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ABSTRACT

In this study, we assessed temporal patterns and long-term trends in nitrate (NO3
-), two 

forms of  aluminum (inorganic, Ali, and organic, Alo), and dissolved organic carbon (DOC) 
concentrations in the water of  29 Adirondack Mountain, New York lakes, and the potential 
effects of  ambient weather conditions (i.e., climatic variation) on these patterns and trends. 
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Long-term trends of  decreasing lakewater NO3
- and Ali concentrations and increasing DOC 

were observed for all seasons and lakes. A model selection exercise identified a suite of  climatic 
variables that were most consistently associated with interannual variability and long-term 
patterns in lake chemistry, in addition to deposition of  N (which influences lake NO3

-) and S 
(which more strongly influences lake Ali and DOC). These included the last date of  recorded 
snowpack, maximum depth of  late season snowpack, date of  maximum snow depth, and seasonal 
average maximum air temperature. Although the presence of  long-term trends is clear, there was 
also much variation within and among lakes and across seasons. Multiple regression modeling 
that included deposition and climate metrics failed to explain the majority of  the observed 
variation in lake NO3

- for many of  the study lakes, while DOC and Ali models were slightly more 
predictive. We conclude that climatic variation likely shapes temporal patterns and trends in lake 
chemistry in the Adirondacks, but further analysis is needed to tease apart causal factors and their 
interactions. Regardless, assessments of  surface water chemical recovery from prior acidification 
in the Adirondack Mountains and elsewhere should consider aspects of  climate. 

INTRODUCTION

Lakes and streams in the Adirondack Mountains, New York are highly sensitive to, and affected 
by, water acidification caused by atmospheric deposition of  acidifying sulfur (S) and nitrogen 
(N) compounds (Driscoll et al. 2001, Driscoll et al. 2003a, Lawrence et al. 2008, Lawrence et al. 
2011). Atmospheric S and N deposition (collectively acidic deposition) in the Adirondack region 
increased throughout much of  the twentieth century, reaching peak values during the 1970s to 
1990s (Sullivan 2015). Since that time, acidic deposition has declined substantially. 

Decreasing atmospheric deposition of  S and N over the past two to three decades in the 
Adirondack Mountains, in response to rules and legislation pertaining to emissions controls, has 
contributed to partial chemical recovery of  previously acidified lakes. In some cases, biological 
recovery of  Adirondack lakes also has been documented (Sutherland et al. 2015). However, 
some lakes still are acidified, especially during periods of  high precipitation and snowmelt 
(Civerolo et al. 2011, Lawrence et al. 2013). Coincident with chemical recovery, as reflected 
in increases in measured acid neutralizing capacity (ANC) and pH, dissolved organic carbon 
(DOC) also has increased. This has been attributed to increased solubility of  DOC with higher 
pH and perhaps to changes in carbon (C) dynamics associated with warming climate (Fenner 
and Freeman 2011, Lawrence et al. 2013). 

In addition to the well-established effects of  atmospheric S and N deposition on lakewater acid-
base chemistry, aspects of  climate also affect the chemistry of  lakes and streams (Eimers et al. 
2004, Evans 2005). However, relatively little work has been done to evaluate the ways in which 
climatic controls on lakewater chemistry interact with lakewater recovery from acidification. 
Effects of  climate on water quality are important areas of  research, given the likelihood and 
magnitude of  expected future regional and global climate change (Intergovernmental Panel on 
Climate Change [IPCC] 2007, Kernan et al. 2010). 

Increased variability is projected to be an important part of  climate change. This enhanced 
climatic variability may increase storm intensity and alter runoff patterns (Karl et al. 2009), 
both of  which will affect the leaching of  NO3

-, DOC, and Al (Baron et al. 2013). Intra- and 
inter-annual variation in climate-related variables and long-term changes in climate can have 
substantial effects on the acid-base and nutrient dynamics of  soils and surface waters. Soil and 
air temperature, precipitation amounts and patterns, and snowpack development and melting 
all influence key biogeochemical processes and cycles (Sullivan 2015). Acid- and nutrient-
sensitive terrestrial and aquatic receptors are expected to respond to climatic factors. These 
responses can complicate interpretation of  acidification or chemical recovery in response 
to changing levels of  acidic atmospheric deposition, but are seldom explicitly considered in 
assessments of  acidification/recovery of  surface waters or soils. 

Climate warming and associated change in evapotranspiration and moisture availability 
affect a host of  biogeochemical processes and cycles. These include weathering, 
mineralization, and nitrification (Dalias et al. 2002, Campbell et al. 2009, Wu and Driscoll 
2010). Air temperature has a large influence on snowpack development, snowmelt hydrology, 
and soil freeze-thaw cycles. The snowpack influences winter soil temperature and availability 
of  water for runoff throughout the early portion of  the growing season. Burns et al. (2007) 
and Hodgkins and Dudley (2006) documented earlier snowmelt in the northeastern United 
States in recent years. There apparently also has been an increase in winter rain (Hodgkins 
et al. 2003, Huntington 2003) and an increase in large rainstorms (Murdoch et al. 2000). 
Climate model predictions suggest, on average, the likelihood of  a future reduction in 
snowfall, a smaller snowpack, and a lesser role for snowmelt in the hydrologic cycle of  
north temperate regions such as are found in northern New York (Burns et al. 2007, 
Intergovernmental Panel on Climate Change (IPCC) 2007). Diminished snowpack and 
earlier snowmelt would be expected to decrease stream flow and increase surface water 
temperature during summer, with potential impacts on cold-water fish (Mohseni et al. 
2003). Reductions in snowpack also can enhance soil freezing (Tierney et al. 2001, Brown 
and DeGaetano 2011, Burns et al. 2011, Campbell et al. 2014), and fine root damage, 
with consequent increase in NO3

