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Abstract 

Osteoarthritis (OA) is a leading cause of chronic disability. It is a progressive disease, involving 

pathological changes to the entire joint, resulting in joint pain, stiffness, swelling, and loss of 

mobility. There is currently no disease-modifying pharmaceutical treatment for OA, and the 

treatments that do exist suffer from significant side effects. An increasing understanding of the 

molecular pathways involved in OA is leading to many potential drug targets. However, both 

current and new therapies can benefit from a targeted approach that delivers drugs selectively to 

joints at therapeutic concentrations, while limiting systemic exposure to the drugs. Delivery 

systems including hydrogels, liposomes, and various types of particles have been explored for 

intra-articular drug delivery. This review will describe progress over the past several years in the 

development of polymer-based particles for OA treatment, as well as their in vitro, in vivo, and 

clinical evaluation. Systems based on biopolymers such as polysaccharides and polypeptides, as 

well as synthetic polyesters, poly(ester amide)s, thermoresponsive polymers, poly(vinyl alcohol), 

amphiphilic polymers, and dendrimers will be described. We will discuss the role of particle 

size, biodegradability, and mechanical properties in the behavior of the particles in the joint, and 

the challenges to be addressed in future research.   
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1. Introduction 

Osteoarthritis (OA) is the most common type of arthritis, affecting more than 240 million people 

worldwide [1, 2]. It is a leading cause of global disability [3]. The prevalence of OA has been 

continually increasing over the past several decades due to increasing risk factors such as an 

aging population, growing obesity rates, and other contributors [4]. The socioeconomic burden 

associated with pain and loss of function from OA is large, costing between 1 and 2.5% of gross 

domestic product in developed countries [5]. Furthermore, OA is a significant risk factor for 

many other diseases such as cardiovascular and metabolic diseases and depression. 
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OA is a progressive disease of the entire joint, with alterations leading to overall 

degeneration of the joint, resulting in joint pain, stiffness, swelling, and reduced mobility 

(Figure 1). The two bones that make up a synovial joint are covered with articular cartilage. 

When healthy, articular cartilage has a smooth surface that exhibits a low coefficient of friction, 

allowing the bones to move freely and smoothly [6]. It is viscoelastic and designed to distribute 

loads across the joint evenly. Chondrocytes, the cells within cartilage, produce extracellular 

matrix (ECM), consisting primarily of collagen type 2 and proteoglycans [7]. The cartilage is 

often considered to be one of the most altered tissues in OA, undergoing thinning and damage 

[8], due to an increase in catabolic factors such as matrix metalloproteinases (MMPs) and a 

decrease in anabolic factors [9]. Subchondral bone forms an interface between cartilage and the 

trabecular bone [10]. It plays an important role in the function of the joint, acting as a shock 

absorber [11], and supplying the joint with nutrients to maintain homeostasis [10]. In this 

context, damage to the bone can cause major metabolic changes in cartilage [12]. In early 

progression of OA, the interface between the subchondral bone and articular cartilage undergoes 

distinct remodeling, especially in areas where cartilage damage is present [13]. As OA 

progresses, a decrease in mineralization and reduced bone stiffness are noted.  

The synovial membrane is a soft tissue that lines synovial joints, serving as a barrier to 

the joint space [14]. To retain synovial fluid, the intimal layer of the synovial membrane exhibits 

a free exchange of proteins and molecules, while inhibiting the transit of the hyaluronic acid 

(HA), which is an important component of the joint fluid. The synovial membrane also plays an 

integral role in the lubrication of cartilage through the secretion of the proteoglycan lubricin as 

well as molecules that are imperative for the nutrition of the joint cells and tissues. In OA, the 

most common change in the synovial membrane involves the inflammation and enlargement of 

the tissue, known as synovitis, which is believed to be a major driving factor behind the pain 

associated with OA [15]. It has been hypothesized that as cartilage begins to break down as a 

result of OA, the byproducts are released into the synovial fluid, which are then phagocytosed by 

synovial macrophages. The inflamed synovial membrane then further produces catabolic and 

pro-inflammatory cytokines, leading to a production of enzymes which break down the cartilage 

further. The synovial fluid is a viscous solution that is an important component of the joint [16]. 

HA and lubricin in synovial fluid function to reduce the friction between the articular cartilage of 

the joint during movement. HA also plays an important role in cartilage protection and nutrient 
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transport to cartilage. In OA, there is a marked increase in catabolic and pro-inflammatory 

cytokines in the synovial fluid. In addition, the level of proteins and overall volume of synovial 

fluid increase, which can lead to further inflammation of the joint [16].   

 

Figure 1. Structural changes and biochemical signaling in OA development. IL = interleukin; 

IGF = insulin-like growth factor; IFN = interferon; TNF = tumor necrosis factor; VEGF = 

vascular endothelial growth factor; ADAMTS = a disintegrin and metalloproteinase with 

thrombospondin-like motifs; TGF = transforming growth factor. Reproduced from reference [6] 

with permission from Elsevier. 

Despite the prevalence of OA and a growing understanding of the mechanisms 

underlying disease progression, there are currently no disease-modifying drugs to treat OA. 

Evidence-based treatment is therefore aimed at improving symptoms and function [17]. 

Treatment of OA remains variable from patient to patient and is tailored to the progression and 

the stage of the disease, as well as patient preferences. Of the current non-pharmacologic 

treatments for OA, exercise and weight loss have been shown to lead to beneficial effects [18, 

19]. Oral medications, such as acetaminophen, or non-steroidal anti-inflammatory drugs 



 5 

(NSAIDs) such as celecoxib (CXB) and meloxicam are also frequently used [20]. While 

effective in mitigating pain and stiffness, cardiovascular, gastrointestinal, and renal risks often 

limit the effective use of NSAIDs [21]. Topical NSAIDs and other ointments have been 

developed as safer alternatives to oral medications, as they can be applied selectively in 

proximity to the affected joint, leading to a lower systemic dose [22], but their clinical benefits 

remain unclear [20, 23]. To increase the availability of drug in the joint, intra-articular (IA) 

injections are used [24]. Methylprednisolone, triamcinolone and dexamethasone (DEX) are 

steroids that have commonly been injected for the treatment of OA [25]. However, they provide 

only short-term relief and concerns have been raised regarding their potentially detrimental 

effects on cartilage [26, 27]. Viscosupplementation is a means of replacing naturally occurring 

lubricating molecules within the joint that are either damaged or lost when OA progresses. These 

injections typically contain HA, HA derivatives, or chondroitin sulfate (CS) [20]. Their clinical 

efficacy remains questioned [28]. Depending on the joint affected, the response to the 

aforementioned therapies, and other patient specific factors, total joint replacement therapy can 

be performed to treat refractory symptoms in late-stage OA [29]. This surgery provides relief for 

many patients, but has shortcomings including lack of efficacy in some patients, risk of 

infections during or after surgery, high cost, limited lifespan of implants, especially when 

implanted in mid-life, and altered biomechanics that can cause degenerative changes in other 

parts of the body [6]. 

