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Abstract. A feasible design for a magnetic diagnostics subsystem for eLISA will

be based on that of its precursor mission, LISA Pathfinder. Previous experience

indicates that magnetic field estimation at the positions of the test masses has certain

complications. This is due to two reasons. The first one is that magnetometers usually

back-act due to their measurement principles (i.e., they also create their own magnetic

fields), while the second one is that the sensors selected for LISA Pathfinder have a

large size, which conflicts with space resolution and with the possibility of having a

sufficient number of them to properly map the magnetic field around the test masses.

However, high-sensitivity and small-size sensors that significantly mitigate the two

aforementioned limitations exist, and have been proposed to overcome these problems.

Thus, these sensors will be likely selected for the magnetic diagnostics subsystem of

eLISA. Here we perform a quantitative analysis of the new magnetic subsystem, as it

is currently conceived, and assess the feasibility of selecting these sensors in the final

configuration of the magnetic diagnostic subsystem.

PACS numbers: 04.80.Nn, 04.30.-w, 07.87.+v, 06.30.Ka, 07.05.Fb

1. Introduction

The eLISA mission concept is a proposed spaceborne gravitational wave observatory

for the L3 theme “The gravitational Universe” (ESA) [1]. The main purpose is the

study of the gravitational Universe in the frequency interval between 0.1 mHz and

1 Hz. The eLISA concept is based on three drag-free spacecraft in one-million-kilometer

side equilateral triangle. Each arm forms a laser interferometer between free-falling

bodies (46-mm-side gold-platinum cubes) to measure the weak deformation of spacetime
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along one arm of the interferometer relative to the other [2]. Due to the extremely

low amplitude of gravitational waves [3], the test masses (TMs) are required to be

shielded from non-gravitational forces, which would disturb their pure geodesic motion.

Consequently, environmental conditions around the TMs need to be under stringent

control, otherwise the different noise disturbances would prevent the detection of

gravitational waves.

The eLISA noise requirement in terms of free-fall accuracy is
√

2 · 3 fm s−2Hz−1/2

down to 0.1 mHz [2]. At frequencies below 1 mHz, the noise is dominated by the

residual acceleration noise caused by environmental effects, e.g., thermal, magnetic

and random charging fluctuations [4]. Among them, one of the main contributors to

the total acceleration noise budget is the surrounding magnetic field in the spacecraft,

which is mostly created by electronic units and other components such as the micro-

thrusters of the satellite. The magnetic field and magnetic field gradient can cause a non-

gravitational force on the TM due to its non-zero magnetization M and susceptibility

χ. This spurious force on the TM volume V induced by a magnetic disturbance is given

by:

F =

〈[(
M +

χ

µ0

B

)
·∇
]

B

〉
V. (1)

While the magnetic properties of the TMs (M and χ) are known owing to several

on-ground and in-flight experiments [5, 6], the magnetic field environment (B and ∇B)

at the TM locations needs to be carefully evaluated during the mission. To that end,

eLISA will have a set of magnetic sensors placed in key locations, with the purpose of

discerning the magnetic noise contributions from the overall acceleration noise budget.

The ongoing research concerning the possible design of a magnetic diagnostics subsystem

for eLISA is based on the experience with its precursor mission, LISA Pathfinder, in

which high-performance fluxgate magnetometers were chosen because of their sensitivity

and availability for space applications [7, 8]. However, these sensors are bulky (94 cm3)

and have a large ferromagnetic sensor head (∼ 2 cm long). These reasons led to placing

only four tri-axial sensors at somewhat large distances from the TMs (≥ 18.85 cm) to

avoid back-action disturbances. Besides, the size of the sensor head also conflicts with

the space resolution, which might be another source of error in the determination of the

magnetic field. A view of the magnetometer location in the LISA Pathfinder payload is

shown in figure 1.

