3,069 research outputs found

    Influence of Climate on Long-Term Recovery of Adirondack Mountain Lakewater Chemistry from Atmospheric Deposition of Sulfur and Nitrogen

    Get PDF
    In this study, we assessed temporal patterns and long-term trends in nitrate (NO3-), two forms of aluminum (inorganic, Ali, and organic, Alo), and dissolved organic carbon (DOC) concentrations in the water of 29 Adirondack Mountain, New York lakes, and the potential effects of ambient weather conditions (i.e., climatic variation) on these patterns and trends

    Agouti C57BL/6N embryonic stem cells for mouse genetic resources.

    Get PDF
    We report the characterization of a highly germline competent C57BL/6N mouse embryonic stem cell line, JM8. To simplify breeding schemes, the dominant agouti coat color gene was restored in JM8 cells by targeted repair of the C57BL/6 nonagouti mutation. These cells provide a robust foundation for large-scale mouse knockout programs that aim to provide a public resource of targeted mutations in the C57BL/6 genetic background

    Balancing precision and risk: Should multiple detection methods be analyzed separately in N-mixture models?

    Get PDF
    Using multiple detection methods can increase the number, kind, and distribution of individuals sampled, which may increase accuracy and precision and reduce cost of population abundance estimates. However, when variables influencing abundance are of interest, if individuals detected via different methods are influenced by the landscape differently, separate analysis of multiple detection methods may be more appropriate. We evaluated the effects of combining two detection methods on the identification of variables important to local abundance using detections of grizzly bears with hair traps (systematic) and bear rubs (opportunistic). We used hierarchical abundance models (N-mixture models) with separate model components for each detection method. If both methods sample the same population, the use of either data set alone should (1) lead to the selection of the same variables as important and (2) provide similar estimates of relative local abundance. We hypothesized that the inclusion of 2 detection methods versus either method alone should (3) yield more support for variables identified in single method analyses (i.e. fewer variables and models with greater weight), and (4) improve precision of covariate estimates for variables selected in both separate and combined analyses because sample size is larger. As expected, joint analysis of both methods increased precision as well as certainty in variable and model selection. However, the single-method analyses identified different variables and the resulting predicted abundances had different spatial distributions. We recommend comparing single-method and jointly modeled results to identify the presence of individual heterogeneity between detection methods in N-mixture models, along with consideration of detection probabilities, correlations among variables, and tolerance to risk of failing to identify variables important to a subset of the population. The benefits of increased precision should be weighed against those risks. The analysis framework presented here will be useful for other species exhibiting heterogeneity by detection method

    Louse- and flea-borne rickettsioses: biological and genomic analyses

    Get PDF
    In contrast to 15 or more validated and/or proposed tick-borne spotted fever group species, only three named medically important rickettsial species are associated with insects. These insect-borne rickettsiae are comprised of two highly pathogenic species, Rickettsia prowazekii (the agent of epidemic typhus) and R. typhi (the agent of murine typhus), as well as R. felis, a species with unconfirmed pathogenicity. Rickettsial association with obligate hematophagous insects such as the human body louse (R. prowazekii transmitted by Pediculus h. humanus) and several flea species (R. typhi and R. felis, as well as R. prowazekii in sylvatic form) provides rickettsiae the potential for further multiplications, longer transmission cycles and rapid spread among susceptible human populations. Both human body lice and fleas are intermittent feeders capable of multiple blood meals per generation, facilitating the efficient transmission of rickettsiae to several disparate hosts within urban/rural ecosystems. While taking into consideration the existing knowledge of rickettsial biology and genomic attributes, we have analyzed and summarized the interacting features that are unique to both the rickettsiae and their vector fleas and lice. Furthermore, factors that underlie rickettsial changing ecology, where native mammalian populations are involved in the maintenance of rickettsial cycle and transmission, are discussed

    Polymer particles for the intra-articular delivery of drugs to treat osteoarthritis