There is an undeniable need to develop disease-modifying agents that can alter the 

progression of OA, rather than solely treat its symptoms. The molecular pathways involved 

in the onset and progression of OA have been studied intensively in recent years, leading to the 

proposal of potential disease-modifying drugs [30]. As the loss of articular cartilage is a hallmark 

of OA, cartilage is a key therapeutic target. Inhibition of MMPs, which degrade collagen, has 

been pursued with inhibitors such as PG-116800, but dose-dependent adverse effects have been 

observed [31]. Inhibitors of the aggrecanase ADAMTS5 were recently evaluated in a Phase 2 

clinical trial but failed in all endpoints [32, 33]. Anti-ADAMTS5 antibodies are also under study 

[34]. In addition, molecules capable of promoting cartilage repair have also been investigated. 

For example, recombinant human fibroblast growth factor (FGF)18 (sprifermin) was recently 

shown in Phase 2 clinical trials to reduce cartilage loss, though it did not lead to improvements in 

clinical symptoms [35]. The delivery of TGFb via IA injection of allogenic chondrocytes is also 
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under investigation [36]. The cathepsin K inhibitor MIV-711, that targets the bone remodeling 

associated with OA, has also been investigated in clinical trials [37]. It was found to reduce 

cartilage thinning and reduce changes in bone that are associated with OA, but was not effective 

in reducing pain. 

Inflammation can lead to pain and degradation of the joint tissues [38]. A number of 

studies have focused on controlling inflammatory signaling cascades through the control of 

cytokines associated with OA [12]. IL-1β is a common target. Anakinra is an IL-1 receptor 

antagonist but has seen mixed results in clinical trials [39]. TNFα was also identified as a major 

proinflammatory cytokine associated with OA [12]. However, the clinical efficacy of TNFα 

inhibitors has not yet been demonstrated [40]. Nuclear factor-κB (NF-κB) is integral to the 

production of pro-inflammatory cytokines, and its inhibition has been targeted using 

SAR113945. Beneficial effects were observed in phase I trials but phase II trials failed to 

demonstrate similar responses [41]. P38 mitogen activated protein kinase (MAPK) is another 

potential target associated with the synthesis of pro-inflammatory cytokines which is under 

investigation [42]. Activation of peroxisome proliferator-activated receptor (PPAR)d has been 

implicated in the degradation of cartilage ECM, suggesting PPARd inhibition as a potential 

therapeutic strategy [43]. Although pain is also considered a symptom of OA, the synergistic 

relationships between the pain mechanisms, inflammation, and structural alteration within the 

joint have been demonstrated [30]. The TRP Vanilloid 1 (TRPV1) receptor is the target of 

CNTX-4975 [44], which advanced into phase IIb clinical trials, showing a reduction in pain over 

24 weeks. However, negative side effects and potential safety concerns with TRPV1 antagonists 

have been noted [45]. Nerve growth factor (NGF) is a neuropeptide implicated in enhanced 

perception of pain and a triggering of the initial pain response in OA. Monoclonal antibodies to 

NGF were deemed promising in preclinical studies, but safety concerns became quickly apparent 

in clinical trials [46].  

IA drug delivery is increasingly recognized as a promising strategy for the administration 

of OA drugs. Compared with systemic administration, IA injections can potentially deliver the 

right dose of drug to the target tissue, while greatly reducing systemic exposure to the drug [47]. 

IA delivery may therefore mitigate the adverse side effects that are problematic for many 

potential OA therapeutics. However, free drugs are removed from the IA space by capillaries and 
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the lymphatics within a few hours [48]. In addition, the frequency of IA injections should be 

minimized, ideally to once every 3 months or less frequent [49, 50]. The rapid clearance of drugs 

from the joint, combined with a limited frequency of treatment, may be contributing to the 

failure of some potential therapeutics to achieve clinical benefits in trials. Therefore, many drugs 

would benefit from incorporation into delivery systems that provide sustained release.  

A number of delivery systems have been explored for the IA delivery of OA drugs. For 

example, hydrogels based on HA [51], elastin-like peptides [52], and poly(caprolactone-co-

lactide)(PCLA)-poly(ethylene glycol)(PEG)-PCLA [53, 54] have been investigated. Liposomes 

have also been explored [42, 55]. This review will focus on delivery systems based on polymeric 

particles. We will discuss both biopolymer and synthetic polymer systems and will focus on 

developments over the past five years, as earlier systems have already been described in previous 

review articles [56-61] (Table 1). Nanoparticles are typically defined as having at least one 

dimension (e.g., diameter) between 1 and 100 nm, while microparticles are considered to have 

dimensions between 1 and 1000 µm. In practice, either term has been used for materials with 

intermediate dimensions (i.e., 100 nm – 1 µm). Given the importance of particle size in 

determining factors such as cellular uptake, clearance, and trafficking in vivo, we will include 

both nanoparticles and microparticles in this review and will discuss the effects of particle size 

on their behavior in the joint. Finally, we will conclude with some challenges and perspectives 

for future work in the field. 

  



 8 

Table 1. Summary of the polymers, drugs, and characteristics of the different particle-based 

delivery systems discussed in this review. NR = not reported. 

Polymer Therapeutic 

incorporated 

Particle 

diameter 

Drug release 

time (in vitro) 

In vivo results 

Chitosan Lornoxicam 

[70] 

3.6 – 6.1 µm 8 days  Reduced inflammation 

and histopathological 

markers of OA in rats 

 Sinomenium 

[71] 

100 µm 96 h  Reduced cartilage 

degradation and slowed 

OA progression in mice 

 KGN [74] 150 nm, 1.8 

µm 

50 – 50% over 7 

weeks 

Reduced cartilage 

damage and OARSI 

score in rats 

 KGN and DCF 

[77] 

350 – 650 

nm 

20 – 50% over 

14 days 

(kartogenin) 

20 – 90% over 

24 h (diclofenac) 

Particles retained in rat 

joints for 14 days; 

Reduced OA 

progression 

 Berberine [78] 50 – 400 nm 70% over 7 days Cartilage protective 

effect in rats 

 Clodronate [80] 146 nm 90% over 48 h NR 

 CrmA DNA 

[83] 

50 nm 60% over 7 days Reduced cartilage 

degradation, mRNA of 

MMPs and IL-1β in 

rabbits 

HA Glucosamine 

[87] 

175 – 187 

nm 

20% over 21 

days 

NR 

 CXB [90] 250 – 450 

nm 

7 days Reduced swelling and 

cartilage damage in rats 

HA-chitosan Curcuminoid 

[91] 

165 nm 74% over 72 h Reduced inflammation 

and cell apoptosis in rats 
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 IL-1Ra DNA 150 nm 65% over 15 

days 

NR 

CS BSA [93] 250 – 300 

nm 

45% over 7 days NR 

Silk fibroin Cy7 (model 

drug) [102] 

4 – 7 µm  3 – 8% over 7 

days 

Fluorescence half-life in 

rat joints of 43 h 

 CXB and 

curcumin [106] 

110 nm 4 – 30% over 56 

h 

NR 

Poly(L-

glutamin 

acid)-Poly(L-

arginine) 

IGF-1 [107] 100 – 850 

nm 

NR System was detected in 

rat joints for 4 weeks; 

Reduced cartilage 

damage and enhanced 

aggrecan production 

PLGA TA [112, 113, 

114] 

35 – 55 µm NR TA detected in plasma 

of human patients after 

12 weeks; Significant 

change in WOMAC 

compared to free drug; 

Reduced daily pain to 

week 12 compared to 

placebo but not to free 

drug 

 Rhein [120, 

121] 

190 nm, 4 

µm 

45% over 24 h NR 

 NH4HCO3 and 

HA [125] 