We stress that unlike critical drag-free technology that needs from the in-flight

experiments to be fully proved, the feasibility of the magnetic measurement subsystem

can be verified in depth from the analysis of the ground test campaigns. On the basis

of the previous analysis for LISA Pathfinder, the selected arrangement of magnetic

sensors resulted in an unsatisfactory estimation of the magnetic field in the TM region

using classical interpolation methods. Accordingly, alternative approaches needed to be

adopted. In particular, an interpolation scheme based on Neural Networks needed to be

developed [9]. For the case of eLISA, a more robust method to reconstruct the magnetic
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Figure 1. The payload of LISA Pathfinder, with the four tri-axial fluxgate

magnetometers. Each of the electrode housings (cubic structures) inside the vacuum

enclosure (the two cylindrical towers) encloses one TM at its center (solid gold cube).

field at the position of the TMs is foreseen. This requires a sufficient number of smaller

magnetometers, which additionally must be placed closer to the TMs. Besides, it is

required that back-action effects should be negligible. All this motivated the study of

alternatives to fluxgate magnetometers. Specifically, magnetoresistances [13] or chip-

scale atomic vapor cell devices [14] have been proposed. These high-sensitivity and

small sensors will significantly mitigate the limitations mentioned above. Thus, they

will be likely chosen to be integrated in the magnetic diagnostics subsystem in eLISA,

improving the quality of magnetic field interpolation.

All in all, the LISA Pathfinder magnetic diagnostics is fully integrated in the

spacecraft due to launch in 2015, and the mission operations together with the data

analysis are expected to be completed by 2016. Regarding the magnetic interpolation

process to be used in LISA Pathfinder, the aforementioned Neural Networks algorithms

is at the present the most promising one, although it is still an ongoing activity. On

the other hand, eLISA is currently under the mission concept study and the critical

technologies need to be be available for the mission concept selection in 2020. The

reader will find details in [15] about the general status of eLISA and its precursor LISA

Pathfinder.

In this paper we study assess the feasibility of using Anisotropic Magnetoresistance

sensors (AMRs) for estimating the magnetic field and its gradient at the location of

the TMs. The paper is organized as follows. In section 2 the theoretical methods for

the magnetic field interpolation are explained, while in section 3 the sensor array and

the distribution of the magnetic sources are addressed. The results of our analysis are

presented in section 4. Finally, we draw our conclusions in section 5.
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2. Interpolation methods

The magnetic field at the TM location must be inferred according to the information

given by the magnetometer readings. We are interested in a robust method that

works without previous knowledge of the spacecraft magnetic field environment. The

reasons for this choice are that the expected local spacecraft field might be affected

by possible changes of the magnetic characteristics of the spacecraft during launch or

during the lifetime of the mission, by deviations from the on-ground performance, and by

varying operational modes in the spacecraft. Hence, methods making use of “a priori”

knowledge, such as Neural Networks or Bayesian frameworks that yield remarkable

results in similar estimation problems [9, 10, 11] will not be considered here. Instead,

in this work we adopt as our interpolation tool the multipole expansion technique

based only on the magnetometer readouts. The results obtained using this method

are then compared with other theoretical approaches, such as the Taylor series and the

distance weighting interpolating methods. In the following sections we briefly describe

the interpolation methods employed for this study.

2.1. Multipole expansion

Since the magnetic sources in the spacecraft are located far from the origin of the

coordinate system (chosen at the centre of the TM) and assuming the material inside

the vacuum enclosure is basically non-magnetic, the magnetic field in this region can be

considered to be essentially a vacuum field (∇×B =∇ ·B = 0). Hence, the estimated

magnetic field Be obtained employing an array of N sensors can be written as the general

solution to Laplace’s equation centered at the TM, which can be expressed in terms of

an expansion in spherical harmonics:

Be(x) =∇Ψ(x) =
L∑
l=1

l∑
m=−l

Mlm(t)∇[rl Ylm(n)], (2)

where r ≡ |x| and n ≡ x/r are the spherical coordinates of the field at x. Mlm and

Ylm are the multipole coefficients and the standard spherical harmonics of degree l and

order m, respectively [12].

The accuracy of the estimation of the magnetic field is given by the order of

the expansion, which depends on the number of multipole coefficients that can be

computed. Specifically, the accuracy of the interpolation is given by the number of

known magnetic field measurements at the boundary of the volume where the field

equations are considered. In our case these measurements are provided by the number

of magnetometers placed in the spacecraft. Table 1 shows the minimum number of

magnetometers required to model the magnetic field with a second, third and fourth

order multipole expansion.
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Table 1. Order of the multipole expansion, number of multipole coefficients and

number of needed magnetometers. The number of triaxial magnetometers (last

column) necessary to achieve the desired order satisfies the condition 3 ·N ≥ L(L+ 2).

