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A MULTI-SITE CAMPAIGN TO MEASURE SOLAR-LIKE OSCILLATIONS IN PROCYON. II.
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ABSTRACT

We have analyzed data from a multi-site campaign to observe oscillations in the F5 star Procyon. The data
consist of high-precision velocities that we obtained over more than three weeks with 11 telescopes. A new
method for adjusting the data weights allows us to suppress the sidelobes in the power spectrum. Stacking
the power spectrum in a so-called échelle diagram reveals two clear ridges, which we identify with even
and odd values of the angular degree (! = 0 and 2, and / = 1 and 3, respectively). We interpret a strong,
narrow peak at 446 pHz that lies close to the [ = 1 ridge as a mode with mixed character. We show that the
frequencies of the ridge centroids and their separations are useful diagnostics for asteroseismology. In particular,
variations in the large separation appear to indicate a glitch in the sound-speed profile at an acoustic depth
of ~1000 s. We list frequencies for 55 modes extracted from the data spanning 20 radial orders, a range
comparable to the best solar data, which will provide valuable constraints for theoretical models. A preliminary
comparison with published models shows that the offset between observed and calculated frequencies for the
radial modes is very different for Procyon than for the Sun and other cool stars. We find the mean lifetime of

the modes in Procyon to be 1.29’:%_?9 days, which is significantly shorter than the 2—4 days seen in the Sun.

Key words: stars: individual (Procyon A) — stars: oscillations

935


http://dx.doi.org/10.1088/0004-637X/713/2/935
mailto:bedding@physics.usyd.edu.au

936 BEDDING ET AL.

1. INTRODUCTION

The success of helioseismology and the promise of asteroseis-
mology have motivated numerous efforts to measure oscillations
in solar-type stars. These began with ground-based observations
(for recent reviews see Bedding & Kjeldsen 2007; Aerts et al.
2008) and now extend to space-based photometry, particularly
with the CoRoT and Kepler Missions (e.g., Michel et al. 2008;
Gilliland et al. 2010).

We have carried out a multi-site spectroscopic campaign
to measure oscillations in the F5 star Procyon A (HR 2943;
HD 61421; HIP 37279). We obtained high-precision velocity
observations over more than three weeks with 11 telescopes,
with almost continuous coverage for the central 10 days. In
Arentoft et al. (2008, hereafter Paper 1) we described the details
of the observations and data reduction, measured the mean
oscillation amplitudes, gave a crude estimate for the mode
lifetime and discussed slow variations in the velocity curve
that we attributed to rotational modulation of active regions.
In this paper, we describe the procedure used to extract the
mode parameters, provide a list of oscillation frequencies, and
give an improved estimate of the mode lifetimes.

2. PROPERTIES OF SOLAR-LIKE OSCILLATIONS

We begin with a brief summary of the relevant properties
of solar-like oscillations (for reviews see, for example, Brown
& Gilliland 1994; Bedding & Kjeldsen 2003; Christensen-
Dalsgaard 2004).

To a good approximation, in main-sequence stars the cyclic
frequencies of low-degree p-mode oscillations are regularly
spaced, following the asymptotic relation (Tassoul 1980; Gough
1986):

Vat A Av(n + 31 +€) — [(1 + 1)Dy. (D)

Here, n (the radial order) and / (the angular degree) are integers,
Av (the large separation) depends on the sound travel time
across the whole star, Dy is sensitive to the sound speed near
the core and € is sensitive to the reflection properties of the
surface layers. It is conventional to define three so-called small
frequency separations that are sensitive to the sound speed in the
core: §vy, is the spacing between adjacent modes with/ = 0 and
| = 2 (for which n will differ by 1); §v;3 is the spacing between
adjacent modes with / = 1 and / = 3 (ditto); and dvy,; is the
amount by which / = 1 modes are offset from the midpoint of
the [ = 0 modes on either side.’® To be explicit, for a given
radial order, n, these separations are defined as follows:

SV02 = V0 — Va—1,2 )

1
dvor = 5(Vn,0 + Vt1,0) — Vi1 3)
Vi3 = V1 — V13- 4

If the asymptotic relation (Equation (1)) were to hold exactly,
it would follow that all of these separations would be indepen-
dent of n and that vy = 6Dy, Svi3 = 10Dy, and Svy; = 2Dy.
In practice, Equation (1) is only an approximation. In the Sun
and other stars, theoretical models and observations show that

33 One can also define an equivalent quantity, 8vjo, as the offset of / = 0
modes from the midpoint between the surrounding / = 1 modes, so that

1
8”10 =Vn0 — E(Vn—l,l + Vn,])~
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Av, Dy, and € vary somewhat with frequency, and also with /.
Consequently, the small separations also vary with frequency.

The mode amplitudes are determined by the excitation
and damping, which are stochastic processes involving near-
surface convection. We typically observe modes over a range
of frequencies, which in Procyon is especially broad (about
400-1400 pHz; see Paper I). The observed amplitudes also de-
pend on [ via various projection factors (see Table 1 of Kjeldsen
et al. 2008a). Note, in particular, that velocity measurements
are much more sensitive to modes with / = 3 than are intensity
measurements. The mean mode amplitudes are modified for a
given observing run by the stochastic nature of the excitation,
resulting in considerable scatter of the peak heights about the
envelope.

Oscillations in the Sun are long-lived compared to their
periods, which allows their frequencies to be measured very
precisely. However, the lifetime is not infinite and the damping
results in each mode in the power spectrum being split into
multiple peaks under a Lorentzian profile. The FWHM of this
Lorentzian, which is referred to as the linewidth T, is inversely
proportional to the mode lifetime: I' = 1/(w 7). We follow the
usual definition that t is the time for the mode amplitude to
decay by a factor of e. The solar value of t for the strongest
modes ranges from 2 to 4 days, as a decreasing function of
frequency (e.g., Chaplin et al. 1997).

Procyon is an evolved star, with theoretical models showing
that it is close to, or just past, the end of the main sequence (e.g.,
Guenther & Demarque 1993; Barban et al. 1999; Chaboyer
et al. 1999; Di Mauro & Christensen-Dalsgaard 2001; Kervella
et al. 2004; Eggenberger et al. 2005; Provost et al. 2006;
Bonanno et al. 2007; Guenther et al. 2008). As such, its
oscillation spectrum may show deviations from the regular
comb-like structure described by Equation (1), especially at low
frequencies. This is because some modes, particularly those with
| = 1, are shifted by avoided crossings with gravity modes in
the stellar core (also called “mode bumping”; see Osaki 1975;
Aizenman et al. 1977). These so-called “mixed modes” have
p-mode character near the surface but g-mode character in the
deep interior. Some of the theoretical models of Procyon cited
above indeed predict these mixed modes, depending on the
evolutionary state of the star, and we must keep this in mind
when attempting to identify oscillation modes in the power
spectrum. The mixed modes are rich in information because
they probe the stellar core and are very sensitive to age, but they
complicate the task of mode identification.

We should also keep in mind that mixed modes are expected to
have lower amplitudes and longer lifetimes (smaller linewidths)
than regular p-modes because they have larger mode inertias
(e.g., Christensen-Dalsgaard 2004). Hence, for a data series that
is many times longer than the lifetime of the pure p-modes, a
mixed mode may appear in the power spectrum as a narrow peak
that is higher than the others, even though its power (amplitude
squared) is not especially large.