200 nm 70% over 10 

days (pH 7.4); 

80% over 2 days 

(pH 5) 

IR-780-loaded particles 

detected in mouse joints 

for 35 days; 

Qualitatively appeared 

to slow OA progression 

 OXC [126] 90 – 500 nm 50% over 2 – 9 

days 

NR 
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 P47phox siRNA 

[129] 

130 nm 48 h Reduced allodynia in 

OA rats 

 p66shc [130] 184 nm 48 h Reduced pain behavior, 

cartilage damage and 

inflammatory cytokine 

expression in rats 

 AlexaFluor 

(model drug) 

[132] 

170 – 200 

nm 

NR Non-targeted, cationic, 

and peptide-targeted 

particles exhibited 

similar joint retention in 

healthy rat joints, but 

peptide-targeted 

particles were retained 

more in OA than 

healthy joints 

 Rapamycin 

[133] 

1 µm 48 h – 21 days Cy7-labeled particles 

detectable for 30 days 

with half-life of 3.9 

days in mouse joints 

PLGA-PTE CXB, TA [115] 37 – 55 µm 60 – 110 days NR 

PLGA-

Eudragit RL 

DiR [116]  170 nm 30% over 7 days 50% of DiR detected at 

28 days in mice 

 PRX [117] 220 nm 80% over 24 h 3.2-fold increase in joint 

tissue concentration of 

PRX compared to free 

drug (rats) 

PLGA-

gelatin 

Fluvastatin 

[118] 

25 µm 10 days Reduced OARSI scores 

in rabbits 

PLGA-lipid MK-8722 [138] 25 nm 48 h Reduced levels of pro-

inflammatry cytokines, 
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synovitis, and cartilage 

damage in mice 

PDLLA DiD [142] 300 nm, 3 

µm, 10 µm 

< 2% over 42 

days 

Particles observed in the 

joint for 6 weeks, with 

size-dependent 

clearance 

 PH-797804 

[143] 

14 µm 20% over 3 

months 

Reduced inflammation 

and IL-1β expression in 

mice 

 KGN [144] 14 µm 60% over 90 

days 

Reduced OARSI scores 

in mice 

PCL Doxycycline 

and CS [148] 

12 – 75 µm 24 days Improved radiographic 

scores and Mankin-

Pitzer histology scores 

in rabbits 

 Etoricoxib 

[150] 

5 – 16 µm 90% over 20 

days 

Particles detectable over 

4 weeks in rats 

PEA CXB [156] 10 – 100 µm 80 days but also 

stimuli-

responsive 

Particles detectable after 

3 weeks but did not lead 

to reduced OA 

pathology in rats 

 TA [160] 22 µm 50% over 60 

days 

Particles detectable for 

70 days, decreased 

synovial inflammation 

but no clear effects on 

cartilage integrity in rats 

 CXB [161] 640 – 1040 

nm 

30 – 80% over 

60 days 

Well tolerated in the 

joints of sheep 

 GSK3787 [162] 580 nm 11% over 30 

days 

Particles detected in 

mouse joints over 7 

days ex vivo 
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pNIPAM 

(various 

formulations) 

KAFAK, 

YARA [166, 

168-171] 

100 – 400 

nm 

Variable from 24 

h – 50% over 4 

days 

Particles penetrated 

through inflamed bovine 

cartilage explants and 

reduced IL-6 production 

 HA [167] 130 – 240 

nm 

NR Protected cartilage and 

reduced pro-

inflammatory cytokines 

in mice 

pNIPAM-

HA 

DCF [175] 200 µm 10 days Reduced cartilage 

damage and lowered 

OARSI scores in rats 

p(NIPAM-

MPC) 

DCF [173] 145 – 200 

nm 

88% over 72 h NR 

pMPC-silica DCF [174] 260 nm 72 h Reduced cartilage 

damage and OARSI 

scores in rats  

PVA Fluticasone 

propionate 

[176] 

50 – 100 µm NR Drug detected in 

synovial fluid and 

cartilage of dogs for 60 

days 

pHEMA IL-1Ra, BSA 

[179, 180] 

300 – 900 

nm 

NR 30% of labeled BSA 

retained at 14 days in rat 

joints 

PEG-PLA FITC (model 

drug) [181] 

256 nm NR Particles bound to 

cartilage tissue sections 

ex vivo 

 Adenosine 

[183] 

129 – 144 

nm 

NR Reduced OARSI scores 

and cartilage loss in rats 

PEG-PCL TGFa [184] 26 nm NR Reduced cartilage 

damage, synovitis, pain, 
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and subchondral bone 

thickening in mice 

Polyurethane KGN [182] 25 nm 20% over 15 

days 

Reduced cartilage 

damage and OARSI 

scores in rats 

PAMAM 

dendrimer 

KGN [189] 35 nm NR 60% of dendrimer 

detected in rat joints 

after 3 days 

 IGF-1 NR NR Reduced cartilage 

degradation, synovial 

inflammation, and 

osteophyte burden in 

rats 

 

2.  Biopolymer-based particles  

Biopolymers are natural polymers including nucleic acids, polypeptides, and polysaccharides 

that are synthesized by living organisms. In particular, polypeptides [62] as well as 

polysaccharides including chitosan [63], HA [64], and alginate [65] have been extensively 

investigated for drug delivery and tissue engineering. These materials can be degraded 

enzymatically, and can have favorable biological properties, as they are found naturally within or 

mimic components of the native ECM within human tissues. However, challenges for natural 

materials include batch-to-batch reproducibility in their isolation and processing, as well as 

limitations in the extent to which one can tune their chemical and mechanical properties [66]. 

2.1 Chitosan 

Chitosan is cationic polysaccharide that is obtained by deacetylation of chitin, a structural 

component of the exoskeletons of crustaceans. It is a random copolymer of b-(1-4)-linked N-

acetyl-D-glucosamine and D-glucosamine (Figure 2A). It has been widely used in biomedical 

applications such as wound healing and also in drug delivery because of its biodegradability, 
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biocompatibility, and the presence of the amino groups, which allow for its functionalization 

[67-69].  

 

Figure 2. Chemical structures of biopolymers used in IA drug delivery systems: A) chitosan; B) 

HA; C) CS; D) the main primary structure of silk fibroin; E) poly(L-glutamic acid); F) poly(L-

arginine). 

 Chitosan particles were prepared by Kamel and coworkers for the IA delivery of the 

NSAID lornoxicam with the goal of reducing its side effects [70]. The particles were prepared by 

ionic gelation with tripolyphosphate (TPP), a process involving the entropically and 

electrostatically-favorable self-assembly of polyanions with polycations (Figure 3). Lornoxicam 

was loaded during the particle preparation, leading to encapsulation efficiencies ranging from 14 

– 60% and average particle diameters from 3.6 to 6.1 µm, depending on the conditions. 

Complete release of the drug was observed in vitro over 8 days. The anti-inflammatory effects of 

the particles were examined and compared to those of the free drug in vivo in a monoiodoacetate 

(MIA)-induced OA model in rats. Reduced inflammation and histopathological markers of OA 
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were observed for the drug-loaded particles, compared to the free drug and controls over the 21 

day study, suggesting that slow release of the drug was beneficial. However, to achieve benefits 

over a longer time period, it may be necessary to further slow the release of the drug. 

 

Figure 3. The process of complexation between polyanions and polycations to form a 

nanoparticle. The process is driven by the entropically favorable release of water. 