- leaching (Fitzhugh et al. 2003). Other mechanisms, in 
addition to decreased snowpack, can further decrease stream flow. For example, increased 
evapotranspiration associated with a warming climate decreased annual runoff by an 
estimated 11% to 13% in a mountainous basin in New England (Huntington 2003). 

Projected effects of  ongoing and future climate change include increased magnitude and 
frequency of  extreme weather-related events, such as drought and flood, with likely more 
substantial effects of  extreme events on future ecosystem biogeochemistry as compared with 
anticipated changes in average conditions (Dale et al. 2001, Jentsch et al. 2007). Acid-sensitive 
surface waters in New York may experience more pronounced episodes of  acidification driven 
by large rain events, including those preceded by drought. 
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Throughout most of  the year, the main cause of  acidification of  most acid-sensitive Adirondack 
Mountain streams and lakes is S (Sullivan et al. 1997). At the peak of  spring snowmelt, however, 
the NO3

- concentration can be nearly as high or just as high as the sulfate (SO4
2-) concentration 

(Sullivan et al. 1997). The seasonal shift in the relative importance of  S and N as drivers of  
surface water acidity is likely related to the seasonal dynamics of  plant and microbial growth  
and hydrological cycles associated with snowpack accumulation and melting. 

Change over time in the amount of  organic acidity also complicates evaluation of  surface water 
recovery from acidification. Concentrations of  DOC generally have increased over the past 10 to 
15 years (Driscoll et al. 2003b, Evans et al. 2006, Monteith et al. 2007). This is likely a response 
to both decreased acidic deposition and changing climate (Hudson et al. 2003, Evans et al. 2006, 
Monteith et al. 2007, Worall and Burt 2007, Clair et al. 2008, Burns et al. 2011, Clair et al. 
2011). These changes in DOC are important because DOC plays important roles in a variety 
of  ecosystem processes, including episodic acidification, Al toxicity, mercury (Hg) methylation 
and transport, light penetration into the water column, water temperature, and lakewater 
stratification (Snucins and Gunn 2000). In addition, increased DOC and associated strong 
organic acid anions limit the ANC recovery of  acidified surface waters (Lawrence et al. 2007).

Lakewater monitoring data collected within the Adirondack Long Term Monitoring (ALTM) 
(Civerolo et al. 2011) program provide an opportunity to investigate lakewater acidification, 
recovery, and their interactions with climate. The goal of  this study was to use these monitoring 
data to investigate linkages among climate-related variables and the chemical recovery of  
acidified Adirondack lakes. The focus was on changes in the concentrations of  NO3

-, DOC, and 
Al, especially during the spring season. These parameters are known to be climate-sensitive and 
collectively exert substantial control on the toxicity of  runoff chemistry to fish and other aquatic 
life (Lawrence et al. 2013, Fuss et al. 2015, Durán et al. 2016). We analyzed the chemistry 
reflected in long term monitoring data collected in the ALTM program over a 20-year period. 
Analyses were considered in the context of  trends, and associated residuals, in water chemistry  
in response to changes in N and S deposition, with an effort to isolate climatic effects from those 
caused by changes in acidic deposition.

METHODS 

Lake Selection

During the two-decade study period (1993 to 2012), the ALTM monitored the chemistry of  
52 Adirondack lakes. Water samples were collected approximately monthly and analyzed for 
major ion chemistry (Civerolo et al. 2011). A subset of  the monitored lakes was selected for 
inclusion in the study reported here. In an attempt to develop a set of  relatively homogenous 
sites, lakes were removed from consideration for this study from the full set of  52 ALTM lakes 
if  they exhibited any of  the following characteristics:

• Seepage hydrologic type
• Thick till watershed
• Influenced by carbonate geology
• History of  liming
• Significant amount of  shoreline development
• Watershed area greater than 100 km2

• Watershed contains another nested study lake

Analyses presented here primarily relied on data from 29 ALTM lakes that remained after 
screening using the above criteria (Figure 1). This allowed focus on a subset of  the more acid-
sensitive, thin-tilled drainage lakes in the study region that had not been strongly affected by 
human disturbance within the respective watersheds (cf., Driscoll et al. 1991). Lake names 
and locations are given in the Appendix, A1. 

Figure 1. Lake locations.  
Geographical coordinates  
are given in Table A1-1.  
Base Layer Credits:  
Environmental Systems  
Research Institute,  
U.S. Geological Survey,  
and National Oceanographic  
and Atmospheric Administration. 
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Lakewater Chemistry

Lakewater chemistry results for Al (Ali and organic monomeric Al [Alo]), DOC, and  
dissolved NO3

- were obtained from the Adirondack Lakes Survey Corporation’s (ALSC) 
ALTM database. Available monthly samples from December 1992 through December 2012 
were used for analyses that are reported here. 

