pulse. We also discuss the importance for the chemical profiles expected in the outermost layers of ZZ Ceti stars of the computation of the thermally-pulsing AGB phase and of the phase in which element diffusion is relevant. We find a strong dependence of the outer layer chemical stratification on the stellar mass. In particular, in the less massive models, the double-layered structure in the helium layer built up during the thermally-pulsing AGB phase is not removed by diffusion by the time the ZZ Ceti stage is reached. Finally, we perform adiabatic pulsation calculations and discuss the implications of our new chemical profiles for the pulsational properties of ZZ Ceti stars. We find that the whole gg-mode period spectrum and the mode-trapping properties of these pulsating white dwarfs as derived from our new chemical profiles are substantially different from those based on chemical profiles widely used in existing asteroseismological studies. Thus, we expect the asteroseismological models derived from our chemical profiles to be significantly different from those found thus far.Comment: 12 pages, 11 figures, 1 table. To be published in Ap

    Evolution of white dwarf stars with high-metallicity progenitors: the role of 22Ne diffusion

    Get PDF
    Motivated by the strong discrepancy between the main sequence turn-off age and the white dwarf cooling age in the metal-rich open cluster NGC 6791, we compute a grid of white dwarf evolutionary sequences that incorporates for the first time the energy released by the processes of 22Ne sedimentation and of carbon/oxygen phase separation upon crystallization. The grid covers the mass range from 0.52 to 1.0 Msun, and it is appropriate for the study of white dwarfs in metal-rich clusters. The evolutionary calculations are based on a detailed and self-consistent treatment of the energy released from these two processes, as well as on the employment of realistic carbon/oxygen profiles, of relevance for an accurate evaluation of the energy released by carbon/oxygen phase separation. We find that 22Ne sedimentation strongly delays the cooling rate of white dwarfs stemming from progenitors with high metallicities at moderate luminosities, whilst carbon/oxygen phase separation adds considerable delays at low luminosities. Cooling times are sensitive to possible uncertainties in the actual value of the diffusion coefficient of 22Ne. Changing the diffusion coefficient by a factor of 2, leads to maximum age differences of approx. 8-20% depending on the stellar mass. We find that the magnitude of the delays resulting from chemical changes in the core is consistent with the slow down in the white dwarf cooling rate that is required to solve the age discrepancy in NGC 6791.Comment: 10 pages, 6 figures, to be published in The Astrophysical Journa

    An upper limit to the secular variation of the gravitational constant from white dwarf stars

    Get PDF
    A variation of the gravitational constant over cosmological ages modifies the main sequence lifetimes and white dwarf cooling ages. Using an state-of-the-art stellar evolutionary code we compute the effects of a secularly varying G on the main sequence ages and, employing white dwarf cooling ages computed taking into account the effects of a running G, we place constraints on the rate of variation of Newton's constant. This is done using the white dwarf luminosity function and the distance of the well studied open Galactic cluster NGC 6791. We derive an upper bound G'/G ~ -1.8 10^{-12} 1/yr. This upper limit for the secular variation of the gravitational constant compares favorably with those obtained using other stellar evolutionary properties, and can be easily improved if deep images of the cluster allow to obtain an improved white dwarf luminosity function.Comment: 15 pages, 4 figures, accepted for publication in JCA

    The impact of chemical differentiation of white dwarfs on thermonuclear supernovae

    Get PDF
    Gravitational settling of 22Ne in cooling white dwarfs can affect the outcome of thermonuclear supernovae. We investigate how the supernova energetics and nucleosynthesis are in turn influenced by this process. We use realistic chemical profiles derived from state-of-the-art white dwarf cooling sequences. The cooling sequences provide a link between the white dwarf chemical structure and the age of the supernova progenitor system. The cooling sequence of a 1 M_sun white dwarf was computed until freezing using an up-to-date stellar evolutionary code. We computed explosions of both Chandrasekhar mass and sub-Chandrasekhar mass white dwarfs, assuming spherical symmetry and neglecting convective mixing during the pre-supernova carbon simmering phase to maximize the effects of chemical separation. Neither gravitational settling of 22Ne nor chemical differentiation of 12C and 16O have an appreciable impact on the properties of Type Ia supernovae, unless there is a direct dependence of the flame properties (density of transition from deflagration to detonation) on the chemical composition. At a fixed transition density, the maximum variation in the supernova magnitude obtained from progenitors of different ages is ~0.06 magnitudes, and even assuming an unrealistically large diffusion coefficient of 22Ne it would be less than ~0.09 mag. However, if the transition density depends on the chemical composition (all other things being equal) the oldest SNIa can be as much as 0.4 magnitudes brighter than the youngest ones (in our models the age difference is 7.4 Gyr). In addition, our results show that 22Ne sedimentation cannot be invoked to account for the formation of a central core of stable neutron-rich Fe-group nuclei in the ejecta of sub-Chandrasekhar models, as required by observations of Type Ia supernovae.Comment: 8 pages, 8 figures, 3 tables, accepted for Astronomy and Astrophysics. Revised version with corrected typo

    Optimization of time data codification and transmission schemes: Application to Gaia

    Get PDF
    Gaia is an ambitious space observatory devoted to obtain the largest and most precise astrometric catalogue of astronomical objects from our Galaxy and beyond. On-board processing and transmission of the huge amount of data generated by the instruments is one of its several technological challenges. The measurement time tags are critical for the scientific results of the mission, so they must be measured and transmitted with the highest precision - leading to an important telemetry channel occupation. In this paper we present the optimisation of time data, which has resulted in a useful software tool. We also present how time data is adapted to the Packet Telemetry standard. The several communication layers are illustrated and a method for coding and transmitting the relevant data is described as well. Although our work is focused on Gaia, the timing scheme and the corresponding tools can be applied to any other instrument or mission with similar operational principles

    The cooling of CO white dwarfs: influence of the internal chemical distribution

    Get PDF
    In this paper we compute detailed evolutionary models providing chemical profiles for white dwarfs having progenitors in the mass range from 1.0 to 7 M_{\sun} and we examine the influence of such profiles in the cooling process. The influence of the process of separation of carbon and oxygen during crystallization is decreased as a consequence of the initial stratification, but it is still important and cannot be neglected. As an example, the best fit to the luminosity functions of Liebert et al. (1988) and Oswalt et al. (1996) gives and age of the disk of 9.3 and 11.0 Gyr, respectively, when this effect is taken into account, and only 8.3 and 10.0 Gyrs when it is neglected.Comment: Accepted for publication in ApJ (26 pages, 7 figures, aasms4

    Interpolation of the magnetic field at the test masses in eLISA

    Get PDF
    A feasible design for a magnetic diagnostics subsystem for eLISA will be based on that of its precursor mission, LISA Pathfinder. Previous experience indicates that magnetic field estimation at the positions of the test masses has certain complications. This is due to two reasons. The first is that magnetometers usually back-act due to their measurement principles (i.e., they also create their own magnetic fields), while the second is that the sensors selected for LISA Pathfinder have a large size, which conflicts with space resolution and with the possibility of having a sufficient number of them to properly map the magnetic field around the test masses. However, high-sensitivity and small-sized sensors that significantly mitigate the two aforementioned limitations exist, and have been proposed to overcome these problems. Thus, these sensors will be likely selected for the magnetic diagnostics subsystem of eLISA. Here we perform a quantitative analysis of the new magnetic subsystem, as it is currently conceived, and assess the feasibility of selecting these sensors in the final configuration of the magnetic diagnostic subsystem.Peer ReviewedPostprint (author's final draft
    corecore