Expansion Equivalent # of Mlm # of triaxial

order multipole coefficients magnetometers

L [L (L + 2)] [N]

2 Quadrupole 8 3

3 Octupole 15 5

4 Hexadecapole 24 8

The coefficients Mlm are found by minimizing the equation ∂ε2/∂Mlm = 0, where

the square error is defined as

ε2(Mlm) =
N∑
s=1

|Bm(xs)−Be(xs)|2 , (3)

Bm is the readout of the triaxial magnetometer, and N is the total number of

magnetometers. This is done employing a least-squares method. Once the system

of equations is solved, the computed coefficients Mlm can be inserted into equation (2),

replacing the magnetometer’s position, xs, by the TM position, xTM, to finally obtain

the value of the interpolated field at the TM location.

2.2. Taylor series

The magnetic field at the TM position inferred from the readings of the magnetometers

can also be approximated by a Taylor expansion. As in the case in which the multipole

expansion is employed, the order of the Taylor series is determined by the number of

magnetometer data channels. In this case the magnetic field at the position of the TMs

can be approximated by the following expression:

Bm(xs) = Be(xTM) +
L∑

n=1

3∑
i=1

∂nBe(xTM)

∂xi

(xs,i − xTM,i)
n

n!
, (4)

where the origin of coordinates is defined at the centre of the respective TM (xTM),

and xs are the magnetometer locations. Be(xTM) and ∂nBe (xTM)/∂xi are calculated

considering that the magnetic field around the TM has both zero divergence and curl,

i.e. the magnetic field gradient tensor ∇nB is a symmetric and traceless matrix. Thus,

only a total of 5 independent components need to be computed.

2.3. Distance weighting

This method consists in computing the field as a weighted sum of the different

magnetometer readings. The calculation is performed as follows:

Be =
N∑
s=1

asBm(xs), (5)
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where Bm(xs) are the readouts of the magnetometers. The weighting factors as are

given by:

as =
1/rns∑N
i=1 1/rni

, (6)

where n specifies the order of the interpolation and ri are the distances between the

point at which the field must be estimated and the specified magnetometer.

3. Magnetic sources and sensor layout

We first note that the interplanetary DC field is expected to be more than one order of

magnitude weaker than the sources of magnetic field present inside the spacecraft [16].

By design, there are not any sources of magnetic field inside the vacuum enclosure

cylinder. Since the distribution of the different subsystems in eLISA is not fully

defined yet, the distribution of the magnetic sources in the spacecraft is not known.

However, in order to provide a realistic scenario to assess the performance of our

proposed interpolation methods, we make the following assumptions. We first assume

that the magnitude and location of the magnetic sources are the ones measured for LISA

Pathfinder. Moreover, we also assume that the sources of magnetic field can be modeled

as point magnetic dipoles. With these assumptions a batch of 103 different magnetic

realizations is generated using the fixed locations and magnitudes of the magnetic field

of the sources, but with orientations randomly drawn according to normal distributions

for each of the components.

The adequate location and number of magnetometers stems from a trade-off

between the accuracy of the reconstruction of the magnetic field map and the magnetic

disturbances generated by the magnetometer itself on the TM region. In order

to quantify the effect of the sensors, the magnetic moment of an AMR has been

measured with a Superconducting Quantum Interference Device (SQUID) for different

configurations. Our analysis based on the SQUID measurements shows that symmetrical

placements with four and eight sensors are the preferred options in order to minimize

the magnetic back-action effects. Moreover, when eight sensors are allocated in a

symmetrical configuration on the walls of the vacuum enclosure their contribution to the

magnetic budget is negligible [17, 18]. Figure 2 displays the distribution of the sources

of the magnetic field in the LISA Pathfinder spacecraft and the 8-sensor layout that is

being considered in the current analysis for eLISA. Additionally, we carried out noise

measurements of the magnetometer with the sensor allocated inside a magnetic shield,

and obtained a noise floor of ∼ 150 pTHz−1/2 [13]. Accordingly, to mimic the electronic

noise of the system, this noise is added to the simulated readouts of the magnetometers.