Climate Data

Monthly estimates of  precipitation and air temperature for the period December 1992 
through December 2012 were obtained from the PRISM database (Daly et al. 2008) to 
represent climatic conditions during this 20-year period. Total monthly precipitation (ppt), 
minimum daily temperature (tmin), maximum daily temperature (tmax), and mean daily 
temperature (tmean; (tmin + tmax)/2) were attributed to each study lake as an average of  all 
30 arc-second (~800 m) grid cells contained within the associated watershed. 

Data collected by the Northeast Regional Climate Center (NRCC) were used to characterize 
annual winter snowpack development and the timing of  snowmelt. Two NRCC sites located 
within the Adirondack Park boundary were used to assign an NRCC site to each study 
watershed based on a nearest neighbor approach. Snow-related metrics derived from the 
NRCC data included maximum late season snowpack, day of  year of  maximum late season 
snowpack, day of  year of  last recorded snowpack, and number of  days between maximum 
late season snowpack and last date of  recorded snowpack.

N and S Deposition

Seasonal precipitation-weighted mean inorganic N and sulfate (SO4
2-) precipitation 

concentration data for the years 1993 to 2012 were obtained from National Atmospheric 
Deposition Program/National Trends Network (NADP/NTN) measurements at Huntington 
Forest in the Adirondack Mountains (Site NY20). Measured data summarized by season 
at Huntington Forest were required to have valid samples for at least 60% of  the summary 
period for inclusion in this analysis. An average of  the two most recent seasons of  data was 
used to interpolate for one season (the winter of  1994) because of  low data completeness. 
Seasonal S and N wet deposition estimates were determined by multiplying the seasonal 
precipitation-weighted mean inorganic N (both oxidized and reduced forms) and SO4

2- 
concentrations by seasonal PRISM precipitation totals calculated as the watershed average  
for each lake. Dry deposition is less certain and was not considered. Estimates by Schwede 
and Lear (2014) suggest that the ratios of  dry to total N and S deposition may have decreased 
in recent years. 

Data Analysis

Average seasonal NO3
-, Ali, and DOC concentrations in lakewater and the ratio between Ali 

and Alo provided the basis for analysis of  long-term trends and inter-annual variation in water 
chemistry shown here. Seasons were defined as, winter: December-February, spring: March-
May, summer: June-August, fall: September-November. For each study lake, trends in seasonal 
lakewater chemistry over the period 1993 to 2012 were determined using the Mann-Kendall 
test and Theil-Sen’s slope estimator. Theil-Sen slopes were considered to be significant at p < 0.1.

Table 1. Variables available for building regression models used to predict seasonal Adirondack lake chemistry.

  PREDICTOR

Atmospheric N Deposition

Atmospheric S Depositiona

Precipitation N Concentration

Precipitation SO4
2- Concentrationb

Precipitation Amount

Average Maximum Temperature

Last Date of Recorded Snowpack

Max Depth of Late Season Snowpack

Day of Maximum Snow Depth

Days from Maximum Snow to Last Date of Recorded Snowpack

a. Atmospheric S deposition not used for NO3
- predictions 

b. Precipitation SO4
2- concentration not used for NO3

- predictions

Two sets of  multiple regression models were developed to predict seasonal NO3
-, Ali, Ali:Alo, 

and DOC concentrations and their residual values for each lake. The two sets of  predictor 
variables used in this analysis were: 1) seasonal N and/or seasonal S deposition (predictor 
set 1); and 2) seasonal climate-related variables (including timing of  snowpack development, 
average seasonal maximum temperature and total seasonal precipitation) and seasonal N and 
S concentrations in precipitation (predictor set 2; Table 1). Models were derived from stepwise 
linear regression to converge on a “best” model based on lowest Akaike Information Criterion 
(step AIC) (Venables and Ripley 2002). This resulted in a total of  928 models derived from 4 
response variables, 2 sets of  predictors, 4 seasons, and 29 study lakes. This matrix provided 
the basis for developing an improved understanding of  how aspects of  climatic variability 
may influence Adirondack lake chemistry along with the well-known effects associated with 
changing levels of  atmospheric N and S deposition. Although many models were generated, 
only two models (based on predictor sets 1 and 2 described above) were established and 
compared for a given response variable, season, and study lake. These models were compared 
to determine the extent to which climate-related variables (included in predictor set 2) were 
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able to further explain the variation in lake chemistry response over the 20-year monitoring 
period, beyond what was possible using deposition variables alone (predictor set 1). The r2 
statistic was used for the comparison instead of  AIC because 1) the requirement of  AIC 
improvement was inherent to the step AIC process used for model selection, and 2) values of  
r2 can be useful for describing the magnitude of  variance explained. Building individual lake 
models allowed us to evaluate the consistency with which a given climate variable was (or was 
not) selected during the stepwise process. This provided an indication of  the transferability of  
results to other lakes with similar characteristics to those included in this study.