 Fan and coworkers encapsulated sinomenium into chitosan particles [71]. Sinomenium is 

a natural alkaloid that has been shown to modulate NF-kB signaling, down-regulate MMP-13 

expression, and regulate autophagy, a protective mechanism in normal joints [72, 73]. The 

particles were prepared by a water-in-oil (w/o) emulsion process (Figure 4A), in which the drug 

was combined with chitosan in the aqueous phase, and then the chitosan was crosslinked using 

glutaraldehyde. They had an average diameter of about 100 µm and released all of their loaded 

sinomenium over 96 h in vitro. Next, the particles were loaded into photo-crosslinked gelatin 

methacrylate hydrogels, with no effect on the drug release rate. The sinomenium-loaded particle-

containing gels were evaluated in a surgical mouse model of OA with once weekly injections. 

They reported that treatment with the drug-particle-gel system slowed the progression of OA and 

mitigated cartilage degradation at least partly by inducing autophagy. Unfortunately, details were 

not reported on how the authors performed photo-initiated crosslinking after injection of their 

materials into the joint, so it would be difficult to reproduce this work. 
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Figure 4. Schematics of the particle preparation procedure by A) water-in-oil (w/o) emulsion; B) 

oil-in-water (o/w) emulsion; C) double emulsion (water-in-oil-in-water, w/o/w). 

Im and coworkers prepared and studied kartogenin (KGN)-functionalized chitosan 

particles [74]. KGN is an activator or the core binding factor b/runt-related transcription factor 1 

(CBFb/RUNX1) pathway, that can promote the chondrogenic differentiation of mesenchymal 

stem cells (MSCs) [75, 76]. First, KGN was coupled to chitosan using a carbodiimide-promoted 

amide bond formation. The conjugation efficiency was reported to be high (> 97%), though the 

extent of chitosan functionalization was not very clear in the paper. Our analysis of the presented 

spectral data suggests that about 1% of chitosan’s amino group were coupled to KGN. Next, 

nanoparticles (150 nm) and microparticles (1.8 µm) were prepared from the modified chitosan 

by ionic gelation with TPP. In vitro release studies showed that 30 – 50% of KGN was released 

over 7 weeks, with the microparticles having higher release than the nanoparticles. Both particles 

induced higher expression of chondrogenic markers from human bone marrow MSCs. Retention 

of fluorescently-labeled particles in the joints of rats was observed for 24 days. In a surgically-
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induced OA model, rats treated with the particles 6 and 9 weeks after surgery, and analyzed at 14 

weeks exhibited less cartilage damage as indicated by lower Osteoarthritis Research Society 

International (OARSI) scores and less marked biochemical changes based on 

immunofluorescence for collagen type 2 and aggrecan. The results were similar for the two 

particle sizes. These results suggested that KGN may have led to regenerative effects in cartilage, 

though explicitly proving regeneration would require analysis at multiple end points.  

In follow-up work, Im and coworkers further developed their delivery system by 

covalently crosslinking the KGN-chitosan conjugate with thermoresponsive poloxamer 407, a 

poly(ethylene oxide (PEO)-block-poly(propylene oxide) (PPO)-PEO triblock copolymer, 

containing two terminal carboxylic acids [77] (Figure 5). In addition, the anti-inflammatory drug 

diclofenac (DCF) was loaded into the hydrophobic PPO core of the resulting assemblies at low 

temperature. The diameter of the assemblies changed from 650 nm at 4 °C to 305 nm at 37 °C. 

The release of both drugs was faster at lower temperature presumably due to increased swelling 

and water access to the particle core. The release of non-conjugated DCF was faster than that of 

covalently conjugated KGN. In vitro, both chondrogenic differentiation and suppression of 

inflammation were enhanced by cold shock treatment. The particles were retained in rat joints 

for up to 14 days and they suppressed the progression of OA in rats relative to controls, with cold 

treatment leading to enhanced efficacy. Overall, the biological properties of KGN are interesting 

for potential OA treatment. However, in our own unpublished work, we found that KGN is 

highly susceptible to intramolecular cyclization under coupling conditions, which can make its 

conjugation chemistry challenging.     
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Figure 5. Schematic illustrating the process for preparing a thermoresponsive KGN delivery 

system: 1) synthesis of the KGN-chitosan conjugate using N-ethyl-N′-(3-

dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimde (NHS); 2) o/w 

emulsification of the PEO-PPO-PEO; 3) coupling of PEO-PPO-PEO with the chitosan-KGN 

conjugate using EDC; 4) evaporation and dialysis to remove reagents and the organic phase; 5) 

loading of DCF. Modified from reference [77] with permission from Elsevier. 

  

 Liu and co-workers investigated chitosan particles loaded with berberine chloride [78], an 

isoquinoline alkaloid shown to reduce chondrocyte apoptosis and promote cartilage matrix 

production [79].  The particles were prepared by ionic gelation using TPP, and berberine was 

loaded during the preparation. They had diameters ranging from about 50 to 400 nm based on 

dynamic light scattering (DLS) and scanning electron microscopy (SEM). About 70% of the 

loaded berberine was released in vitro over 7 days. In vivo, berberine was detected in the 

synovial fluid of treated rats for at least 96 h, whereas the injected free drug was no longer 

detected in synovial fluid after 48 h. In addition, in a surgical rat model of OA, the particles led 

to enhanced anti-apoptosis activity and cartilage protective effects compared to the free drug and 

controls, suggesting their potential for OA treatment. 
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 Clodronate-loaded chitosan nanoparticles were prepared and studied by Caviglioli and 

co-workers [80]. Clodronate is an anti-osteoporotic drug that acts by inhibiting metabolism in 

osteoclast mitochondria. However, it has also be found to exhibit anti-inflammatory and anti-

arthritic activity. These effects have been proposed to arise from its ability to reduce articular 

inflammatory lesions by inhibiting the synthesis and release of pro-inflammatory mediators such 

as cytokines and nitric oxide by macrophages [81]. However, it can cause gastrointestinal 

disorders and nephrocalcinosis, particular when given orally [82]. The authors prepared the 

particles by ionic gelation between chitosan and clodronate, which contains two anionic 

phosphonates. The chitosan amino groups were then crosslinked with glutaraldehyde, providing 

cationic particles with an average diameter of 146 nm and a drug loading of 31% w/w. Over 48 h 

in vitro, 90% of the clodronate was released from the particles. The clodronate-loaded particles 

were more effective than the free drug at reducing the pro-inflammatory response of THP1 

macrophages to lipopolysaccharide. To slow the drug release and increase their retention times in 

the joint, the particles were encapsulated into thermoresponsive poloxamer gels, which existed as 

viscous liquids at room temperature and below, but gelled at about 30 °C. The gel encapsulation 

slowed the in vitro drug release during the first 24 h, resulting in close to zero-order kinetics. 

These results suggest that the gel was able to provide a desirable steady release of drug during 

this time period, but after 48 h, about 80% of the drug was released, which was quite similar to 

the percentage released by the particles alone. Overall, the rapid release of clodronate from these 

delivery systems raises questions regarding the benefit of of the delivery system compared to 

administration of the free drug.   