Another potential complication is that stellar rotation causes
modes with / > 1 to split into multiplets. The peaks of these
multiplets are characterized by the azimuthal degree m, which
takes on values of m = 0, 1, ..., &/, with a separation that
directly measures the rotation rate averaged over the region
of the star that is sampled by the mode. The measurements
are particularly difficult because a long time series is needed to
resolve the rotational splittings. We argue in Appendix A that the
low value of v sini observed in Procyon implies that rotational
splitting of frequencies is not measurable in our observations.
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Figure 1. Weights for time series of velocity observations of Procyon, optimized to minimize: (a) the noise level and (b) the height of the sidelobes.

3. WEIGHTING THE TIME SERIES

The time series of velocity observations was obtained over 25
days using 11 telescopes at eight observatories and contains just
over 22,500 data points. As discussed in Paper I, the velocity
curve shows slow variations that we attribute to a combination
of instrumental drifts and rotational modulation of stellar active
regions. We have removed these slow variations by subtracting
all the power below 280 pHz, to prevent spectral leakage into
higher frequencies that would degrade the oscillation spectrum.
We take this high-pass-filtered time series of velocities, together
with their associated measurement uncertainties, as the starting
point in our analysis.

3.1. Noise-optimized Weights

Using weights when analyzing ground-based observations of
stellar oscillations (e.g., Gilliland et al. 1993; Frandsen et al.
1995) allows one to take into account the significant variations
in data quality during a typical observing campaign, especially
when two or more telescopes are used. The usual practice,
which we followed in Paper I, is to calculate the weights for
a time series from the measurement uncertainties, o;, according
tow; = 1/07.

These “raw” weights can then be adjusted to minimize the
noise level in the final power spectrum by identifying and
revising those uncertainties that are too optimistic, and at the
same time rescaling the uncertainties to be in agreement with
the actual noise levels in the data. This procedure is described
in Paper I and references therein. The time series of these noise-
optimized weights is shown in Figure 1(a). These are the same
as those shown in Figure 1(d) of Paper I, but this time as weights
rather than uncertainties.

The power spectrum of Procyon based on these noise-
optimized weights is shown in Figure 2(a). This is the same
as shown in Paper I (lower panel of Figure 6), except that the
power at low frequencies, which arises from the slow variations,
has been removed. As described in Paper I, the noise level
above 3 mHz in this noise-optimized spectrum is 1.9 cm s~! in
amplitude. This includes some degree of spectral leakage from
the oscillations and if we high-pass filter the spectrum up to
3 mHz to remove the oscillation signal, the noise level drops to
1.5 cm s~! in amplitude.

The task of extracting oscillation frequencies from the power
spectrum is complicated by the presence of structure in the
spectral window, which are caused by gaps or otherwise uneven
coverage in the time series. The spectral window using the
noise-optimized weights is shown in Figure 3(a). Prominent
sidelobes at +11.57 puHz correspond to aliasing at one cycle
per day. Indeed, the prospect of reducing these sidelobes is
the main reason for acquiring multi-site observations. However,
even with good coverage the velocity precision varies greatly,
both for a given telescope during the run and from one telescope
to another (see Figure 1(a)). As pointed out in Paper I, using
these measurement uncertainties as weights has the effect of
increasing the sidelobes in the spectral window. We now discuss
a technique for addressing this issue.

3.2. Sidelobe-optimized Weights

Adjusting the weights allows one to suppress the sidelobe
structure; the trade-off is an increase in the noise level. This
technique is routinely used in radio astronomy when synthesiz-
ing images from interferometers (e.g., Hogbom & Brouw 1974).
An extreme case is to set all weights to be equal, which is the
same as not using weights at all. This is certainly not optimal
because it produces a power spectrum with greatly increased
noise (by a factor of 2.3) but still having significant sidelobes,
as can be seen in Figure 6(a) of Paper 1. Adjusting the weights
on a night-by-night basis in order to minimize the sidelobes
was used in the analysis of dual-site observations of o Cen A
(Bedding et al. 2004), o Cen B (Kjeldsen et al. 2005), and 8 Hyi
(Bedding et al. 2007). For our multi-site Procyon data, this is
impractical because of the large number of (partly overlapping)
telescope nights. We have developed a more general algorithm
for adjusting weights to minimize the sidelobes (H. Kjeldsen
et al. 2010, in preparation). The new method, which is superior
because it does not assume the oscillations are coherent over the
whole observing run, is based on the principle that equal weight
is given to all segments of the time series. The method produces
the cleanest possible spectral window in terms of suppressing
the sidelobes, and we have tested it with good results using pub-
lished data for « Cen A and B and 8 Hyi (Arentoft et al. 2010).

The new method operates with two timescales, 7} and 75. All
data segments of length 77 (=2 hr, in this case) are required to
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Figure 2. Power spectrum of oscillations in Procyon: (a) using the noise-optimized weights; (b) using the sidelobe-optimized weights; (c) using the sidelobe-optimized

weights and smoothing by convolution with a Gaussian with FWHM 2 pHz.
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Figure 3. Spectral window for the Procyon observations using (a) noise-
optimized weights and (b) sidelobe-optimized weights.

have the same total weight throughout the time series, with the
relaxing condition that variations on timescales longer than T,
(=12 hr) are retained. To be explicit, the algorithm works as
follows. We adjust the weights so that all segments of length T}
have the same total weight. That is, for each point w; in the time
series of weights, define {.S;} to be the set of weights in a segment
of width T; centered at that time stamp, and divide each w; by
the sum of the weights in {S;}. However, this adjustment suffers
from edge effects, since it gives undue weight to points adjacent
to a gap. To compensate, we also divide by an asymmetry factor

Zleft — Zright
Zete + Zright

R=1+‘ (5)

Here, X is the sum of the weights in the segment {S;} that
have time stamps less than #;, and Xgp is the sum of the
weights in the segment {S;} that have time stamps greater than
t;. Note that R ranges from 1, for points that are symmetrically
placed in their T bin, up to 2 for points at one edge of a
gap.

Once the above procedure is done for T}, which is the shortest
timescale on which we wish to adjust the weights, we do it again
with T, which is the longest timescale for adjusting the weights.
Finally, we divide the first set of adjusted weights by the second
set, and this gives the weights that we adopt (Figure 1(b)).

3.3. The Sidelobe-optimized Power Spectrum

Figure 2(b) shows the power spectrum of Procyon based
on the sidelobe-optimized weights. The spectral window has
improved tremendously (Figure 3(b)), while the noise level at
high frequencies (above 3 mHz) has increased by a factor of 2.0.

The power spectrum now clearly shows a regular series
of peaks, which are even more obvious after smoothing
(Figure 2(c)). We see that the large separation of the star
is about 55 pHz, confirming the value indicated by sev-
eral previous studies (Mosser et al. 1998; Marti¢ et al. 1999,
2004; Eggenberger et al. 2004; Régulo & Roca Cortés 2005;
Leccia et al. 2007; Guenther et al. 2008). The very strong peak
at 446 puHz appears to be a candidate for a mixed mode, espe-
cially given its narrowness (see Section 2).