Individual lake and watershed characteristics were extracted from the ALTM lake 
characteristics database (Nathan Houck, ALSC, personal communication, June 2014) and 
were used where possible to explain lake-to-lake differences in model fit. These attributes 
included lake elevation, maximum lake depth, mean lake depth, lake volume, lake surface 
area (SA), watershed area (WA), SA:WA ratio, and lake retention time. Such variables might 
correlate with watershed sensitivity to acidification (Sullivan 2015). 

Trends in lake chemistry were evaluated for the full set of  study lakes and for two subsets of  
lakes that were grouped according to reference period (average of  the period 1993 to 1995) 
lakewater chemistry. These subsets were labeled “low” or “high” based on having values 
below or above the median seasonal reference period chemistry given in Table 2. For each 
of  the 29 study lakes, trends in water chemistry between 1993 and 2012 were detrended as 
described in the Appendix, A2. These analyses reflected inter-annual differences in water 
chemistry that might be attributable to climate variation. 

Table 2. Thresholds for designation of  high/low lakewater median chemistry values (µmol/L) based on the median 
seasonal average over the period 1993-1995.

  SEASON	 NO3
-	 DOC	 ALi	 ALo

Winter		 18	 357	 4.5	 2.6

Spring		 28	 304	 4.9	 2.7

Summer	 8	 319	 1.5	 1.7

Fall		  5	 351	 1.3	 1.8

 
RESULTS AND DISCUSSION

Long-Term Lake Chemistry Trends

The 10 most acid-sensitive lakes in the study, as reflected in measured ANC, showed strong 
patterns of  decreasing NO3

- and Ali concentrations and increasing DOC concentrations over 
time during all seasons (Figure 2). Comparable analyses for the 10 lakes having highest ANC 
showed smaller changes and generally lower concentrations (data not shown). 

Figure 2. Lakewater monitoring mean annual results for a) NO3
-, b) DOC, and c) Ali concentrations over time,  

by season, for the 10 study lakes having lowest ANC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Most study lakes showed changes over time in the concentrations of  NO3
-, DOC, and Ali  

and in the ratio of  Ali to Alo. Many of  these trends were statistically significant, as 
summarized in Table 3. In general, NO3

- and Ali concentrations decreased, DOC increased, 
and the ratio of  Ali:Alo decreased during the study period. Increases in DOC and Alo and 
decreases in Ali and NO3

- concentrations have been shown for many Adirondack lakes in 
previous studies (Driscoll et al. 2003b, Lawrence et al. 2013).
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Table 3. Number of  lakes (n=29) that showed a significant or non-significant seasonal increase/decrease in  
NO3

-, DOC, Ali, or Ali:Alo during the period 1993 to 2012 according to Theil-Sen slope. One lake showed no trend  
in Ali:Alo during the winter season. It is not represented in this summary of  trends.

 		   SIGNIFICANCE		              SEASON

 PARAMETER	 TREND	 (P < 0.05)	 WINTER	 SPRING	 SUMMER	 FALL

NO3
-	 Increase	 Significant	 0	 0	 0	 0

		  Non-significant	 1	 1	 2	 4

	 Decrease	 Significant	 13	 15	 13	 11

		  Non-significant	 15	 13	 14	 14

DOC	 Increase	 Significant	 10	 8	 11	 18

		  Non-significant	 12	 14	 14	 7

	 Decrease	 Significant	 2	 1	 0	 2

		  Non-significant	 5	 6	 4	 2

Ali	 Increase	 Significant	 0	 0	 0	 0

		  Non-significant1	 1	 0	 0	 1

	 Decrease	 Significant	 19	 26	 21	 21

		  Non-significant	 9	 3	 8	 7

Ali:Alo	 Increase	 Significant	 0	 0	 0	 0

		  Non-significant	 1	 0	 0	 1

	 Decrease	 Significant	 19	 23	 19	 22

		  Non-significant	 8	 6	 10	 6

 
Median seasonal lake NO3

- concentrations during the reference period (1993-1995) were 
highest during spring (28 µmol/L) and winter (18 µmol/L) and lowest (8 and 5 µmol/L) 
during summer and fall, respectively (Table 2). Seasonal lake NO3

- concentrations during 
the period 1993 to 2012 showed decreasing trends for nearly all lakes (Figure 3a). Negative 
trends in NO3

- concentration were largest during spring and smallest during fall. The median 
lake NO3

- concentration during spring decreased by one-third during the study period. The 
NO3

- concentrations decreased more rapidly for lakes that had relatively high reference 
period NO3

- concentration as compared with lakes having relatively low reference period 
NO3

- concentration. Low NO3
- values during fall might be attributable, at least in part, to 

heterotrophic N uptake in response to litterfall (Goodale et al. 2009). 
 
Seasonal lake DOC concentrations changed from the reference period to 2012, showing 
increasing trends for most study lakes (Figure 3b). There were only slight differences in the rate 
of  increase over time among lakes that had relatively high reference period DOC concentration 
as compared with lakes that had relatively low reference period DOC concentration.

Nearly all trends in seasonal lake Ali concentration showed decreases from the reference 
period during the study (Figure 3c). Decreasing trends were larger for lakes that had relatively 
high reference period Ali concentration as compared with lakes having relatively low 
reference period Ali concentration.