    Get PDF
    Osteoarthritis (OA) is a leading cause of chronic disability. It is a progressive disease, involving pathological changes to the entire joint, resulting in joint pain, stiffness, swelling, and loss of mobility. There is currently no disease-modifying pharmaceutical treatment for OA, and the treatments that do exist suffer from significant side effects. An increasing understanding of the molecular pathways involved in OA is leading to many potential drug targets. However, both current and new therapies can benefit from a targeted approach that delivers drugs selectively to joints at therapeutic concentrations, while limiting systemic exposure to the drugs. Delivery systems including hydrogels, liposomes, and various types of particles have been explored for intra-articular drug delivery. This review will describe progress over the past several years in the development of polymer-based particles for OA treatment, as well as their in vitro, in vivo, and clinical evaluation. Systems based on biopolymers such as polysaccharides and polypeptides, as well as synthetic polyesters, poly(ester amide)s, thermoresponsive polymers, poly(vinyl alcohol), amphiphilic polymers, and dendrimers will be described. We will discuss the role of particle size, biodegradability, and mechanical properties in the behavior of the particles in the joint, and the challenges to be addressed in future research

    Osteoarthritis, cerebrovascular dysfunction and the common denominator of inflammation: a narrative review

    Get PDF
    © 2018 The Author(s) Objective: Population-based cohort studies suggest an association between osteoarthritis (OA) and cerebrovascular disease, yet the mechanisms underlying vascular comorbidities in OA remain unclear. The purpose of this narrative review is to discuss the literature examining inflammation in OA with a focus on physiological mechanisms, and whether overlapping mechanisms exist in cerebrovascular dysfunction. Method: A literature search was conducted in PubMed using combinations of search terms: osteoarthritis, cerebrovascular (disease/dysfunction/risk), cardiovascular (disease/dysfunction/risk), aging/ageing, inflammation, inflammatory mediators, cytokine, c-reactive protein, interleukin, advanced glycation end-products, metabolic syndrome, reactive oxidative species, cognitive impairment, (vascular-related) dementia, small cerebral vessel disease, endothelial function, blood–brain barrier, gender/sex, hypertension, peripheral vascular health, and physical activity. Reference lists of identified articles were also researched manually. Results: Overlapping inflammatory factors that may contribute to onset and progression of both OA and cerebrovascular dysfunction are presented. We describe oxidative mechanisms involving pro-inflammatory cytokines and oxidative species, advanced glycation end-products, sex hormones, microvascular dysfunction and osteoprotegerin, and their specific roles in potentially contributing to OA and cerebrovascular dysfunction. Conclusion: Synthesis of the current literature suggests future investigations may benefit from directly testing cerebrovascular hemodynamics and cognitive function in individuals with or at risk of OA to elucidate common physiological mechanisms

    HITRAP: A facility at GSI for highly charged ions

    Full text link
    An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fuer Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational, highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.Comment: 8 pages, 11 figure

    The Role of Landscape Connectivity in Planning and Implementing Conservation and Restoration Priorities. Issues in Ecology

    Get PDF
    Landscape connectivity, the extent to which a landscape facilitates the movements of organisms and their genes, faces critical threats from both fragmentation and habitat loss. Many conservation efforts focus on protecting and enhancing connectivity to offset the impacts of habitat loss and fragmentation on biodiversity conservation, and to increase the resilience of reserve networks to potential threats associated with climate change. Loss of connectivity can reduce the size and quality of available habitat, impede and disrupt movement (including dispersal) to new habitats, and affect seasonal migration patterns. These changes can lead, in turn, to detrimental effects for populations and species, including decreased carrying capacity, population declines, loss of genetic variation, and ultimately species extinction. Measuring and mapping connectivity is facilitated by a growing number of quantitative approaches that can integrate large amounts of information about organisms’ life histories, habitat quality, and other features essential to evaluating connectivity for a given population or species. However, identifying effective approaches for maintaining and restoring connectivity poses several challenges, and our understanding of how connectivity should be designed to mitigate the impacts of climate change is, as yet, in its infancy. Scientists and managers must confront and overcome several challenges inherent in evaluating and planning for connectivity, including: •characterizing the biology of focal species; •understanding the strengths and the limitations of the models used to evaluate connectivity; •considering spatial and temporal extent in connectivity planning; •using caution in extrapolating results outside of observed conditions; •considering non-linear relationships that can complicate assumed or expected ecological responses; •accounting and planning for anthropogenic change in the landscape; •using well-defined goals and objectives to drive the selection of methods used for evaluating and planning for connectivity; •and communicating to the general public in clear and meaningful language the importance of connectivity to improve awareness and strengthen policies for ensuring conservation. Several aspects of connectivity science deserve additional attention in order to improve the effectiveness of design and implementation. Research on species persistence, behavioral ecology, and community structure is needed to reduce the uncertainty associated with connectivity models. Evaluating and testing connectivity responses to climate change will be critical to achieving conservation goals in the face of the rapid changes that will confront many communities and ecosystems. All of these potential areas of advancement will fall short of conservation goals if we do not effectively incorporate human activities into connectivity planning. While this Issue identifies substantial uncertainties in mapping connectivity and evaluating resilience to climate change, it is also clear that integrating human and natural landscape conservation planning to enhance habitat connectivity is essential for biodiversity conservation