Plotting the power spectrum in échelle format using a large
separation of 56 uHz (Figure 4) clearly shows two ridges, as
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of 56 uHz, based on the sidelobe-optimized weights. Two ridges are clearly
visible. The upper parts are vertical but the lower parts are tilted, indicating
a change in the large separation as a function of frequency. The orders are
numbered sequentially on the right-hand side.

expected.’* The upper parts are vertical but the lower parts
are tilted, indicating a change in the large separation as a
function of frequency. This large amount of curvature in the
échelle diagram goes a long way toward explaining the lack of
agreement between previous studies on the mode frequencies
of Procyon (see the list of references given in the previous
paragraph).

The advantage of using the sidelobe-optimized weights is
demonstrated by Figure 5. This is the same as Figure 4 but for
the noise-optimized weights and the ridges are no longer clearly
defined.

4. IDENTIFICATION OF THE RIDGES

We know from asymptotic theory (see Equation (1)) that one
of the ridges in the échelle diagram (Figure 4) corresponds to
modes with even degree (/ = 0 and 2) and the other to modes
with odd degree (I = 1 and 3). However, it is not immediately
obvious which is which. We also need to keep in mind that
the asymptotic relation in evolved stars does not hold exactly.
We designate the two possibilities Scenario A, in which the
left-hand ridge in Figure 4 corresponds to modes with odd
degree, and Scenario B, in which the same ridge corresponds
to modes with even degree. Figure 6 shows the Procyon power
spectrum collapsed along several orders. We now see double
peaks that suggest the identifications shown, which corresponds
to Scenario B.

34 When making an échelle diagram, it is common to plot v versus

(v mod Av), in which case each order slopes slightly upward. However, for
gray-scale images, it is preferable to keep the orders horizontal, as was done in
the original presentation of the diagram (Grec et al. 1983). We have followed
that approach in this paper, and the value given on the vertical axis indicates
the frequency at the middle of each order.

MEASURING SOLAR-LIKE OSCILLATIONS IN PROCYON. II. 939

1600 - - R7
[ 1 26
[ 125
[ 1 24
1400 - T 2
: : 22
I ] 21
1200 [~ - 20
L s {19
N = 4
as) . 118
2 117
1000 [~ o
B i & ‘] 16
o 15
g I o
2 L # & |14
£ gool . -
[

600 I . : &

400~ .*

0 10 20 30 40 50
Frequency modulo 56.0 uHz

Figure 5. Same as Figure 4, but for the noise-optimized weights. The sidelobes
from daily aliasing mean that the ridges can no longer be clearly distinguished.

1.0
0.8

0.6
0.4

Power

0 10 20 30 40 50

Power

0 10 20 30 40 50
Frequency modulo 55.2 uHz

L0 R B S S B S B

0.8 380-814 uHz (8 orders)

E mixed
0.6

0.4
0.2

(O 0 N T B A B P BN

0 10 20 30 40 50
Frequency modulo 54.3 uHz

Power

I N B B e

Figure 6. Power spectrum of Procyon collapsed along several orders. Note that
the power spectrum was first smoothed slightly by convolving with a Gaussian
with FWHM 0.5 Hz. The dotted lines are separated by exactly Av/2, to guide
the eye in assessing the 0—1 small separation.

We can check that the small separation §vy; has the expected
sign. According to asymptotic theory (Equation (1)), each! = 1
mode should be at a slightly lower frequency than the midpoint
of the adjacent [ = 0 modes. This is indeed the case for the
identifications given in Figure 6, but would not be if the even
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multiplying by 0.993. Open symbols are oscillation frequencies for HD 49933
from the revised identification by Benomar et al. (2009b, Scenario B) after
multiplying by 0.6565. Symbol shapes indicate mode degree: I = 0 (circles),
[ =1 (triangles), and [ = 2 (squares).

and odd degrees were reversed. We should be careful, however,
since §vp; has been observed to have the opposite sign in red
giant stars (Carrier et al. 2010; Bedding et al. 2010).

The problem of ridge identification in F stars was first
encountered by Appourchaux et al. (2008) when analyzing
CoRoT observations of HD 49933 and has been followed up by
numerous authors (Benomar et al. 2009a, 2009b; Gruberbauer
et al. 2009; Mosser & Appourchaux 2009; Roxburgh 2009;
Kallinger et al. 2010). Two other F stars observed by CoRoT
have presented the same problem, namely HD 181906 (Garcia
et al. 2009) and HD 181420 (Barban et al. 2009). A discussion
of the issue was recently given by Bedding & Kjeldsen (2010),
who proposed a solution to the problem that involves comparing
two (or more) stars on a single échelle diagram after first scaling
their frequencies.

Figure 7 shows the échelle diagram for Procyon overlaid
with scaled frequencies for two stars observed by CoRoT, using
the method described by Bedding & Kjeldsen (2010). The
filled symbols are scaled oscillation frequencies for the GO star
HD 49385 observed by CoRoT (Deheuvels et al. 2010). The
scaling involved multiplying all frequencies by a factor of 0.993
before plotting them, with this factor being chosen to align the
symbols as closely as possible with the Procyon ridges. For this
star, the CoRoT data gave an unambiguous mode identification,
which is indicated by the symbol shapes. This confirms that the
left-hand ridge of Procyon corresponds to modes with even [
(Scenario B).

The open symbols in Figure 7 are oscillation frequencies for
HD 49933 from the revised identification by Benomar et al.
(2009b, Scenario B), after multiplying by a scaling factor of
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Figure 8. Order-averaged power spectrum (OAPS), where smoothing was done
with a FWHM of 4.0 orders (see the text). The OAPS is plotted for three values
of the large separations (54, 55, and 56 uHz), and we see that the positions of
the maxima are not very sensitive to the value of Av.

0.6565. The alignment with HD 49385 was already demon-
strated by Bedding & Kjeldsen (2010). We show HD 49933 here
for comparison and to draw attention to the different amounts
of bending at the bottom of the right-hand (/ = 1) ridge for the
three stars. The CoRoT target that is most similar to Procyon is
HD170987 but unfortunately the signal-to-noise ratio (S/N) is
too low to provide a clear identification of the ridges (Mathur
et al. 2010).

The above considerations give us confidence that Scenario B
in Procyon is the correct identification, and we now proceed on
that basis.

5. FREQUENCIES OF THE RIDGE CENTROIDS

Our next step in the analysis was to measure the centroids
of the two ridges in the échelle diagram. We first removed the
strong peak at 446 pHz (it was replaced by the mean noise
level). We believe this to be a mixed mode and its extreme
power means that it would significantly distort the result. We
then smoothed the power spectrum to a resolution of 10 uHz
(FWHM). To further improve the visibility of the ridges, we also
averaged across several orders, which corresponds to smoothing
in the vertical direction in the échelle diagram (Bedding et al.
2004; Kjeldsen et al. 2005; Karoff 2007). That is, for a given
value of Av, we define the “order-averaged” power spectrum
to be

4
OAPS(v, Av) = Z ¢;PS(v + jAv). (6)
j=—4

The coefficients c; are chosen to give a smoothing witha FWHM
of kAv: |
TR/

We show in Figure 8 the OAPS based on smoothing over 4 orders
(k = 4.0),and sowe used (¢cg, ..., cs) = (1,0.8,0.5,0.31, 0.2).
The OAPS is plotted for three values of the large separations
(54, 55, and 56 uHz), and they are superimposed. The three
curves are hardly distinguishable, and we see that the positions
of the maxima are not sensitive to the value of Av.