Figure 3. Seasonal trends (Theil-Sen slope) in the lakewater concentrations of  a) NO3
-, b) DOC, c) Ali, and d)  

the Ali to Alo ratio over the period of  study. Results for lakes with “low” reference period concentration are coded blue;  
results for “high” reference period concentration are coded red. Positive values indicate increasing trends; negative values 
indicate decreasing trends. Values of  the Theil-Sen slope reflect the magnitudes of  the trends over time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nearly all trends in the seasonal Ali:Alo concentration ratios showed decreases from the 
reference period (Figure 3d). Thus, Ali concentration decreased over time in these lakes to 
constitute a lesser percentage of  the total monomeric Al. Decreasing trends were larger for 
lakes with relatively high initial Ali:Alo as compared with lakes having relatively low initial 
Ali:Alo. These patterns reflect a marked decrease over time in the likely toxicity of  Al to 
aquatic biota in these lakes.

PREDICTING SEASONAL LAKE NO3
- CONCENTRATION

Models poorly predicted NO3
- concentration based on N deposition (predictor set 1), 

although explanatory power was slightly higher for the spring season. Nitrogen deposition in 
all cases was positively related to lake NO3

- concentration across the period of  study. Models 
that included climate-related variables predictor set 2) had marginally higher explanatory 
power, but these models typically left about half  of  the seasonal variance in lake NO3

- 
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unexplained (Figure 4). The concentration of  N in precipitation was selected in 17 of  29 
lake models to predict both spring and summer lake NO3

- concentration, whereas fall and 
winter NO3

- concentrations more often were related to seasonal precipitation amount (Table 
4). The climate variables were of  varying importance. Average maximum air temperature 
was included in nearly three-quarters (21 of  29) of  the models to predict spring NO3

- 
concentration, but the timing of  late season peak snowpack generally was not a significant 
predictor of  NO3

- concentration, with the exception of  the summer season (Table 4). The 
number of  days from late season peak snowpack to last date of  recorded snowpack almost 
never was selected as an important predictor of  NO3

- concentration. This finding is perhaps 
not surprising; analysis of  long-term monitoring data from southern Norway that suggested 
that reduced snowpack, and its effects on soil temperature, can either increase or decrease 
N leaching, depending on interactions with N deposition, soil freezing, and winter discharge 
(Stuanes et al. 2008). Although Groffman et al. (2011) showed that snowpack removal and 
associated soil freezing events during winter can stimulate N leaching, our results suggest 
that a transition to lower late winter snowpack and warmer spring air temperatures may 
contribute to lower lakewater NO3

- and Ali concentrations, perhaps due to a reduction in the 
magnitude of  episodic events and increased biological uptake.

Figure 4. Relationship between coefficient of  determination (r2) derived from predictor set 1 and from predictor set  
2 for estimating spring season a) NO3

-, b) DOC, c) Ali, and d) the ratio of  Ali to Alo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Number of  individual lake models based on predictor set 2 that included climate-related variables or  
precipitation N concentration for predicting seasonal lake NO3

- concentration over the period 1993 to 2012.

  SEASON	 LAST DATE 	 MAXIMUM	 DAY OF	 DAYS FROM	 SEASONAL	 SEASONAL	 SEASONAL	 NONE OF
	 OF	 DEPTH OF 	 MAXIMUM	 MAXIMUM	 PRECIP N	 PRECIP	 AVERAGE	 THE
	 RECORDED 	 LATE	 SNOW	 SNOW TO 	 CONCEN-	 AMOUNT	 MAXIMUM	 VARIABLES
	 SNOWPACK	 SEASON	 DEPTH	 LAST DATE	 TRATION		  AIR	 WERE
		  SNOWPACK		  OF RECORDED			   TEMP	 SELECTED
				    SNOWPACK

Fall	 10	 5	 2	 -	 9	 20	 16	 2

Spring	 8	 6	 6	 2	 17	 6	 21	 1

Summer	 16	 15	 10	 -	 17	 9	 10	 4

Winter	 6	 6	 6	 -	 9	 21	 7	 4

 
Potential effects of  time lags on the deposition terms were investigated for predicting lake 
NO3

- concentration. These generally did not improve model fits (Appendix, A3). Fuss et al. 
(2015) found similarity between whole-year trends (1982-2011) in stream ANC and year-to-
year trends during the snowmelt season at Hubbard Brook Experimental Forest (HBEF) in 
New Hampshire, demonstrating consistency between recovery from chronic acidification 
during base flow and abatement of  acidification during snowmelt. Nevertheless, NO3

- 
concentrations declined more rapidly across the study period during the snowmelt season 
compared with the whole-year trend in NO3

- concentration. Fuss et al. (2015) attributed this 
observation to the observed decrease in NO3

- deposition during the monitoring period. 

SIGNS OF CLIMATE VARIABLES SELECTED FOR THE FULL  
NO3

- MODEL (PREDICTOR SET 2)

Despite the limited improvement in predictive ability, the signs of  the coefficients in NO3
- 

models for individual lakes suggested potential effects of  weather and climatic variability in 
regulating lake NO3

- concentrations. Nearly all non-winter models (32 of  34) that selected 
last date of  recorded snowpack showed a positive relationship between last date of  recorded 
snowpack and lake NO3

- concentration. This suggests that longer snow seasons may have 
resulted in higher lake NO3

- concentrations during the subsequent spring, summer, and 
fall seasons. Relatively low-elevation study plots at HBEF that showed less snow, more soil 
freezing during winter, and more freeze/thaw cycles had lower N mineralization than plots 
located at higher elevation (Durán et al. 2016). This finding is consistent with analyses 
showing long-term decreases in N mineralization and inorganic N concentrations in stream 
water in concert with warming temperature and decreased annual snow accumulation 
(Bernal et al. 2012, Yanai et al. 2013, Durán et al. 2016). 