Finally, in order to assess the performance of each of the interpolating methods, the

interpolated magnetic field is compared with the exact one assuming that the different

magnetic sources behave as point dipoles. Then, the total magnetic field generated by
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Figure 2. Left: A view of the 29 measured dipole magnetic sources (green dots:

the size is proportional to their magnetic moment), the test mass (red square) and

the 8 AMR magnetometers (blue triangles). Right: Sensor array configuration on the

vacuum enclosure (Units in mm).

the sources can be calculated as:

B(x) =
µ0

4π

n∑
a=1

3(ma·na)na −ma

|x− xa|3
, (7)

where ma are the magnetic dipolar moments measured for the different subsystems, xa

are the source positions and n is the number of sources. The corresponding expression

for the magnetic field gradient is:

∂Bi

∂xj
=
µ0

4π

8∑
a=1

3

|x− xa|4
[(ma,ina,j +ma,jna,i) + (ma·na)(δij − 5na,ina,j)], (8)

where δij is Kronecker’s delta.

4. Results

4.1. Magnetic field reconstruction

As previously explained, to validate the performance of the reconstruction algorithm,

a batch of dipoles with randomly generated orientations were simulated and the exact

magnetic field for each one of these realizations was compared with the interpolated

results. The left panel of figure 3 shows the x-component of the magnetic field map

produced by one of these random configurations. The results are then compared in

the right panel with those obtained using one of our interpolating methods, in this

case the magnetic field reconstructed using multipole expansion. As seen in section 2,

a multipole expansion based only on eight triaxial magnetometers readings is able to

resolve the magnetic field up to the hexadecapole structure, by computing 24 terms in

equation (2). Overall, the field qualitatively resembles the exact one, although there are

apparent differences far from the positions of the TMs. However, note that the success

of the reconstruction method is determined by the accuracy achieved at the region of

interest, i.e. at the TM locations. We perform a more quantitative analysis for the three

components of the field below.
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Figure 3. Contour plot of the exact (left) and reconstructed (right) magnetic

field Bx for a given source dipole configuration using multipole expansion with 8

magnetometers. The positions of the 8 magnetometers (cyan triangles) and of the

test mass (blue circle) are also represented.

The differences (in percentage) between the interpolated field and the source dipole

model field are shown in figure 4. Contour plots for the three components and the

modulus show the accuracy achieved by the multipole algorithm. As can be seen in

this figure, the smallest differences occur in the region enclosed by the magnetometers.

Moreover, the accuracy of the interpolating algorithm is good in the central area of the

electrode housing, where the TM is located.

To further confirm the validity and general applicability of the multipole expansion

we compared the differences between the interpolated and exact magnetic field at the

position of the TM for three different sensor layouts. Specifically, we first adopted

the LISA Pathfinder configuration. In this layout fluxgate magnetometers are used,

as depicted in figure 1. In a second step we did the same adopting four AMRs placed

around the vacuum enclosure at the height of the electrode housing center. Finally, we

carried out the same calculation this time adopting eight AMRs, as graphically displayed

in figure 2. Average and maximum field errors relative to the modulus (ε|B| and ε|B|,max)

and to the field components (εBi
) over the 103 random runs are shown in table 2. In

the LISA Pathfinder configuration the accuracy of the reconstructed field at the TM is

poor and presents large variations when the multipole expansion is used. In particular,

the estimation errors can be as high as 737%. This is the natural consequence of having

placed the sensors too far from the center of the TM. Instead, when AMRs are used,

the sensors can be placed much closer to the center of the TM, due to its smaller size

and intrinsic magnetic moment. The results when the same number of magnetometers

is employed show significant improvements, with maximum errors up to 15%. Finally,

the estimation errors are reduced by a factor of ∼ 6 (ε|B|,max = 2.4%) when eight sensors

are used. In this case the hexadecapole expansion can be employed, and this obviously

results in an improved performance of the interpolating algorithm. At last, in figure 5

the distribution of the estimation errors for the randomly simulated cases is shown. This
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Figure 4. Relative errors in the estimation of the magnetic field components and the

modulus. To calculate the relative error for each field component, the absolute error

is divided by the modulus of the exact value in order to avoid infinities when one of

the vector components is close to zero εBx = (Br,x −Be,x)/|Br|.