We next calculated a modified version of the OAPS in which
the value at each frequency is the maximum value of the OAPS
over a range of large separations (53-57 uHz). This is basically
the same as the comb response, as used previously by several
authors (Kjeldsen et al. 1995; Mosser et al. 1998; Marti¢ et al.
1999; Leccia et al. 2007). The maxima of this function define
the centroids of the two ridges, which are shown in Figure 9.

)

Cj=



No. 2, 2010
\\TTTTT\T{\\\\\\TT\ T\\\\T\\\‘\\\\\\\\\‘\\\TT\\\\‘\\\\\

1600 — — 27
I 1 26
[ 25
[ 7 24
1400j o i 23
L O A | 22
- © A 121
1200 & A | 20
L A\ 4 19
g r © A 1 18
2 ool s [
. 1000 - A 16
5 I A Ik
54 | IN | 14
£ 800 S 2 _IER
L 4 12
L O N . |
F ¢ @ 1 10
600 - o Ap - 9
L A { s
i o 4 N
¥ 6

400 . T &
L & YA ] 5
L | a
\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\ 3

0 10 20 30 40 50

Frequency modulo 56.0 uHz

Figure 9. Centroids of the two ridges, as measured from the comb response.
The grayscale shows the sidelobe-optimized power spectrum from which the
peaks were calculated.

0.7 T T T
0.6

0.5
0.4
0.3

Summed Power

0.2

0.1

0.0 . . .
-2

[=]
|
—
o

0.6

0.5

Summed Power
o
@

-20 -10 0 10
Relative Frequency (uHz)

)
o
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full range of oscillations (18 orders). The upper panel shows the left-hand ridge,
which we identify with modes having even degree, and the lower panel shows the
right-hand ridge (odd degree). Note that the power spectrum was first smoothed
slightly by convolving with a Gaussian with FWHM 0.6 uHz.

In Figure 10, we show the full power spectrum of Procyon
(using sidelobe-optimized weights) collapsed along the ridges.
This is similar to Figure 6 except that each order was shifted
before the summation, so as to align the ridge peaks (symbols
in Figure 9) and hence remove the curvature. This was done
separately for both the even- and odd-degree ridges, as shown
in the two panels of Figure 10. The collapsed spectrum clearly
shows the power corresponding to I = 0-3, as well as the
extra power from the mixed modes (for this figure, the peak at
446 1Hz has not been removed).
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In Section 6 below, we use the ridges to guide our iden-
tification of the individual modes. First, however, we show
that some asteroseismological inferences can be made solely
from the ridges themselves. This is explained in more detail in
Appendix B.

5.1. Large Separation of the Ridges

Figure 11(a) shows the variation with frequency of the large
separation for each of the two ridges (diamonds and triangles).
The smoothing across orders (Equation (6)) means that the
ridge frequencies are correlated from one order to the next and
so we used simulations to estimate uncertainties for the ridge
centroids.

The oscillatory behavior of Av as a function of frequency
seen in Figure 11(a) is presumably a signature of the helium
ionization zone (e.g., Gough 1990). The oscillation is also seen
in Figure 11(b), which shows the second differences for the two
ridges, defined as follows (see Gough 1990; Ballot et al. 2004;
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Houdek & Gough 2007):
A2Vn,even = Vn—l,even - 2vn,even + Un+l,even’ (8)
AoV 0dd = Vn—1,0dd — 2Vn.0dd + Vn+1,0dd- ©

The period of the oscillation is ~500 Hz, which implies a glitch
at an acoustic depth that is approximately twice the inverse
of this value (Gough 1990; Houdek & Gough 2007), namely
~1000 s. To determine this more precisely, we calculated the
power spectrum of the second differences for both the odd and
even ridges, and measured the highest peak. We found the period
of the oscillation in the second differences to be 508 4+ 18 uHz.
Comparing this result with theoretical models will be the subject
of a future paper.

The dotted lines in Figure 11(a) show the variation of Av with
frequency calculated from the autocorrelation of the time series
using the method of Mosser & Appourchaux (2009; see also
Roxburgh & Vorontsov 2006). The mixed mode at 446 pHz
was first removed and the smoothing filter had FWHM equal to
3 times the mean large separation. We see general agreement
with the values calculated from the ridge separations. Some
of the differences presumably arise because the autocorrelation
analysis of the time series averages the large separation over all
degrees.

5.2. Small Separation of the Ridges

Using only the centroids of the ridges, we can measure a small
separation that is useful for asteroseismology. By analogy with
dvg; (see Equation (3)), we define it as the amount by which the
odd ridge is offset from the midpoint of the two adjacent even
ridges, with a positive value corresponding to a leftward shift
(as observed in the Sun). That is,

Vn,even T Vn+1,even (10)

Sueven,odd = ) — Vn,odd-

Figure 11(c) shows our measurements of this small separation.
Itis related in a simple way to the conventional small separations
dvo1, Sv, and Svi3 (see Appendix B for details) and so, like
them, it gives information about the sound speed in the core. Our
measurements of this small separation can be compared with
theoretical models using the equations in Appendix B (e.g., see
Christensen-Dalsgaard & Houdek 2009).

6. FREQUENCIES OF INDIVIDUAL MODES

‘We have extracted oscillation frequencies from the time series
using the standard procedure of iterative sine-wave fitting.
Each step of the iteration involves finding the strongest peak
in the sidelobe-optimized power spectrum and subtracting the
corresponding sinusoid from the time series. Figure 12 shows
the result. The two ridges are clearly visible but the finite mode
lifetime causes many modes to be split into two or more peaks.
We might also be tempted to propose that some of the multiple
peaks are due to rotational splitting but, as shown in Appendix A,
this is unlikely to be the case.

Deciding on a final list of mode frequencies with correct /
identifications is somewhat subjective. To guide this process,
we used the ridge centroids shown in Figure 9 as well as

35 We could also define a small separation §Vodd,even to be the amount by
which the centroid of the even ridge is offset rightward from the midpoint of
the adjacent odd ridges. This gives similar results.
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Figure 12. Peaks extracted from sidelobe-optimized power spectrum using
iterative sine-wave fitting. Symbol size is proportional to amplitude (after the
background noise has been subtracted). The grayscale shows the sidelobe-
optimized power spectrum on which the fitting was performed, to guide the
eye.

the small separations §vp, and §v;3 from the collapsed power
spectrum (see Figures 6 and 10). Each frequency extracted
using iterative sine-wave fitting that lay close to a ridge was
assigned an / value and multiple peaks from the same mode
were averaged. The final mode frequencies are listed in Table 1,
while peaks with S/N > 3.5 that we have not identified are
listed in Table 2. Figures 13 and 14 show these peaks overlaid
on the sidelobe-optimized power spectrum. Figure 15 shows the
three small separations (Equations (2)—(4)) as calculated from
the frequencies listed in Table 1. The uncertainties in the mode
frequencies are shown in parentheses in Table 1. These depend
on the S/N of the peak and were calibrated using simulations
(e.g., see Bedding et al. 2007).