A longer snow season, and associated shorter growing season, should promote less N uptake 
by vegetation, with proportionately more NO3

- available for leaching. In contrast, parameter 
coefficients between maximum late season depth of  snowpack and lake NO3

- concentrations 
were typically negative (24 of  32). The timing of  snowmelt may be more important than 
the depth of  the snowpack as an influence on seasonal lake NO3

- concentration. Seasonal 
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precipitation amount generally showed a positive relationship with lake NO3
- concentration for 

the same season, perhaps reflecting increased NO3
- flushing through shallow soils. Warmer air 

temperature generally was negatively related to lake NO3
- concentration for all seasons. This may 

reflect increased biological uptake within the lakes or tributary watersheds during warmer years. 

PREDICTING SEASONAL LAKE DOC CONCENTRATION

Inclusion of  climate-related variables increased r2 in about two-thirds (20 of  29) of  the individual 
lake models for each season, often explaining an additional 20% to 30% of  the variation in 
seasonal DOC concentration (Figure 4; Appendix, A4). For the model that included both 
precipitation concentration of  N and SO4

2- and climate-related variables (predictor set 2), 
precipitation, average maximum air temperature, and last date of  recorded snowpack were the 
most frequently selected climate-related variables to predict DOC. Temperature was related 
positively to DOC concentration for fall and spring season models, but generally (8 of  10 models) 
was related negatively for the summer season. Last date of  recorded snowpack generally (7 of  10 
models) was related positively to spring DOC concentration, but negatively related during the 
other seasons.

Porcal et al. (2009) reviewed the biogeochemistry of  DOC and its interactions with climate 
change. They concluded that increasing temperature and changes in runoff are likely to cause 
changes in the quality and quantity of  DOC export from terrestrial ecosystems to surface waters 
above and beyond any changes that might be attributable to acidification processes. Increased 
water temperature will also cause changes in DOC processing in lakewater. Change in lakewater 
DOC concentration has been shown to impact recovery from acidification. For example, 
Erlandsson et al. (2010) examined the effects of  increasing lake DOC on acidification recovery 
for 66 lakes in southern Sweden. Study lakes generally were small, had low ANC and previously 
had been acidified by acidic atmospheric deposition. About 75% of  the study lakes showed 
increased DOC between 1990 and 2008. The increase in DOC retarded pH recovery by 0.13 
pH units (median for all lakes) and by more than a full pH unit for individual lakes.

PREDICTING SEASONAL LAKE AL I CONCENTRATION

Model fits for predicting lake Ali concentration based on predictor set 1 showed that deposition 
of  S was selected as an explanatory predictor in more than 75% of  the individual lake models for 
each season and was always positively correlated with Ali. Deposition of  N was selected less often. 
However, N deposition was a significant predictor in nearly three-quarters of  spring models and 
was always negatively related to Ali for this season. Precipitation amount was a significant predictor 
for about one-third to one-half  of  the winter, summer, and fall models developed to predict lake  
Ali concentration and was always positively related to lake Ali concentration for these seasons.

Inclusion of  climate-related variables in addition to N and S concentration in precipitation 
increased r2 in the majority of  individual lake models for each season, often explaining an 

additional 10 – 25% of  the variation in seasonal Ali concentration and in the ratio of  Ali  
to Alo (Figure 4; Appendix, A4). For the full model (predictor set 2), precipitation and  
average maximum air temperature were the most frequently selected climate-related variables. 
For spring and summer seasons, temperature was negatively related to Ali concentration for all 
lake models in which it was selected. For fall and winter, temperature was negatively related to Ali 
concentration for almost all lake models in which it was selected (fall: 14 of  16; winter: 12 of  13).

Snow-related variables were selected for about one-third of  the study lakes to predict Ali 
concentration for most seasons. Relationships between snow-related variables and Ali 
concentration were mixed (some positive and some negative). One exception was that maximum 
late season snow depth was positively correlated with spring Ali concentration in all nine of  the 
models in which it was selected.

CONCLUSIONS

Acid-sensitive Adirondack study lakes have experienced trends of  decreasing concentrations 
of  NO3

