80 research outputs found

    Analysis of the planetary mass uncertainties on the accuracy of atmospherical retrieval

    Get PDF
    Characterising the properties of exoplanet atmospheres relies on several interconnected parameters, which makes it difficult to determine them independently. Planetary mass plays a role in determining the scale height of atmospheres, similarly to the contribution from the average molecular weight of the gas. We investigate the relevance of planetary mass knowledge in spectral retrievals, identifying cases where mass measurements are needed for clear or cloudy and primary or secondary atmospheres, along with the relevant precision, in the context of the ESA M4 Ariel Mission. We used TauREx to simulate the Ariel transmission spectra of representative targets of the Ariel mission reference sample, assuming different scenarios: a primordial cloudy atmosphere of a hot Jupiter and a hot Neptune, as well as the secondary atmosphere of a super-Earth that also exhibits a cloud presence. We extracted information on the various properties of the atmospheres for the cases of unknown mass or mass with different uncertainties. We also tested how the signal-to-noise ratio impacts atmospheric retrieval for different wavelength ranges. We accurately retrieved the primordial atmospheric composition independently from mass uncertainties for clear atmospheres, while we found that the uncertainties increased for high altitude clouds. We highlight the importance of the signal-to-noise ratio in the Rayleigh scattering region of the spectrum. For the secondary atmosphere cases, a mass uncertainty no larger than 50% is sufficient to retrieve the atmospheric parameters, even in the presence of clouds. Our analysis suggests that even in the worst-case scenario, a 50% mass precision level is enough for producing reliable retrievals, while an atmospheric retrieval without any knowledge of a planetary mass could lead to biases in cloudy primary atmospheres as well as in secondary atmospheres

    Detection of solar-like oscillations in the G5 subgiant mu-Herculis

    Full text link
    A clear detection of excess of power, providing a substantial evidence for solar-like oscillations in the G5 subgiant \muher{}, is presented. This star was observed over seven nights with the SARG echelle spectrograph operating with the 3.6-m Italian TNG Telescope, using an iodine absorption cell as a velocity reference. A clear excess of power centered at 1.2 mHz, with peak amplitudes of about 0.9 \ms in the amplitude spectrum is present. Fitting the asymptotic relation to the power spectrum, a mode identification for the =0,1,2,3\ell=0,1,2,3 modes in the frequency range 900-1600 \muHz is derived. The most likely value for the large separation turns out to be 56.5 \muHz, consistent with theoretical expectations. The mean amplitude per mode (l=0,1l=0,1) at peak power results to be 0.63ms10.63 \rm m s^{-1}, almost three times larger than the solar one.Comment: 8 pages, 6 figures, ApJ to appea

    On the characterization of GJ 504: a magnetically active planet-host star observed by the Transiting Exoplanet Survey Satellite (TESS)

    Full text link
    We present the results of the analysis of the photometric data collected in long and short-cadence mode by the Transiting Exoplanet Survey Satellite (TESS) for GJ 504, a well studied planet-hosting solar-like star, whose fundamental parameters have been largely debated during the last decade. Several attempts have been made by the present authors to isolate the oscillatory properties expected on this main-sequence star, but we did not find any presence of solar-like pulsations. The suppression of the amplitude of the acoustic modes can be explained by the high level of magnetic activity revealed for this target, not only by the study of the photometric light-curve, but also by the analysis of three decades available of Mount Wilson spectroscopic data. In particular, our measurements of the stellar rotational period Prot=3.4 d and of the main principal magnetic cycle of 12 a confirm previous findings and allow us to locate this star in the early main sequence phase of its evolution during which the chromospheric activity is dominated by the superposition of several cycles before the transition to the phase of the magnetic-braking shutdown with the subsequent decrease of the magnetic activity

    New Constraints on the Future Evaporation of the Young Exoplanets in the V1298 Tau System