The entries in Table 2 are mostly false peaks due to noise and
to residuals from the iterative sine-wave fitting, but may include
some genuine modes. To check whether some of them may be
daily aliases of each other or of genuine modes, we calculated
the differences of all combinations of frequencies in Tables 1
and 2. The histogram of these pairwise differences was flat in
the vicinity of 11.6 uHz and showed no excess, confirming
that daily aliases do not contribute significantly to the list of
frequencies in the tables.

We also checked whether the number peaks in Table 2 agrees
with expectations. We did this by analyzing a simulated time
series that matched the observations in terms of oscillations
properties (frequencies, amplitudes, and mode lifetimes), noise
level, window function, and distribution of weights. We ex-
tracted peaks from the simulated power spectrum using iterative
sine-wave fitting, as before, and found the number of “extra”
peaks (not coinciding with the oscillation ridges) to be similar
to that seen in Figure 12. Finally, we remark that the peak at
408 nHz is a candidate for a mixed mode with / = 1, given that
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Table 1 Table 2
Oscillation Frequencies in Procyon (in uHz) Unidentified Peaks with S/N > 3.5

Order =0 =1 =2 1=3 v S/N

4 . 331.3 (0.8) (nHz)

5 ... 387.7 (0.7) ... 407.6 (0.8) 3.5

6 415.5 (0.8) 445.8 (0.3) 411.7 (0.7) - 512.8 (0.8) 3.6

7 466.5 (1.0) 498.6 (0.7) 464.5 (0.9) 488.7 (0.9) 622.8 (0.6) 4.3

8 ... 551.5(0.7) L. 544.4 (0.9) 679.1 (0.7) 4.0

9 576.0 (0.7) 608.2 (0.5) ... . 723.5 (0.6) 4.7
10 630.7 (0.6) 660.6 (0.7) 627.0 (1.1) 653.6 (0.8) 770.5 (0.7) 4.1
11 685.6 (0.7) 712.1 (0.5) 681.9 (0.7) . 878.5 (0.6) 4.4
12 739.2 (0.7) 766.5 (0.5) 736.2 (0.5) 890.8 (0.7) 3.6
13 793.7 (0.9) 817.2 (0.6) 792.3 (0.9) . 935.6 (0.7) 3.9
14 849.1 (0.7) 873.5 (0.6) 845.4 (0.6) 869.5 (0.6) 1057.2 (0.7) 3.7
15 901.9 (0.8) 929.2 (0.7) ... 926.6 (0.6) 1384.3 (0.7) 3.6
16 957.8 (0.6) 985.3 (0.7) 956.4 (0.5) 980.4 (0.9)
17 1015.8 (0.6) 1040.0 (0.7) ... 1034.5 (0.7)
18 1073.9(0.7) 1096.5(0.7) 1068.5 (0.7) o T = 1-5110'93 days. We have attempted to improve on that estimate
19 1126.7 (0.5) 1154.6 (0.9) 1124.3 (0.9) o, . . e e .
20 1182.0 (0.7) 1208.5 (0.6) 1179.9 (1.0) by considering the amplitude fluctuations Qf 1nd1v¥.du?11 modes,
21 12383 (0.9) 1264.6 (1.0) 1237.0 (0.8) as has been done for the Sun (e.g., Toutain & Frohlich 1992;
22 1295.2 (1.0) . 1292.8 (1.0) Baudin et al. 1996; Chang & Gough 1998), but were not able to
23 1352.6 (1.1) 1375.7 (1.0) 1348.2 (1.0) produce well-calibrated results for Procyon.

it lies in the same order as the previously identified mixed mode
at 446 uHz (note that we expect one extra / = 1 mode to occur
at an avoided crossing).

The modes listed in Table 1 span 20 radial orders and more
than a factor of 4 in frequency. This range is similar to that
obtained from long-term studies of the Sun (e.g., Broomhall
et al. 2009) and is unprecedented in asteroseismology. It was
made possible by the unusually broad range of excited modes
in Procyon and the high S/N of our data. Since the stellar
background at low frequencies in intensity measurements is
expected to be much higher than for velocity measurements, it
seems unlikely that even the best data from the Kepler Mission
will return such a wide range of frequencies in a single target.

7. MODE LIFETIMES

As discussed in Section 2, if the time series is sufficiently
long then damping causes each mode in the power spectrum
to be split into a series of peaks under a Lorentzian envelope
having FWHM T" = 1/(wt), where t is the mode lifetime.
Our observations of Procyon are not long enough to resolve the
modes into clear Lorentzians, and instead we see each mode as
a small number of peaks (sometimes one). Furthermore, the
centroid of these peaks may be offset from the position of
the true mode, as illustrated in Figure 1 of Anderson et al.
(1990). This last feature allows one to use the scatter of
the extracted frequencies about smooth ridges in the échelle
diagram, calibrated using simulations, to estimate the mode
lifetime (Kjeldsen et al. 2005; Bedding et al. 2007). That method
cannot be applied to Procyon because the / = 0 and ! = 2 ridges
are not well resolved and the [ = 1 ridge is affected by mixed
modes.

Rather than looking at frequency shifts, we have estimated
the mode lifetime from the variations in mode amplitudes (again
calibrated using simulations). This method is less precise but has
the advantage of being independent of the mode identifications
(e.g., Leccia et al. 2007; Carrier et al. 2007; Bedding et al.
2007). In Paper I, we calculated the smoothed amplitude curve
for Procyon in 10 two-day segments and used the fluctuations
about the mean to make a rough estimate of the mode lifetime:

Instead, we have measured the “peakiness” of the power
spectrum (see Bedding et al. 2007) by calculating the ratio
between the square of the mean amplitude of the 15 highest
peaks in the range 500-1300 nHz (found by iterative sine-wave
fitting) and the mean power in the same frequency range. The
value for this ratio from our observations of Procyon is 6.9. We
made a large number of simulations (3600) having a range of
mode lifetimes and with the observed frequency spectrum, noise
level, window function, and weights. Comparing the simulations
with the observations led to a mode lifetime for Procyon of
1.29t%i159 days.

This agrees with the value found in Paper I but is more precise,
confirming that modes in Procyon are significantly more short-
lived than those of the Sun. As discussed in Section 2, the
dominant modes in the Sun have lifetimes of 2—4 days (e.g.,
Chaplin et al. 1997). The tendency for hotter stars to have shorter
mode lifetimes has recently been discussed by Chaplin et al.
(2009).

8. FITTING TO THE POWER SPECTRUM

Extracting mode parameters by fitting directly to the power
spectrum is widely used in helioseismology, where the time
series extends continuously for months or even years, and so the
individual modes are well resolved (e.g., Anderson et al. 1990).
Mode fitting has not been applied to ground-based observations
of solar-type oscillations because these data typically have
shorter durations and significant gaps. Global fitting has been
carried out on spacecraft data, beginning with the 50-day time
series of o Cen A taken with the WIRE spacecraft (Fletcher et al.
2006) and the 60-day light curve of HD 49933 from CoRoT
(Appourchaux et al. 2008). Our observations of Procyon are
much shorter than either of these cases but, given the quality of
the data and the spectral window, we considered it worthwhile
to attempt a fit.