- and Ali, and increasing concentrations of  DOC across all seasons, over the past two 
decades. Although such trends and patterns are thought to be consistent with decreasing 
emissions and deposition of  S and N, a considerable amount of  year-to-year variation in lake 
chemistry cannot be explained by deposition patterns alone. At least some of  this variance is 
likely attributable to interannual variability in weather conditions, including seasonal temperature 
fluctuations and the timing and amounts of  rainfall, snowpack, and snowmelt. However, the 
scale at which we typically measure these basic climatic drivers of  watershed processes is much 
coarser, both spatially and temporally, than the local meteorological conditions that occur in 
each watershed-lake system. For this reason, and because these factors may interact in complex 
and path-dependent ways – such as the interplay between spring heat accumulation, rainfall 
events, and snowpack conditions in determining the timing of  snowmelt – their roles as drivers 
of  watershed processes may not be readily captured by statistical models. Instead, simulation 
models that focus on the temperature and moisture sensitivity of  these processes, both in the 
watershed and in surface waters, and that can incorporate stochastic and/or non-linear dynamics 
may be better suited to this purpose and may provide better mechanistic understanding as 
well as prediction of  future trends/patterns of  surface water chemistry under conditions of  a 
changing climate. Our analyses suggest a suite of  specific climatic variables to consider, and raise 
the question of  whether increasing variance in weather conditions, as has been widely observed 
across northeastern North America, could drive increasing seasonal and interannual variance in 
watershed processes affecting NO3

-, Ali, and DOC export, in conjunction with deposition trends. 
Overall, climate may play an important role in recovery of  Adirondack lakewater from past 
acidification, and such climatic influence on chemical recovery may become more pronounced 
in the future, as the Adirondack climate changes further and likely becomes warmer, wetter, and 
more variable. Further study is needed to understand and predict how such climatic changes will 
interact with deposition and other factors shaping watershed processes and lake water chemistry. 
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 APPENDIX

A1. Study Lakes

Table A1-1. Geographical coordinates used for study lake watershed delineation.

A2. De-trending for Analysis of Inter-Annual Variation

For some analyses reported here, lake chemistry data were de-trended in an attempt to 
remove apparent long-term responses to decreases in N and S deposition, thereby allowing 
for analysis of  inter-annual differences in lake chemistry that are potentially associated with 
variables related to climate. For each study lake, trends in seasonal lakewater chemistry over 
the period 1993 to 2012 were determined using the Mann-Kendall test and Theil-Sen’s 
slope estimator. Theil-Sen slopes were considered to be significant at p < 0.1. Individual 
lake chemistry time-series data showing significant slopes were de-trended using linear least 
squares regression. For lakes that did not show a significant negative trend in key water 
chemistry variables, the mean of  the data was subtracted from each data point to develop 
analogous residual datasets reflecting deviation from the central tendency of  the data.

Predictions of  residual lake NO3
- concentrations using wet N deposition only were very poor for  

all seasons except spring (Figure A2-1a). Inclusion of  climate variables yielded a substantial 
improvement in residual predictions (Figure A2-1b). Inclusion of  climate variables also resulted  
in improved predictions of  residual DOC (Figure A2-2) and Ali (Figure A2-3). 

Figure A2-1. Distribution across study lakes of  the r2 value for predicting residual lake NO3
- concentration, using a) wet  

N and S deposition and b) concentration of  inorganic N in precipitation, plus precipitation amount, plus climate variables. 
 
 
 
 
 
 
 
 
 
 
 

Figure A2-2. Distribution across study lakes of  the r2 value for predicting lake DOC residual, using a) wet N and S 
deposition and b) concentration of  inorganic N and S in precipitation, plus precipitation amount, plus climate variables. 
 
 
 
 
 
 
 
 
 

 				              AVERAGE CONCENTRATIONS (YEAR 2012)
 ALSC ID	 NAME	 LONGITUDE	 LATITUDE	 ANC (µEQ/L)	 AL i(µG/L)	 DOC (MG/L)