 Qiu and coworkers exploited chitosan’s cationic charge to bind with anionic DNA 

encoding the gene for cytokine response modifier A (CrmA) [83], a natural inhibitor for IL-1β 

converting enzymes, which subsequently reduces IL-1β induced inflammation associated with 

chondrocytes in OA [84, 85]. The particles, designed to carry the CrmA gene into cells, were 

prepared by ionic complexation between the DNA and chitosan. They had diameters of about 50 

nm based on SEM. DNA release from the complexes was evaluated at pH 2 and pH 7. At pH 7, 

about 60% of the DNA was released over 7 days, whereas about 35% was released at pH 2 over 

the same time period. It is not clear why pH 2 was selected, as this pH value is not relevant to the 

intracellular environment or joint tissues. After confirming the successful transfection of primary 
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rabbit chondrocytes with CrmA, the particles were evaluated in a surgical rabbit model of OA. 

Weekly doses of the particles for 4 weeks resulted in reduced cartilage degradation, a reduction 

in mRNA levels of MMPs and IL-1β, and reduced chondrocyte apoptosis compared to controls. 

Overall, these results suggest the therapeutic potential for the chitosan-CrmA DNA particles. 

2.2 HA 

HA is an anionic glycosaminoglycan composed of repeating b-(1-4)-D-glucuronic acid and b-(1-

4)-N-acetyl-D-glucosamine units (Figure 2B). In the synovial fluid of healthy joints, HA has an 

average molar mass of 3 – 4 million g/mol and has an important role in the fluid’s lubrication 

and viscoelasticity [86]. HA’s molar mass and concentration decrease as OA progresses, so it has 

commonly been used in the treatment of OA. Despite the questionable clinical efficacy of HA 

treatments alone, its routine use in joints has made HA a popular choice as a component of OA 

delivery vehicles.   

Korkusuz and co-workers prepared nanoparticles based on HA and glucosamine [87]. 

Oral glucosamine is taken as a supplement by some OA patients, but can be problematic for 

diabetic patients [88] and only a tiny fraction of the dose ever reaches the joint [89], motivating 

the authors to deliver it directly to the joint with HA. To prepare the particles, 5-b-cholanic acid 

was conjugated to HA as a hydrophobe, and then amino-terminated PEG was also conjugated to 

the HA. The resulting copolymers were assembled into core-shell particles with PEG surfaces, 

and finally GA was physically immobilized. The authors proposed that the glucosamine was 

preferentially located within the hydrophobic PEG domains, but since it is cationic at neutral pH 

it was presumably at least partially complexed with the remaining carboxylic acid groups on the 

HA. Using SEM and DLS, the average particle diameters were found to be 175 nm and 187 nm 

respectively. In vitro release studies revealed that 20% of the glucosamine was released over 21 

days, which is surprisingly slow for a hydrophilic payload in the absence of covalent 

conjugation. In vitro, released glucosamine reduced the proliferation of chondrosarcoma cells. 

However, there were no changes in OA or ECM markers of healthy or OA chondrocytes at 7 

days, suggesting that the molecules were not active at the cellular level. 

CXB-loaded HA nanocapsules were examined by El-Gogary and coworkers for IA 

delivery [90]. The particles were prepared by a nanoprecipitation approach involving the 
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addition of an ethanol/acetone solution of CXB, olive oil, and cetyltrimethylammonium bromide 

to an aqueous solution of HA and either polysorbate 80 or poloxamer P407 as a surfactant, 

followed by evaporation of the organic solvent. The average particle diameters ranged from 250 

– 450 nm. In vitro, the particles released all of their CXB from the oil core over 7 days. In a rat 

MIA model of OA, the 250 nm particles reduced swelling, cartilage damage, and NF-kB 

expression compared to the free drug and non-treated controls. 

HA has also been combined with chitosan for particle preparation. For example, Tao and 

co-workers encapsulated curcuminoid during ionic gelation of the polymers [91]. Curcuminoids 

have been suggested to inhibit the apoptosis of chondrocytes as well as inflammatory signaling 

in OA [92], but exhibit very low aqueous solubility and poor bioavailability when administered 

orally. The resulting particles had an average diameter of 165 nm based on TEM and a high drug 

loading capacity of 38%. During a 72 h in vitro release study, the particles released of 74% of the 

curcuminoid compared to 84% for the non-encapsulated drug. The fact that the delivery system 

only slowed the release to a small extent suggests that the release rate was likely limited by the 

low solubility of curcuminoid in the release medium. Consequently, it appears that the delivery 

system is not able to provide sustained drug release. In a rat surgical model of OA, IA injection 

of the drug-loaded particles attenuated inflammation and cell apoptosis compared to controls, 

and this change was proposed to occur through repression of the NF-kB signaling pathway. The 

particles also promoted collagen type 2 expression and decreased MMP-1 and MMP-13 

expression, suggesting their potential for OA therapy.  

Zhou and co-workers prepared ionically complexed HA-chitosan nanoparticles 

encapsulating plasmid DNA for IL-1Ra, a competitive inhibitor for IL-1b [93]. The goal was to 

transfect synoviocytes to overexpress IL-1Ra, thereby attenuating IL-1b-induced inflammation 

[94].  A chitosan:HA ratio of 4:1 led to particles with average diameters of about 150 nm based 

on DLS and SEM. An in vitro release study showed 65% release of the DNA after 15 days. The 

delivery system increased the expression of IL-1Ra in primary synoviocytes and reduced the 

expression of cyclooxygenase-2, inducible nitric oxide synthase, MMP-3, and MMP-13 in IL-

1b-induced synoviocytes. However, no in vivo experiments were performed. In follow-up work, 

the team used the same delivery system for CrmA, achieving similar in vitro results [95].  
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2.3 CS 

CS is a sulfated glycosaminoglycan composed of alternating glucuronic acid and N-

acetylgalactosamine moieties (Figure 2C). It is an important component of aggrecan 

proteoglycans, which form a dense network with collagen fibrils in cartilage [96].  Because of its 

role in joint tissues, it has been used as a dietary supplement, though well controlled trials have 

failed to demonstrate significant clinical benefits relative to placebo in providing relief for knee 

OA [97]. Nevertheless, as a polymer intrinsically present in joints, CS has been investigated for 

IA drug delivery, particularly as a polyanion for the formation of ionic complexes with chitosan. 

 Young and coworkers prepared particles composed of CS and N-[(2-hydroxy-3-

trimethylammonium)-propyl]chitosan chloride (HTCC) by ionic gelation [98]. By varying the 

CS:HTCC ratio, anionically or cationically charged complexes were obtained. Fluorescein-

labeled bovine serum albumin (BSA), as a model protein drug, was loaded in the particles during 

their preparation. The resulting particles had average diameters of 250 – 300 nm depending on 

the BSA concentration during loading. In buffer at pH 7.4, about 45% of the BSA was released 

from the complexes over 7 days. The particles exhibited low cytotoxicity in vitro but further 

studies will be needed to determine the potential of this system for applications in OA drug 

delivery. 

Rhamdhani formulated particles from CS with kappa carrageenan and chitosan [99]. 

Depending on the ratios of the polymers, the average diameters of the particles ranged from 580 

– 920 nm, and the particle charge could also be tuned. However, no biological studies were 

performed on these particles. Overall, as CS would be expected to be well tolerated in the joint, 

further studies are warranted on CS-based IA drug delivery vehicles. 