Global fits to the Procyon power spectrum were made by
several of us. Here, we present results from a fit using a
Bayesian approach (e.g., Gregory 2005), which allowed us
to include in a straightforward way our prior knowledge of
the oscillation properties. The parameters to be extracted were
the frequencies, heights, and linewidths of the modes. To
obtain the marginal probability distributions of these parameters
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Figure 13. Power spectrum of Procyon at full resolution, with the orders in each column arranged from top to bottom, for easy comparison with the échelle diagrams.
Vertical dashed lines show the mode frequencies listed in Table 1 and dotted lines show the peaks that have not been identified, as listed in Table 2. The smooth curve
shows the global fit to the power spectrum for Scenario B (see Section 8).

and their associated uncertainties, we employed an Automated algorithm. It implements the Metropolis—Hastings sampler by
Parallel Tempering Markov Chain Monte Carlo (APT MCMC) performing a random walk in parameter space while drawing
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identified, as listed in Table 2.

samples from the posterior distribution (Gregory 2005). Further
details of our implementation of the algorithm will be given
elsewhere (T. L. Campante et al. 2010, in preparation).

The details of the fitting are as follows.

1. The fitting was performed over 17 orders (5-21) using the
sidelobe-optimized power spectrum. In each order, we fitted
modes with [ = 0, 1, and 2, with each individual profile
being described by a symmetric Lorentzian with FWHM I
and height H. The mode frequencies were constrained to
lie close to the ridges and to have only small jumps from
one order to the next (a Gaussian prior with o = 3 uHz).
The S/Ns of modes with [ = 3 were too low to permit a fit.
In order to take their power into account, we included them
in the model with their frequencies fixed by the asymptotic
relation (Equation (1)).

2. The data are not good enough to provide a useful estimate
of the linewidth of every mode, or even of every order.
Therefore, the linewidth was parameterized as a linear
function of frequency, defined by two parameters I'gop and
T 1200, which are the values at 600 and 1200 pHz. These
parameters were determined by the fit, in which both were
assigned a uniform prior in the range 0—10 uHz.

3. The height of each mode is related to the linewidth and
amplitude according to (Chaplin et al. 2005):

_oA?

H=—.
nl’

an

The amplitudes A of the modes were determined as follows.
For the radial modes (! = 0), we used the smoothed
amplitude curve measured from our observations, as shown
in Figure 10 of Paper I. The amplitudes of the non-radial
modes (I = 1-3) were then calculated from the radial
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Table 3
Frequencies from Global Fit Using Scenario B (in «Hz,

with —/+ Uncertainties)

Order =0 =1 =2
5 363.6 (0.8/0.9) 387.5 (0.6/0.6) 358.5(1.3/1.2)
6 415.3 (3.3/1.0) ... 408.1 (1.0/3.7)
7 469.7 (1.6/2.1) 498.8 (0.7/0.8) 465.3 (1.1/1.3)
8 522.3 (1.4/1.4) 551.6 (0.8/0.7) 519.0 (1.5/1.6)
9 577.0 (1.6/2.5) 607.6 (0.6/0.7) 573.9(2.2/2.8)
10 631.3 (0.8/0.8) 660.3 (1.0/1.3) 627.4 (2.1/2.8)
11 685.6 (1.2/1.6) 714.7 (1.4/1.2) 681.2 (2.3/1.9)
12 740.1 (1.6/1.7) 768.6 (0.9/1.0) 737.0 (1.5/1.7)
13 793.2 (1.3/1.7) 820.0 (1.7/1.2) 790.9 (2.0/1.9)
14 847.3 (1.2/1.4) 872.7 (1.1/0.9) 844.7 (1.7/1.5)
15 901.0 (1.8/1.7) 927.5 (0.8/0.8) 898.6 (2.1/2.1)
16 958.7 (1.4/1.1) 983.9 (1.0/1.3) 957.2 (1.0/1.3)
17 1015.9 (1.5/1.8) 1039.5 (1.6/1.7) 1014.0 (1.8/2.4)
18 1073.2 (1.5/2.2) 1096.6 (1.1/1.0) 1070.3 (2.2/2.3)
19 1127.2 (1.0/1.3) 1151.8 (1.4/1.4) 1125.9 (1.3/1.4)
20 1182.3 (1.5/1.4) 1207.9 (1.4/1.1) 1180.5 (1.6/1.6)
21 1236.9 (1.7/1.6) 1267.4 (1.7/1.5) 1235.5 (2.0/1.7)

modes using the ratios given in Table 1 of Kjeldsen et al.
(2008a), namely, Sp : S; : S> : S5 =1.00: 1.35: 1.02 :
0.47.

4. The background was fitted as a flat function.

5. We calculated the rotationally split profiles of the non-
radial modes using the description given by Gizon &
Solanki (2003). The inclination angle of the rotation axis
was fixed at 31°, which is the inclination of the binary
orbit (Girard et al. 2000) and, as discussed in Paper I
(Section 4.1), is consistent with the rotational modulation
of the velocity curve. The rotational splitting was fixed at
0.7 uHz, which was chosen to match the observed value of
vsini = 3.16 km s~! (Allende Prieto et al. 2002), given
the known radius of the star. As discussed in Appendix A,
choosing different values for the inclination (and hence
the splitting) does not affect the mode profile, assuming
reasonable values of the linewidth.

We carried out the global fit using both scenarios discussed in
Section 4. The fit for Scenario B is shown as the smooth curve
in Figure 13 and the fitted frequencies are given in Table 3. Note
that the mixed mode at 446 Hz was not properly fitted because
it lies too far from the ridge (see point 1 above). To check the
agreement with the results discussed in Section 6, we examined
the differences betweens the frequencies in Tables 1 and 3. We
found a reduced x? of 0.74, which indicates good agreement. A
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Figure 16. Difference between observed frequencies of radial modes in Procyon
and those of scaled models. The symbols indicate different models, as follows:
squares from Chaboyer et al. (1999, Table 2), crosses from Di Mauro &
Christensen-Dalsgaard (2001), asterisks from Kervella et al. (2004, Table 4),
and triangles from Eggenberger et al. (2005, model M1a). In each case, the
dotted curve shows the correction calculated using Equation (4) of Kjeldsen
et al. (2008b).

value less than 1 is not surprising given that both methods were
constrained to find modes close to the ridges.

The fitted linewidths (assumed to be a linear function of
frequency, as described above) gave mode lifetimes of 1.5 &
0.4 days at 600 uHz and 0.6 £ 0.3 days at 1200 wHz. These
agree with the single value of 1.291%259 days found above
(Section 7), and indicate that the lifetime increases toward
lower frequencies, as is the case for the Sun and for the F-
type CoRoT targets HD 49933 (Benomar et al. 2009b) and HD
181420 (Barban et al. 2009).

We also carried out the global fit using Scenario A. We
found through Bayesian model selection that Scenario A was
statistically favored over Scenario B by a factor of 10:1. This
factor classifies as “significant” on the scale of Jeffreys (1961;
see Table 1 of Liddle 2009). On the same scale, posterior odds
of at least ~13:1 are required for a classification of “strong to
very strong,” and “decisive” requires at least ~150:1. In our
Bayesian fit to Procyon, the odds ratio in favor of Scenario A
did not exceed 13:1, even when different sets of priors were
imposed.

In light of the strong arguments given in Section 4 in favor of
Scenario B, we do not consider the result from Bayesian model
selection to be sufficiently compelling to cause us to reverse
our identification. Of course, it is possible that Scenario A is
correct and, for completeness, we show these fitted frequencies
in Table 4. The fit using Scenario A gave mode lifetimes of
0.9 £ 0.2 days at 600 nHz and 1.0 £ 0.3 days at 1200 uHz.