Table 2. Relative errors of the magnetic field estimation at the positions of the TM.

ε|B| and εBi
are the mean error for a batch of 103 randomly orientated magnetic

sources relative to the modulus |B| and to the field component Bi, respectively. The

denominator in εBi
is closer to zero than that of the modulus ε|B|, this translates in

larger errors for the x-component than for the modulus.

Error LPF (4 Fluxgates) eLISA (4 AMRs) eLISA (8 AMRs)

(%) Bx By Bz |B| Bx By Bz |B| Bx By Bz |B|

ε|B| 38.2 28.1 20.9 32.5 1.4 1 1.1 1.8 0.1 0.2 0.1 0.1

ε|B|,max 737.7 340.3 327.6 803.2 15.0 7.7 14.0 13.3 0.9 2.4 1.4 2.0

εBi 697.9 202.1 184.5 32.5 13.7 3.8 7.8 1.8 0.6 0.8 5.3 0.1

figure clearly shows that the standard deviations are ≤ 1.1% and ≤ 0.18% for the 4-

AMR and 8-AMR layout, respectively. This proves that the averaged estimation errors

(ε|B| ≤ 0.2%) are robust and that performance of the multipole interpolating algorithm

is good, providing reliable estimated values of the magnetic field at the location of the

TM.
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Figure 5. Distributions of the relative errors at the TM position for N = 103 random

cases for four (black) and eight (red) AMR sensors.

Table 3. Maximum errors of the estimated magnetic field at the position of the TM

using different interpolation methods, see text for details.

Error ε|B|,max [%]

Bx By Bz |B|

Distance weighting 8.0 4.0 7.7 7.9

Taylor expansion 8.0 4.0 7.7 7.9

Multipole expansion 0.9 2.4 1.4 2.0

The results described so far were obtained using the multipole expansion algorithm.

However, other interpolation schemes were detailed in section 2, and their performance

were compared with that of the multipole expansion in Table 3. The order of the

interpolation in the distance weighting method is set to n = 1. Nevertheless, this

choice is not relevant due to the physical symmetry of the sensor placement, i.e., the

distances rs, and consequently the weighting factors as, are equivalent for the eight

magnetometers. For the Taylor expansion, the second and the terms involving higher-

order derivatives are negligible due to the symmetry of the magnetic distribution. Thus,

the Taylor approach mainly estimates the magnetic field as a linear approximation.

For this reason, we expect the results of the interpolation to be almost identical to

those obtained using the distance weighting method. Table 3 shows the accuracies of

the estimation of the magnetic field at the position of the TM for the three methods

employed in this work. As can be seen, the multipole expansion outperforms by far the

rest of the methods described previously.
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Figure 6. Relative errors in the estimation of the magnetic field gradient. Here, for

the sake of clarity, we only show two components, ∂Bx/∂x and ∂By/∂y. The relative

error is computed as ε∂Bi/∂j = (∂Br,i/∂j−∂Be,i/∂j)/|∂Br/∂j |. Note the different scale

for the error bars.

4.2. Reconstruction of the magnetic field gradient

Magnetic field gradients need also to be estimated from the readouts of the 8 AMRs. We

do that using the multipole expansion algorithm because, as demonstrated earlier, this

interpolating method outperforms the other two methods studied here. For the sake of

clarity, only the errors of the gradient interpolation for two components (∂Bx/∂x and

∂Bz/∂x, respectively) along the spacecraft are shown in figure 6. In this case, minimum

errors are also obtained in the center of the TM, though unlike that obtained for the

case of the magnetic field, the error increases somewhat faster in the region outside of

the boundary of the area surrounding the magnetometers. Additionally, relative errors

around the TM area are slightly larger than those found for the reconstruction of the

magnetic field, although they remain lower than 3%. Figure 7 shows the distribution

of the estimation errors and standard deviations for five independent components of

the gradient matrix ∇B at the position of the TM. Inspection of this figure reveals

that the multipole expansion scheme is robust. In particular, when this interpolant is

used we obtain not only accurate values of the reconstructed magnetic field, but also

of its gradient, with typical accuracies of the order of 2%, and deviations below 2.5%

respectively.

4.3. Other sources of error

Absolute errors and drifts of the magnetometers readings are relevant to the

interpolation quality, since the algorithm is entirely based on the magnetometer outputs.