    Get PDF
    Transiting planets at young ages are key targets for improving our understanding of the evolution of exo-atmospheres. We present results of a new X-ray observation of V 1298 Tau with XMM-Newton, aimed to determine more accurately the high-energy irradiation of the four planets orbiting this pre-main-sequence star, and the possible variability due to magnetic activity on short and long timescales. Following the first measurements of planetary masses in the V 1298 Tau system, we revise early guesses of the current escape rates from the planetary atmospheres, employing our updated atmospheric evaporation models to predict the future evolution of the system. Contrary to previous expectations, we find that the two outer Jupiter-sized planets will not be affected by any evaporation on Gyr timescales, and the same occurs for the two smaller inner planets, unless their true masses are lower than ~40 Me. These results confirm that relatively massive planets can reach their final position in the mass-radius diagram very early in their evolutionary history

    A multi-site campaign to measure solar-like oscillations in Procyon. II. Mode frequencies

    Get PDF
    We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data consist of high-precision velocities that we obtained over more than three weeks with eleven telescopes. A new method for adjusting the data weights allows us to suppress the sidelobes in the power spectrum. Stacking the power spectrum in a so-called echelle diagram reveals two clear ridges that we identify with even and odd values of the angular degree (l=0 and 2, and l=1 and 3, respectively). We interpret a strong, narrow peak at 446 muHz that lies close to the l=1 ridge as a mode with mixed character. We show that the frequencies of the ridge centroids and their separations are useful diagnostics for asteroseismology. In particular, variations in the large separation appear to indicate a glitch in the sound-speed profile at an acoustic depth of about 1000 s. We list frequencies for 55 modes extracted from the data spanning 20 radial orders, a range comparable to the best solar data, which will provide valuable constraints for theoretical models. A preliminary comparison with published models shows that the offset between observed and calculated frequencies for the radial modes is very different for Procyon than for the Sun and other cool stars. We find the mean lifetime of the modes in Procyon to be 1.29 +0.55/-0.49 days, which is significantly shorter than the 2-4 days seen in the Sun.Comment: accepted for publication in Ap

    The GAPS Project: First Results

    Get PDF
    The GAPS programme is an Italian project aiming to search and characterize extra-solar planetary systems around stars with different characteristics (mass, metallicity, environment). GAPS was born in 2012, when single research groups joined in order to propose a long-term multi-purpose observing program for the exploitation of the extraordinary performances of the HARPS-N spectrograph, mounted at the Telescopio Nazionale Galileo. Now this group is a concerted community in which wide range of expertise and capabilities are shared in order to reach a more important role in the wider international context. We present the results achieved up to now from the GAPS radial velocity survey: they were obtained in both the two main objectives of the project, the planet detection and the characterization of already known exoplanetary systems. With GAPS we detected, for instance, the first confirmed binary system in which both components host planets (Desidera et al. 2014), the first planetary system around a star in an open cluster (Malavolta et al. 2016), a system of Super-Earths orbiting an M-dwarf star (Affer et al. 2016)

    GIARPS: the unique VIS-NIR high precision radial velocity facility in this world

    Get PDF
    GIARPS (GIAno & haRPS) is a project devoted to have on the same focal station of the Telescopio Nazionale Galileo (TNG) both the high resolution spectrographs HARPS-N (VIS) and GIANO (NIR) working simultaneously. This could be considered the first and unique worldwide instrument providing cross-dispersed echelle spectroscopy at a high resolution (R=115,000 in the visual and R=50,000 in the IR) and over in a wide spectral range (0.383 - 2.45 micron) in a single exposure. The science case is very broad, given the versatility of such an instrument and the large wavelength range. A number of outstanding science cases encompassing mainly extra-solar planet science starting from rocky planet search and hot Jupiters, atmosphere characterization can be considered. Furthermore both instrument can measure high precision radial velocity by means the simultaneous thorium technique (HARPS - N) and absorbing cell technique (GIANO) in a single exposure. Other science cases are also possible. Young stars and proto-planetary disks, cool stars and stellar populations, moving minor bodies in the solar system, bursting young stellar objects, cataclysmic variables and X-ray binary transients in our Galaxy, supernovae up to gamma-ray bursts in the very distant and young Universe, can take advantage of the unicity of this facility both in terms of contemporaneous wide wavelength range and high resolution spectroscopy.Comment: 8 pages, 5 figures, SPIE Conference Proceeding
    corecore