9. PRELIMINARY COMPARISON WITH MODELS

A detailed comparison of the observed frequencies of Procyon
with theoretical models is beyond the scope of this paper, but
we will make some preliminary comments on the systematic
offset between the two. It is well established that incorrect
modeling of the surface layers of the Sun is responsible for
discrepancies between the observed and calculated oscillation
frequencies (Christensen-Dalsgaard et al. 1988; Dziembowski
et al. 1988; Rosenthal et al. 1999; Li et al. 2002).

To address this problem for other stars, Kjeldsen et al.
(2008b) proposed an empirical correction to be applied to
model frequencies that takes advantage of the fact that the offset
between observations and models is independent of / and goes
to zero with decreasing frequency. They measured the offset for
the Sun to be a power law with exponent b = 4.9 and applied
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Figure 17. Same as Figure 16, but with a constant near-surface correction
(b=0).

Table 4
Frequencies from Global Fit Using Scenario A (in uHz,
with —/+ Uncertainties)

Order =0 =1 1=2
5 387.7 (1.9/1.8) 361.9 (1.8/2.0) 385.1 (1.9/2.6)

6 . 412.5 (1.7/2.3) 439.3 (2.6/2.6)
7 498.7 (1.1/1.6) 467.6 (1.4/1.3) 493.2 (2.6/2.0)
8 552.2 (1.5/1.5) 520.7 (1.2/1.3) 549.3 (2.2/2.0)
9 607.8 (1.0/0.9) 576.2 (1.1/1.4) 605.4 (2.2/2.3)

10 661.3 (1.3/1.5) 631.1 (0.7/0.8) 657.1 (1.7/1.6)

11 716.8 (1.3/1.7) 684.7 (1.2/1.2) 712.6 (1.2/1.2)

12 769.9 (1.2/1.3) 739.1 (1.1/1.2) 766.6 (1.4/1.4)

13 822.7 (1.9/2.7) 792.9 (1.3/1.3) 817.8 (1.3/1.4)

14 8745 (1.3/1.3) 846.4 (0.9/0.8) 869.9 (1.6/1.3)

15 928.8 (1.2/1.2) 900.0 (1.3/1.4) 925.9 (1.3/1.1)

16 985.1 (1.0/1.1) 958.2 (0.8/0.8) 980.9 (1.9/1.6)

17 1043.4 (2.8/2.8) 1015.7 (1.0/0.9) 1035.2 (1.0/0.8)

18 1097.6 (1.5/0.9) 1072.5 (1.1/1.2) 1091.8 (3.7/4.2)

19 1153.7 (0.9/0.8) 1126.9 (0.5/0.6) 1146.8 (1.3/1.0)

20 1209.1 (0.8/0.9) 1181.8 (1.0/0.9) 1204.8 (1.3/1.4)

21 1269.2 (1.0/1.1) 1237.1 (0.9/0.9) 1264.8 (1.5/1.5)

this correction to the radial modes of other stars, finding very
good results that allowed them to estimate mean stellar densities
very accurately (better than 0.5%).

We have applied this method to Procyon, comparing our ob-
served frequencies for the radial modes with various published
models to determine the scaling factor r and the offset (see
Kjeldsen et al. 2008b for details of the method). The results are
shown in Figure 16. Interestingly, the offset between the obser-
vations and scaled models does not go to zero with decreasing
frequency. This contrasts with the G- and K-type stars investi-
gated by Kjeldsen et al. (2008b), namely, the Sun, & Cen A and
B, and 8 Hyi.

The method of Kjeldsen et al. (2008b) assumes the correction
to be applied to the models to have the same form as in the Sun,
namely, a power law with an exponent of b = 4.9. The fit in
Figure 16 is poor and is not improved by modest adjustments to
b. Instead, the results seem to imply an offset that is constant.
Setting b = 0 and repeating the calculations produce the results
shown in Figure 17, where we indeed see a roughly constant
offset between the models and the observations of about 20 Hz.

As a check, we can consider the density implied for Procyon.
The stellar radius can be calculated from the interferometric
radius and the parallax. The angular diameter of 5.404 =+
0.031 mas (Aufdenberg et al. 2005, their Table 7) and the revised
Hipparcos parallax of 285.93 £ 0.88 mas (van Leeuwen 2007)
gives a radius of 2.041 £ 0.015 R
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Procyon is in a binary system (the secondary is a white dwarf),
allowing the mass to be determined from astrometry. Girard et al.
(2000) found a value of 1.497 £ 0.037 M, while Gatewood &
Han (2006) found 1.431 £ 0.034 M, (see Guenther et al. 2008
for further discussion).

The density obtained using the fits shown in Figure 16 is in the
range 0.255-0.258 g cm™3. Combining with the radius implies
a mass in the range 1.54-1.56 M. The density obtained using
the fits shown in Figure 17 is in the range 0.242-0.244 g cm ™3,
implying a mass of 1.46-1.48 M. The latter case seems to be
in much better agreement with the astrometrically determined
mass, lending some support to the idea that the offset is constant.

We can also consider the possibility that our mode identi-
fication is wrong and that Scenario A is the correct one (see
Sections 4 and 8). With this reversed identification, the radial
modes in Procyon are those in Table 1 listed as having [ = 1.
Assuming these to be radial modes, the offset between them and
the model frequencies is again constant, as we would expect,
but this time with a mean value close to zero. The implied den-
sity for Procyon is again consistent with the observed mass and
radius.

The preceding discussion makes it clear that the correction
that needs to be applied to models of Procyon is very different
from that for the Sun and other cool stars, regardless of
whether Scenario B or A is correct. In particular, the substantial
nearly constant offset implied by Figure 16 would indicate
errors in the modeling extending well beyond the near-surface
layers. We also note that in terms of the asymptotic expression
(Equation (1)) a constant offset would imply an error in the
calculation of €.

10. CONCLUSION

We have analyzed results from a multi-site campaign on
Procyon that obtained high-precision velocity observations over
more than three weeks (Paper I). We developed a new method
for adjusting the weights in the time series that allowed us to
minimize the sidelobes in the power spectrum that arise from
diurnal gaps and so to construct an échelle diagram that shows
two clear ridges of power. To identify the odd and even ridges,
we summed the power across several orders. We found structures
characteristic of / = 0 and 2 in one ridge and / = 1 and 3 in
the other. This identification was confirmed by comparing our
Procyon data in a scaled échelle diagram (Bedding & Kjeldsen
2010) with other stars for which the ridge identification is
known. We showed that the frequencies of the ridge centroids
and their large and small separations are easily measured and
are useful diagnostics for asteroseismology. In particular, an
oscillation in the large separation appears to indicate a glitch in
the sound-speed profile at an acoustic depth of ~1000 s.