 

2.4 Polypeptides 

Nature uses polymers of amino acids to achieve a diverse array of functions from catalysis to 

structural support, with the specific structures and functions defined by the sequence of amino 

acids. Polypeptides have also been garnering interest in drug delivery applications due to their 

highly tunable properties [100, 101]. Several polypeptides have been investigated for the IA 

delivery of potential OA therapeutics.  

 Setton and coworkers  investigated silk fibroin (Figure 2D) microparticles for sustained 

release of molecules in joints [102]. Silk fibroin is a natural protein material obtained by de-
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gumming native silk fibers. It is highly hydrophobic, forming b-sheet structures, and its high 

crystallinity imparts slow degradation in vivo [103, 104]. It is also non-immunogenic [105]. In 

their study, the authors conjugated the fluorescent dye Cyanine 7 (Cy7) as a model drug 

molecule to the primary amino group on the protein, and then prepared particles from a mixture 

of the conjugate and unmodified protein by an emulsion method. The mean diameters of the 

particles ranged from 4 – 7 µm, depending on the ratio of the Cy7-labeled to unlabeled proteins. 

Under proteolytic conditions in vitro, the particles released 3 – 8% of the Cy7 over 7 days, 

showing their potential for sustained release relative to the polysaccharide-based particles 

described above. IA retention in rat joints was measured by live-animal fluorescence imaging. 

The half-life of fluorescence decay was 43 h for the Cy7-conjugated particles compared to 13 h 

for free Cy7, and the particles were more localized in the joint capsule than the free dye, 

suggesting the potential of the silk fibroin particles for sustained IA drug delivery (Figure 6). 

 

 
Figure 6. In vivo epifluorescence imaging of Cy7-labeled silk fibroin particles after IA injection 

in rats compared to a solution containing non-encapsulated Cy7. The particles resulted in a more 

persistent and focused fluorescence over 120 h. Reproduced from reference [102] with 

permission from Elsevier. 

 

 Perteghella and coworkers investigated silk fibroin particles for the CXB and curcumin 

delivery [106]. The particles were prepared by a desolvation method involving the addition of 

silk fibroin solution to acetone containing the drug. The resulting particles had mean diameters 

of about 110 nm and contained either 5 or 11 % w/w of CXB or 1.5 % w/w curcumin. In vitro, 

14 – 30% of the drug was released over 56 h, showing the potential of the particles for sustained 

release. The faster release of drug from these particles compared with those studied by Setton 
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can likely be attributed to the higher surface:volume ratio of these smaller particles, as well as 

the fact that in this case the drug was not covalently conjugated. The particles exhibited reactive 

oxygen species scavenging ability, high hemocompatibility, and low cytotoxicity to human 

articular chondrocytes compared to the free drugs. They also provided anti-inflammatory activity 

in IL-1b-stimulated chondrocytes.    

 Ionic complexes of poly(L-glutamic acid) (Figure 2E), poly(L-arginine) (Figure 2F), 

and IGF-1 were investigated by Hammond and coworkers with the aim of achieving delivery to 

chondrocytes in cartilage [107]. IGF-1 is a pro-anabolic growth factor that has been shown to 

stimulate chondrocytes to produce ECM [108]. Various molar ratios of the polymers were 

assembled, leading to particles with average diameters ranging from 100 – 850 nm based on 

DLS. The diameters were much smaller based on cryo-TEM (17 nm), suggesting that DLS was 

detecting aggregates of individual particles. All of the prepared particles were cationic, as the 

aim was to achieve penetration into cartilage, which is anionic. Both the complex and free IGF-1 

increased sulfated glycosaminoglycan synthesis in ex vivo cartilage disks from bovine joints. 

Both the complex and free IGF-1 exhibited similar penetration into the cartilage disks. The 

efficacy of the complexes was then compared to free IGF-1 in a surgical rat model of OA and the 

complexes and free drug were tracked using a near-infrared fluorescence reporter. The free IGF-

1 was cleared within a few days of administration, while the complexes were detectable in the 

joint for about 4 weeks. Only the complex was able to suppress IL-1b expression in the joint in a 

sustained manner over the course of the 30 day study. The complex also led to less cartilage 

damage and enhanced aggrecan production by chondrocytes in the deep zones of the cartilage. 

Overall, this study was critical in demonstrating the potential for polymer complexes to enhance 

both the joint residence time and cartilage penetration of a potential OA therapeutic.  

 

3. Synthetic polymers   
Synthetic polymers are non-natural macromolecules whose backbone is synthesized from 

monomers, which can come from either petroleum or renewable natural resources. In comparison 

to biopolymers, they have the advantage of having highly customizable structures, as a wide 

range of monomers with different functional groups can be incorporated into synthetic polymers. 

This customizability allows their mechanical properties, degradation rate, and biological 

properties to be tuned. In addition, compared to the process of isolating and purifying materials 
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from natural sources, synthetic processes are often highly reproducible, leading to polymers with 

reproducible properties on a batch-to-batch basis. On the other hand, while biopolymers such as 

HA or CS are found naturally in human tissues and can have favorable biological properties for 

some applications, synthetic polymers can lack these biological cues. In addition, they must be 

carefully designed to avoid the generation of toxic degradation products. 

  

3.1 Poly(lactic-co-glycolic acid) (PLGA) 

PLGA, a copolymer of lactic acid and glycolic acid (Figure 7A), has been the most widely 

investigated polymer for the preparation of particles for IA delivery. It has been extensively 

studied in the biomedical field for the controlled release of numerous therapeutics and is used 

clinically in a number of drug formulations for the treatment of cancer, growth deficiencies, 

acromegaly, and other conditions [109, 110]. Its degradation leads to lactic acid and glycolic 

acid, which are easily metabolized to carbon dioxide and water by the body, and its degradation 

rate and drug release properties can be tuned to some extent by adjusting the polymer molar 

mass, monomer ratio, and the content of loaded drug [111].  

 
Figure 7. Chemical structures of polyesters commonly used for drug delivery: A) PLGA; B) 

PDLLA; C) PCL.  

 

 The most noteworthy example of a PLGA particle system for IA delivery is FX006, 

which was approved by the United States Food and Drug Administration in 2017, as the only 

extended-release IA therapy for OA-related knee pain. FX006 contains 25% w/w of 

triamcinolone acetonide (TA) crystals (< 5 μm diameter) encapsulated in PLGA composed of 

75:25 lactic acid:glycolic acid (Figure 8) [112]. The resulting particles have a mean diameter of 

42 μm and size range of 35 – 55 μm. In vitro, the particles do not exhibit a burst release, but 
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rather a continuous slow release of drug. In a rat model of synovitis, FX006 reduced pain over a 

longer duration than a TA crystalline suspension (TAcs), and FX006 significantly improved 

histological joint scores, whereas TAcs did not [113]. In a Phase 2, open-label study involving 81 

patients, the pharmacokinetics of FX006 and TAcs were compared [114]. Following IA injection 

of FX006, synovial fluid concentrations were 230000 pg/mL after 1 week, 3600 pg/mL at week 

6, and 290 at week 12, whereas after IA injection of TAcs only two of eight patients had 

quantifiable TA after 6 weeks (7.7 pg/mL). Plasma levels of TA after FX006 administration 

reached a peak of 840 pg/mL over 24 h, and then declined gradually to < 110 pg/mL after 10-20 

weeks. After IA injection of TAcs, plasma levels peaked at 4 h (9600 pg/mL) and dropped to 150 

pg/mL at week 6. These results showed that the delivery system was capable of prolonging the 

joint resident time of TA, while reducing the systemic exposure to the drug, thereby potentially 

mitigating steroid side effects. In a double-blinded, multicenter, 24-week Phase 3 study, 484 

patients received FX006, saline placebo, or TAcs [112]. The change in average daily pain from 

baseline to week 12 for FX006 compared to the placebo was the primary end point and was met 

in the study. A 50% improvement in average daily pain intensity was observed, compared to the 

placebo; however, despite the greatly increased retention of TA in the joint after administration 

of TAcs observed in the pharmacokinetic studies, the reduction in pain compared to TAcs was 

not significant for FX006. In contrast, 12 week changes in the Western Ontario and McMaster 

Universities Osteoarthritis Index (WOMAC) and Knee Injury and Osteoarthritis Outcome Score 

Quality of Life were significant for FX006 compared to both TAcs and the placebo. Average 

daily pain increased for patients undergoing both steroid treatments from 6 – 8 weeks onward. 