050684	 Arbutus Lake	 -74.235372	 43.982392	 85.08	 0.96	 5

050707	 Avalanche Lake	 -73.969179	 44.130568	 19.96	 95	 7.55

040874	 Brooktrout Lake 	 -74.662437	 43.599765	 10.26	 15.15	 2.71

040748 	 Bubb Lake Stream	 -74.846234	 43.774862	 63.36	 4.06	 3.3

040777	 Constable Pond Stream	 -74.806816	 43.830486	 19.32	 52.28	 6.33

070859	 G Lake	 -74.636452	 43.418756	 23.3	 22.44	 2.69

040706	 Grass Pond	 -75.065535	 43.690196	 45.76	 26.68	 3.9

020264	 Heart Lake	 -73.966994	 44.180522	 62.01	 1.42	 2.44

040852	 Indian Lake	 -74.761374	 43.623443	 9.35	 41.14	 5.92

050259	 Jockeybush Pond	 -74.585328	 43.301965	 19.22	 15.11	 2.57

040826	 Limekiln Lake	 -74.812473	 43.712844	 51.81	 4.15	 3.53

020058	 Little Hope Pond	 -74.126223	 44.515876	 73.47	 8.67	 9.42

050649	 Long Pond	 -74.478263	 43.838068	 1.07	 58.02	 13.45

040186	 Loon Hollow Pond	 -75.044739	 43.961068	 -6.14	 119.76	 4.44

040887	 Lost Pond	 -74.559294	 43.645916	 26.15	 54.23	 7.51

020265	 Marcy Dam Pond	 -73.951633	 44.159125	 28.58	 31.71	 3.72

040707	 Middle Branch Lake	 -75.101434	 43.697903	 70.72	 7.6	 4.49

040704	 Middle Settlement Lake	 -75.099838	 43.683321	 24.18	 10.46	 3.43

040746	 Moss Lake	 -74.853141	 43.780948	 98.46	 6.85	 3.8

050577	 Nate Pond	 -74.093870	 43.858929	 82.71	 3.44	 5.29

070728	 Otter Lake	 -74.504126	 43.184549	 25.35	 16.25	 2.97

060329	 Queer Lake	 -74.806921	 43.813130	 26.27	 8.21	 3.49

060315A	 Raquette Lake Reservoir	 -74.651020	 43.795080	 50.15	 37.51	 8.62

060313	 Sagamore Lake	 -74.628583	 43.765465	 57.98	 22.5	 7.72

040754	 Squash Pond	 -74.888931	 43.824532	 -13.29	 116.38	 7.81

040850	 Squaw Lake	 -74.738567	 43.636251	 34.8	 1.92	 3.24	

040753	 West Pond Stream	 -74.882819	 43.812237	 7.31	 41.45	 9.02

050215	 Willis Lake	 -74.246423	 43.371388	 97.36	 2.52	 8.5

040210	 Willys Lake	 -74.956716	 43.971981	 1.62	 45.96	 2.89
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Figure A2-3. Distribution across study lakes of  the r2 value for predicting lake Ali residual, using a) wet  
N and S deposition and b) concentration of  inorganic N and S in precipitation, plus precipitation amount,  
plus climate variables. 
 
 
 
 
 
 
 
 
 
 
 

Inter-annual variation in lake chemistry was represented by residual lake concentrations 
of  NO3

-, DOC, and Ali after de-trending to remove the presumed influence of  long-term 
acidification recovery. Predictor variables representing long-term changes in N deposition 
were included in the final models less frequently for predicting residual lake NO3

- 
concentration than for predicting measured lake NO3

- concentration. This indicates that the 
inter-annual variation in lake NO3

- concentration may be more closely associated with climate 
variables than with changes in N deposition or precipitation N concentration.

During spring, summer, and fall, models for predicting residual NO3
- performed best for:

• smaller lakes (spring)
• smaller watershed area (spring)
• higher elevation (winter, summer)
• shorter retention time (fall)

These tend to be the more acid-sensitive watersheds (Sullivan 2015). Climate variables were 
associated with residual NO3

- concentrations in the following manner:

• �Nearly all non-winter models (26 of  28) that selected last date of  recorded snowpack showed a positive 
relationship between last date of  recorded snowpack and residual lake NO3

-  concentration, indicating that 
longer snow seasons resulted in higher residual NO3

- in the spring, summer, and fall. 

• �Relationships between maximum late season depth of  snowpack and residual NO3
-  were almost always 

negative (36 of  40). 

• �Seasonal precipitation amount was positively related to residual NO3
-  in winter, spring, and fall, but was 

negatively related in summer.

• �Warmer air temperature was generally negatively related to residual NO3
-  for all seasons.

Last date of  recorded snowpack and maximum late season depth of  snowpack were selected 
in about one-third to one-half  of  the individual lake watershed models to predict both the 
spring and summer NO3

- residual. Precipitation N concentration was rarely selected for 
predicting the NO3

- residual for any season. However, seasonal precipitation amount was 
selected for about one-half  to three-quarters of  the models to predict the NO3

- residual. 

Inclusion of  additional candidate climate variables improved model fits for predicting lake 
DOC concentration and residual DOC across all seasons. This indicates that both long-
term trends and inter-annual variability in climate-related variables may have influence on 
lake DOC. Stuanes et al. (2008) found that seasonal variation in streamwater total organic 
carbon (TOC) at the Storgama catchment in southern Norway was mainly climatically 
controlled, whereas atmospheric S and N deposition better explained the long-term increase 
in streamwater TOC. 

Models for predicting residual lake Ali generally performed poorly for the spring season,  
when Ali concentrations tended to be high. Some improvement was noted upon inclusion  
of  the climatic variables. Fall season models generally outperformed models for other seasons 
provided that they included precipitation amount and/or other climate variables.

A3. Effects of Time Lags in N Deposition

We tested the effect of  introducing lags on the N deposition terms for predicting NO3
- 

concentration based on predictor set 3. Four different lags were tested, whereby the seasonal 
lake NO3

- concentrations were lagged behind the predictor variables describing N deposition 
(seasonal precipitation amount and N concentration in precipitation) from one to four seasons 
(e.g., winter season N deposition to predict spring lake NO3

- concentrations [one season lag], 
winter season N deposition to predict summer lake NO3

- concentrations [two season lag], 
etc.). For all seasons, lagging N deposition generally resulted in reduced ability to predict 
lake NO3

- concentrations (with the exception of  spring season with two lags, which showed 
marginal improvement among the lakes).

A4. Predictions of DOC and Ali With and Without Variables.

Inclusion of  climatic variables improved model fits for DOC (Figure A4-1) and Ali  
(Figure A4-2) concentrations.
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Figure A4-1. Distribution across study lakes of  the r2 value for predicting lake DOC concentration, using a) wet N and S 
deposition, and b) precipitation, plus precipitation amount, plus climate variables. 
 
 
 
 
 
 
 
 
 
 
 

Figure A4-2. Distribution across study lakes of  the r2 value for predicting lake Ali concentration, using a) wet N and S 
deposition and b) precipitation, plus precipitation amount, plus climate variables. 
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