We identify a strong narrow peak at 446 pHz, which falls
slightly away from the / = 1 ridge, as a mixed mode. In
Table 1, we give frequencies, extracted using iterative sine-
wave fitting, for 55 modes with angular degrees [ of 0-3.
These cover 20 radial orders and a factor of more than 4 in
frequency, which reflects the broad range of excited modes
in Procyon and the high S/N of our data, especially at low
frequencies. Intensity measurements will suffer from a much
higher stellar background at low frequencies, making it unlikely
that even the best data from the Kepler Mission will yield
the wide range of frequencies found here. This is a strong
argument in favor of continuing efforts toward ground-based
Doppler studies, such as the Stellar Observations Network
Group (SONG; Grundahl et al. 2008), which is currently under
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construction, and the proposed Antarctic instrument Seismic
Interferometer to Measure Oscillations in the Interior of Stars
(STAMOIS; Mosser et al. 2008).

We estimated the mean lifetime of the modes by comparing
the “peakiness” of the power spectrum with simulations and
found a value of 1.29i%‘5459 days, significantly below that of the
Sun. A global fit to the power spectrum using Bayesian methods
confirmed this result and provided evidence that the lifetime
increases toward lower frequencies. It also casts some doubt
on the mode identifications. We still favor the identification
discussed above, but leave open the possibility that this may
need to be reversed. Finally, comparing the observed frequencies
of radial modes in Procyon with published theoretical models
showed an offset that appears to be constant with frequency,
making it very different from that seen in the Sun and other
cool stars. Detailed comparisons of our results with theoretical
models will be carried out in future papers.

We would be happy to make the data presented in this paper
available on request.
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cil, the Swiss National Science Foundation, NSF grant AST-
9988087 (R.P.B.), and by SUN Microsystems. We gratefully
acknowledge support from the European Helio- and Asteroseis-
mology Network (HELAS), a major international collaboration
funded by the European Commission’s Sixth Framework Pro-
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APPENDIX A
ROTATIONAL SPLITTING

We expect non-radial modes to be split due to the ro-
tation of the star. The rotation period of Procyon is not
known, although slow variations in our velocity observations
(Paper 1) indicated a value of either 10.3 days or twice that
value. The projected rotational velocity has been measured spec-
troscopically. Allende Prieto et al. (2002) determined a value of
vsini = 3.16 & 0.50 km s~!, although they note that the actual
value may be lower by about 0.5 km s~'.

Gizon & Solanki (2003) have studied the effect of rotation on
the profiles of solar-like oscillations as a function of inclination
and mode lifetime (see also Ballot et al. 2006). We have
repeated their calculations for our observations of Procyon (with
sidelobe-optimized weights). The results are shown in Figure 18,
which shows the effects of rotational splitting, inclination angle,
and mode lifetime on the theoretical profile of the modes.*® Note
that the calculations do not include the stochastic nature of the
excitation and so the function shown here should properly be
called the expectation value of the power spectrum, also known
as the limit spectrum. Figure 18 is similar to Figure 2 of Gizon &
Solanki (2003) except that instead of fixing the rotation period,
we have fixed v sini to be the measured value. For [ = 0, the
profile does not depend on the inclination angle, while for/ = 1,
2, and 3 the solid and dashed lines show calculations for i = 30°
(Prot = 16.4 days) and i = 80° (P = 32.3 days), respectively.
In each panel, results are shown for three values of the mode
lifetime: 1.5 days (top curve), 3 days (middle curve), and infinite
(bottom curve). For each mode lifetime, the curves for different
i and [ are all normalized to have the same area.

36 Note that we have made the quite reasonable assumption that the internal
rotation has a similar period to the surface rotation.
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Figure 18. Theoretical line profiles showing rotational splitting for different mode degrees, similar to Figure 2 of Gizon & Solanki (2003) but here using a fixed value
of vsini, namely 3.16 km s~1, as measured for Procyon (Allende Prieto et al. 2002). For [ = 0, the profile does not depend on the inclination angle, while for/ = 1,
2, and 3 the solid and dashed lines show calculations for i = 30° (P,oy = 16.4 days) and i = 80° (Pt = 32.3 days), respectively. In each panel, results are shown for
three values of the mode lifetime: 1.5 days (top curve), 3 days (middle curve), and infinite (bottom curve). For each mode lifetime, the curves for different i and / are

all normalized to have the same area.

We see from Figure 18 that for a fixed v sini, the width of
the profile stays roughly constant as a function of inclination.
If the rotation axis of the star happens to be in the plane of the
sky (i = 90°), then the rotation period is too low to produce a
measurable splitting. At the other extreme, if the inclination is
small (so that the rotation is close to pole-on), then the rotational
splitting will be large but most of the power will be in the central
peak (m = 0). Either way, once the profile has been broadened
by the mode lifetime, the splitting will be unobservable.

‘We conclude that for realistic values of the mode lifetime, our
observations are not long enough to detect rotational splitting
in Procyon. The line profiles are broadened by rotation, but it is
not possible to disentangle the rotation rate from the inclination
angle. Rotational splitting is not measurable in Procyon, except
perhaps with an extremely long data set. The detection of
rotational splitting requires choosing a star with a larger v sini
or a longer mode lifetime, or both.

APPENDIX B

RELATING RIDGE CENTROIDS TO MODE
FREQUENCIES

As discussed in Section 5, the frequencies of the ridge
centroids are useful for asteroseismology in cases where it is
difficult to resolve the ridges into their component modes. In
this appendix, we relate the frequencies of the ridge centroids
to those of the underlying modes, which allows us to express
the small separation of the ridges (Equation (10)) in terms of

the conventional small separations (§vo;, v, and 6v;3). These
relationships will allow the observations to be compared with
theoretical models.

The ridge centroids depend on the relative contributions of
modes with [ = 0, 1, 2, and 3. The power in the even ridge is
approximately equally divided between / = 0 and [ = 2, while
the odd ridge is dominated by / = 1 but with some contribution
from/ = 3. The exact ratios depend on the observing method, as
discussed by Kjeldsen et al. (2008a). For velocity measurements,
such as those presented in this paper for Procyon, the amplitude
ratios given by Kjeldsen et al. (2008a, their Table 1) yield the
following expressions for the centroids in power:

vvel — 0_49])”’0 + 0.511);1—1,2’

n,even

(B1)

vy = 0.89v, 1 +0.11v,_1 3, (B2)
where the superscript indicates these apply to velocity measure-
ments.

For photometric measurements, such as those currently being
obtained with the CoRoT and Kepler Missions, the relative
contributions from the various / values are different. Table 1
of Kjeldsen et al. (2008a) gives response factors for intensity
measurements in the three VIRGO passbands, namely, 402,
500, and 862 nm. For CoRoT and Kepler, it is appropriate to
use a central wavelength of 650 nm. Using the same method as
Kjeldsen et al. (2008a), we find the ratios (in amplitude) for this
casetobe Sy : S; 1S 1S3 =1.00:1.23 :0.71 : 0.14. The
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ridge centroids measured from such data would then be

830 = 0.66v,.0 +0.34v,_1,, (B3)

n,even

V80 = 0.99v, 1 +0.01v,_1 3. (B4)

We can express the new small separation of the ridge centroids
(Equation (10)) in terms of the conventional ones. For velocity,
we have

sv¥el = 8vg — 0.518vp, +0.118vy3; (B3)

even,odd —

and for photometry, we have

880 a = Svor — 0.348vp; +0.018vy3. (B6)

even,odd —

Finally, we can express these in terms of Dy under the
assumption that the asymptotic relation (Equation (1)) holds
exactly, although in fact this is not likely to be the case:

SV oqd = 0.04Dg (B7)
and
3180 oaa = 0.06Dy. (B8)
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