Due to the stringent stability requirements for eLISA, drifts of the measurements are not

critical. Thus, the analysis is focused on the absolute errors. To validate the robustness

of the system, the performance of the multipole expansion scheme is studied for two

common sources of error. Namely, possible offsets in the magnetometer readings and
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Figure 7. Probability density function of the relative errors at the TM position for 103

random cases. Five independent terms in the field gradient matrix (∂Bx/∂x, ∂Bx/∂y,

∂By/∂y, ∂Bz/∂x and ∂Bz/∂y) are considered. Standard deviations and averaged

errors relative to the modulus (|∂B/∂x| and |∂B/∂y|) are shown.

spatial uncertainty — that is, deviations from the nominal position of the sensor core.

We analyze their eventual effects separately. Offsets in the magnetometer or in the

signal conditioning circuit can be measured on-ground and considered in the analysis.

However, unknown magnetometer offsets due to launch stresses can lead to inaccurate

field determination [19]. The precision of the position of the sensors may eventually

be another source of error that cannot be ignored “a priori”. The spatial uncertainty

depends on the size of the sensor head, since smaller heads result in a smaller uncertainty

of the precise location of the measurement.

The offsets of the magnetometers can be relevant depending on the measurement

technique. In particular, for AMR sensors, flipping signals applied to the sensor help to

overcome the offset by reversing the sensor magnetization and modulating the output

signal [20]. The changes in the direction of the sensor magnetization lead to inversion of

the output characteristics but not the offset, which can be canceled by subtracting the

measurements between each flipping pulse. Regarding the spatial uncertainty, the layout

of the thin film forming the AMR Wheatstone bridge [21] is deposited by a sputtering

process, and has a rough area of 0.9× 1.2 mm2. Therefore, a spatial uncertainty smaller

than 1 mm is expected.

The impact of these effects on the accuracy of the multipole expansion algorithm is

simulated as follows. First, a 3×N matrix of offsets is randomly generated according to

a uniform distribution with an interval of [−BOffset, BOffset]. Second, the offset array is

added to the 3×N magnetic channels readings, and finally the magnetic field and errors

are estimated. These steps are sequentially repeated for series of 103 random offsets with

intervals of the same length. A similar procedure is done to assess the robustness of

the interpolation to the uncertainty in the location of the sensor heads. The maximum

estimation errors as a function of the offset and of the spatial uncertainty are shown
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Figure 8. Maximum estimation error of the magnetic field as a function of the offset

(left) and spatial uncertainty (right) of the magnetometer.

in figure 8. As can be observed, the offset of the sensor is more determinant than its

spatial resolution. Specifically, for an unpredictable non-measured offset of 10 nT, the

maximum estimation error is ∼ 42%. These results reflect the relevance of the magnetic

sensing technology. Specifically, we stress that appropriate techniques to cancel out

the undetermined offset and the use of tiny sensors with accurate spatial resolution are

totally necessary.

5. Conclusion

An AMR-based magnetic diagnostics subsystem for eLISA has been presented as an

alternative to the one using fluxgates in LISA Pathfinder. This new design leads to

a reliable estimation of the magnetic field and its gradient at the positions of the

test masses. Actually, the multipole expansion scheme used in combination with

the proposed 8-sensor configuration will represent a reduction of the magnetic field

estimation error of more than two orders of magnitude when compared to the solution

implemented in LISA Pathfinder. Additionally, we have shown that the estimation

errors computed for different simulated magnetic scenarios employing the multipole

expansion interpolation provides a robust algorithm that does not need any “a priori”

knowledge of the magnetic structure in the spacecraft. Also, in addition to these

significant advantages, the proposed system has the ability to deliver correct results

under unpredictable offsets of the magnetometer readings, and to overcome reasonable

imprecisions in the spatial location of the magnetometers. All in all, these improvements

in the accuracy of the magnetic field reconstruction are achieved due to the smaller size

and smaller magnetic back-action of the AMR sensors, which allow placing more sensors

and locating them closer to the TMs. This is a promising result, that proves that the

use of AMRs combined with the multipole expansion will provide a reliable estimate of

the magnetic characteristics at the positions of the test masses of eLISA.
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