Overall, these results highlight the limitations of steroid treatment, in terms of their lack of 

ability to provide long-term disease-modifying effects for OA treatment. 

 

 
Figure 8. Representation of FX006 consisting of TA crystals (blue) in a PLGA matrix (yellow) 

(not to scale). 
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Creemers and coworkers prepared and studied particles composed of PLGA containing 

polythioester linkages (PLGA-PTE, Figure 9) and loaded with either CXB or TA [115]. 

PLGA:PTE ratios of 50:50 and 75:25 were compared. The microspheres were prepared by a 

double emulsion (water-in-oil-in-water, w/o/w) method (Figure 4C), resulting in mean diameters 

of 40 - 55 μm for CXB-loaded microspheres, and about 37 μm for the TA-loaded microspheres 

based on laser diffraction. The loading content of CXB was 7 and 8% w/w and that of TA was 11 

and 9% w/w for PLGA-PTE 50:50 and PLGA-PTE 75:25 respectively. In vitro, complete release 

of CXB occurred over about 60 – 110 days, with the 50:50 system releasing CXB more rapidly. 

Release was fastest during the first 14 days, with about 50% of the drug released. The TA-loaded 

microspheres released the drug more rapidly, with 50% released during the first week and more 

than 90% released by day 28. As noted by the authors, the presence of surfactant in the in vitro 

release medium may have influenced the release kinetics by altering the particle stability and 

structure. Therefore, the bioactivity of released drug was evaluated in an in vitro assay over 21 

days. Prostaglandin E2 (PGE2) production from human chondrocytes stimulated by TNFα was 

measured to evaluate inflammation. CXB-loaded particles reduced PGE2 production to 0 – 7% of 

the control values at a drug equivalent dose of 1 nmol for 21 days. At the same dose of drug, the 

TA-loaded particles suppressed PGE2 production to 0 – 12% of controls until 15 days, but less 

effectively after that, perhaps due to the more rapid release of TA and thus its depletion in the 

particles. After co-incubation with the cells for 21 days, the microscopy images of the particles 

showed that substantial erosion of the particles had occurred, which was consistent with the 

observed release kinetics. Further studies would be needed to evaluate the effects of the PLGA-

PTE particles in joints in suppressing inflammation associated with OA. 

 

 
Figure 9. Chemical structure of PLGA-PTE. 

 Choi, Kang, and coworkers prepared particles from PLGA and Eudragit RL, a cationic 

polymer prepared from ethyl acrylate, methyl methacrylate, and a methacrylic ester with a 
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quaternary ammonium group [116]. These cationic particles were designed to interact 

electrostatically with anionic HA in synovial fluid, increasing their retention time in the joint. 

The particles were prepared by an oil-in-water (o/w) emulsion method (Figure 4B), with a 

PLGA/Eudragit RL ratio weight ratio of 70:30, and 0.1% w/w of poly(vinyl alcohol) (PVA) in 

the external phase. The average diameter was 170 nm, and the zeta potential of the particles was 

21 mV based on DLS. In initial work, a fluorescent probe, 1,1′-dioctadecyl-3,3,3′,3′ 

tetramethylindotricarbocyanine iodide (DiR), was loaded into the particles. Upon mixing with 

HA, micrometer-sized filamentous aggregates were observed by hyperspectral imaging. In vitro, 

about 30% of DiR was released over 7 days, but then no further release occurred over the next 3 

weeks, suggesting that the dye was trapped in the aggregates and that the initial rapid release 

may have corresponded to surface-bound dye. In vivo florescence images of mice injected with 

DiR-loaded particle suspensions demonstrated that 50% of the DiR remained detectable after 28 

days, whereas for mice injected with same amount of free DiR, the signal of the probe in mice 

dramatically dropped to ~ 30% after 3 days. In a follow-up study, the particles were loaded with 

piroxicam (PRX), a potent NSAID [117]. The resulting drug-loaded particles had an average 

diameter of 220 nm, zeta potential of 12 mV, and contained 4% w/w of PRX. These particles 

also formed micrometer-sized aggregates with HA. Interestingly, these particles released PRX 

much more rapidly than DiR, with 80% of the drug release in vitro over 24 h. After IA injection 

into rats, the time to reach peak plasma concentration (Tmax), was 0.8 h for free PTX, and 3.8 h 

for the PRX-loaded particles. The drug concentration in joint tissue was 3.2-fold higher for PTX-

loaded particles compared to the free drug at 24 h. Overall, while this work suggests the potential 

for cationic nanoparticles to be retained in joints for weeks, the release of drug from the particles 

themselves should likely be slowed further to provide a more sustained supply of drug to joint 

tissues after injection. 

 Okazaki and coworkers studied microspheres composed of PLGA and gelatin as a 

delivery system for fluvastatin [118], a statin with anti-inflammatory effects, but severe side 

effects when administered systemically [119]. The particles were prepared by a double emulsion 

method (w/o/w) with gelatin and fluvastatin incorporated into the internal aqueous phase. The 

particles were about 25 μm in diameter and contained 3% w/w of drug. In vitro, the particles 

rapidly released 70% of their drug over 3 days, and the remainder over the next 10 days. 

Chondroprotective effects of fluvastatin were shown on primary human chondrocytes, as 
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indicated by promotion of collagen type 2 and aggrecan gene expression and inhibition of 

MMP13 gene expression. In a rabbit surgical model of OA, 5 weeks after IA injection, 

histological analysis showed lower OARSI scores for the animals treated with drug-loaded 

particles, compared to the control groups, showing the potential of this drug delivery system for 

further exploration. 

 Rhein-loaded PLGA particles have been investigated by Gómez-Gaete and coworkers 

[120, 121]. Rhein is an active metabolite of diacerein, an anthraquinone derivate with inhibitory 

effects on IL-1b but with low oral bioavailability and side effects associated with its systemic 

administration [122, 123]. The particles were prepared by an o/w emulsion method using PVA as 

a surfactant, resulting in a mean diameter of 4 µm and a drug loading of about 1% w/w [120]. In 

vitro, the particles released 45% of the drug during the first 24 h, suggesting that a large fraction 

of drug was adsorbed to the particle surface. The remainder of the drug was released more 

slowly over 30 days, even though intact particles could still be observed by SEM at this time 

point. The rhein-loaded particles inhibited the production of reactive oxygen species (ROS) and 

IL-1b in lipopolysaccharide (LPS)-stimulated THP-1 macrophages, but they did not inhibit the 

production of TNFa. In a subsequent study, the authors investigated different particle 

preparation methods including single o/w emulsion, double emulsion, and nanoprecipitation to 

prepare smaller rhein-loaded PLGA particles [121]. The single emulsion method led to the 

highest drug encapsulation efficiency (38%), providing particles with a mean diameter of 190 nm 

based on DLS. Unfortunately, rhein was released very rapid in vitro, with 50% released in 5 min 

and complete release within 60 min. As for the larger rhein-loaded particles, the nanoparticles 

suppressed IL-1b production in LPS-stimulated THP-1 macrophages, and at high concentration 

(5.0 µM) suppressed ROS production. However, to achieve benefits beyond those of the free 

drug in vivo, it will probably be important to slow the release of rhein from the delivery system. 