    Changes of Sand Fly Populations and Leishmania infantum Infection Rates in an Irrigated Village Located in Arid Central Tunisia

    Get PDF
    Citation: Barhoumi, W., Fares, W., Cherni, S., Derbali, M., Dachraoui, K., Chelbi, I., . . . Zhioua, E. (2016). Changes of Sand Fly Populations and Leishmania infantum Infection Rates in an Irrigated Village Located in Arid Central Tunisia. International Journal of Environmental Research and Public Health, 13(3), 10. doi:10.3390/ijerph13030329The current spread of zoonotic visceral leishmaniasis (ZVL) throughout arid areas of Central Tunisia is a major public health concern. The main objective of this study is to investigate whether the development of irrigation in arid bio-geographical areas in Central Tunisia have led to the establishment of a stable cycle involving sand flies of the subgenus Larroussius and Leishmania infantum, and subsequently to the emergence of ZVL. Sand flies were collected from the village of Saddaguia, a highly irrigated zone located within an arid bio-geographical area of Central Tunisia by using modified Centers for Diseases Control (CDC) light traps. Morphological keys were used to identify sand flies. Collected sand flies were pooled with up to 30 specimens per pool according to date and tested by nested Polymerase Chain Reaction (PCR) DNA sequencing from positive pools was used to identify Leishmania spp. A total of 4915 sand flies (2422 females and 2493 males) were collected from Saddaguia in September and in October 2014. Morphological identification confirmed sand flies of the subgenus Larroussius to be predominant. PCR analysis followed by DNA sequencing indicated that 15 pools were infected with L. infantum yielding an overall infection rate of 0.6%. The majority of the infected pools were of sand fly species belonging to subgenus Larroussius. Intense irrigation applied to the arid bio-geographical areas in Central Tunisia is at the origin of the development of an environment capable of sustaining important populations of sand flies of the subgenus Larroussius. This has led to the establishment of stable transmission cycles of L. infantum and subsequently to the emergence of ZVL

    Plasmodium falciparum gametocyte carriage in asymptomatic children in western Kenya

    Get PDF
    BACKGROUND: Studies on Plasmodium falciparum gametocyte development and dynamics have almost exclusively focused on patients treated with antimalarial drugs, while the majority of parasite carriers in endemic areas are asymptomatic. This study identified factors that influence gametocytaemia in asymptomatic children in the absence and presence of pyrimethamine-sulphadoxine (SP) antimalarial treatment. METHODS: A cohort of 526 children (6 months – 16 years) from western Kenya was screened for asexual parasites and gametocytes and followed weekly up to four weeks. Children with an estimated parasitaemia of ≥1,000 parasites/μl were treated with SP according to national guidelines. Factors associated with gametocyte development and persistence were determined in untreated and SP-treated children with P. falciparum mono-infection. RESULTS: Gametocyte prevalence at enrolment was 33.8% in children below five years of age and decreased with age. In the absence of treatment 18.6% of the children developed gametocytaemia during follow-up; in SP-treated children this proportion was 29.8%. Age, high asexual parasite density and gametocyte presence at enrolment were predictive factors for gametocytaemia. The estimated mean duration of gametocytaemia for children below five, children from five to nine and children ten years and above was 9.4, 7.8 and 4.1 days, respectively. CONCLUSION: This study shows that a large proportion of asymptomatic untreated children develop gametocytaemia. Gametocytaemia was particularly common in children below five years who harbor gametocytes for a longer period of time. The age-dependent duration of gametocytaemia has not been previously shown and could increase the importance of this age group for the infectious reservoir
    corecore