 Cruz and workers developed a pH-sensitive PLGA particle system to take advantage of a 

proposed decrease in pH in regions of the synovial cavity [124] to release HA in the joint in a 

controlled manner [125] (Figure 10). Using a double emulsion method (w/o/w), ammonium 

bicarbonate (NH4HCO3) and HA were incorporated into the particle cores, while PLGA formed 

the particle shell. The authors hypothesized that at acidic pH, NH4HCO3 inside NPs would react 

with H+, producing CO2, NH4 and H2O, subsequently causing the particle shell to rupture and 
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release HA. As probes, fluorescein isothiocyanate (FITC) or IR-780 were encapsulated. Based 

on DLS, the average diameter of the particles was about 200 nm. In vitro at pH 7.4, after an 

initial burst release of about 40% of HA, it was released more slowly, reaching about 70% 

release after 10 days. At pH 5.0, the release was more rapid, reaching 80% after 2 days. IR-780 

did not undergo a burst release at pH 7.4, reaching 80% release over 30 days, whereas at pH 5.0 

more than 90% was released within 2 days. The particles were well tolerated by and taken up by 

C28/I2 chondrocytes. After IA injection into mice with surgically-induced OA, the IR-780-

loaded particles were detected by in vivo imaging over 35 days. The fluorescence signal from the 

joint decreased gradually but was still detectable at the last time point, suggesting a slow release 

and clearance of the dye, whereas the signal from injected free dye had completely disappeared. 

Treatment with the particles qualitatively appeared to reduce OA development, but small sample 

sizes prohibited quantitative comparisons between the groups, so the therapeutic potential of this 

HA delivery system remains unclear.  

 

Figure 10. Schematic of pH-sensitive particles where encapsulation of NH4HCO3 leads to the 

generation of CO2, rupturing the particles and releasing HA. Reproduced from reference [125] 

with permission from Elsevier.  

 Alarçin and coworkers prepared PLGA particles loaded with the anti-inflammatory drug 

oxaceprol (OXC) [126]. OXC is N-acetyl-L-hydroxyproline, which inhibits the inflammatory 

cascade by preventing granulocyte and leukocyte infiltration into joints and decreases the 

adherence of leukocytes to the blood vessel endothelium [127, 128].  The particles were prepared 
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by a double emulsion method, using PVA as the surfactant, resulting in particles with average 

diameters ranging from 90 to 500 nm based on DLS, depending on the drug loading (9 – 56% 

w/w). In vitro, 50% of the cargo was released over 2, 4, and 9 days for particles containing 56, 

16, and 9% w/w respectively, and then the release rate slowed, with about 90, 80, and 60% of 

OXC released respectively after 30 days. In vitro cytotoxicity tests showed that OXC-loaded 

PLGA particles were well tolerated by human lymphoblastoid cells. Further work will be needed 

to determine whether they can successfully suppress inflammation associated with OA. 

siRNA has also been incorporated into PLGA particles with the goal of reducing ROS in 

OA joint.[129, 130] Kim and coworkers investigated p47phox siRNA [129], as p47phox is an 

NADPH oxidase subunit that is believed to be involved in ROS production in the pathogenesis 

of OA [131].  The authors first conducted immunohistochemistry studies, showing that p47phox 

was highly expressed in human OA tissues collected from patients and in rat knees with MIA-

induced OA. They then encapsulated p47phox siRNA into PLGA particles using a double 

emulsion method. The particles had an average diameter of about 130 nm based on DLS and 

SEM. In vitro, the particles released about 50% of the siRNA over 24 h and 95% over 48 h. 

Particles containing a fluorescent protein (mCherry) were observed in articular cartilage 3 days 

after injection into rat knees. The particles were then evaluated in a MIA-induced rat model of 

OA. The von Frey filament test indicated that p47phox siRNA-loaded particles alleviated 

mechanical allodynia in OA rats for up to 14 days after injection compared to controls. In 

addition, they led to reduced cartilage loss and reduced ROS production in cartilage. 

In related work, similar particles were used by Kim and coworkers to deliver siRNA to 

another ROS production-related protein p66shc.[130] Elevated expression of this protein was 

also demonstrated through immunohistochemistry on tissues from OA patients and MIA-induced 

OA rats. Injection of these particles into rats with MIA-induced OA led to reduced pain behavior 

and cartilage damage, as well as reduced expression of inflammatory cytokines including TNFa, 

IL-1b, and cyclooxygenase 2 (COX2). Overall, these studies support the potential for siRNA 

treatments for OA, but to enhance their long-term efficacy, it may be desirable to extend the 

release of siRNA from these systems beyond 48 h.  
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Sharma and coworkers explored the effect of cartilage-targeting groups on the distribution of 

particles in healthy and OA joints [132]. The authors used an o/w emulsion method to prepare 

PLGA particles using PVA as a surfactant. Poly(allylamine hydrochloride) (PAA) was 

incorporated to make the surfaces of the particles cationic, facilitating their electrostatic 

interaction with the anionic cartilage matrix. In addition, the collagen type 2 binding peptide 

WYRGRLK was conjugated to the PAA surface using carbodiimide chemistry to provide 

particles with active targeting potential. All three particles had similar average diameters of 170 

– 200 nm based on DLS. Despite their cationic charges, the PAA-coated particles exhibited low 

cytotoxicity to primary bovine chondrocytes and synoviocytes, as well as bovine cartilage 

explants. The uptake and retention of the three different particles, labeled with AlexaFluor, was 

first measured ex vivo in healthy cartilage and collagenase-treated cartilage as an OA mimic. In 

healthy tissue, the peptide-targeted particles exhibited 43% greater uptake than the non-targeted 

cationic and neutral particles. However, in the diseased tissue model, uptake of the non-targeted 

cationic particles reached a similar enhancement to the targeted particles. The peptide-targeted 

nanoparticles exhibited enhanced retention in both ex vivo models. The joint biodistribution of 

the particles was also evaluated in healthy rat knees and in rats with collagenase-induced OA. 

Within the healthy and OA groups, there were no differences in overall joint retention for the 

three types of particles. All of the particles, including the targeted one, were located primarily in 

the extensor mechanism. In OA joints, the peptide-targeted particles associated more with the 

femoral cartilage (21%) than they did in healthy joints (12%), suggesting their potential for 

effective delivery to diseased cartilage. These results highlight the importance of particle design 

and the challenges in achieving effective delivery into cartilage.  

Rapamycin was encapsulated into PLGA particles by Agarwal and coworkers [133]. In 

animal models, rapamycin has been shown to slow OA progression, with its mechanism of action 

presumed to involve the induction of autophagy, an important process involved in tissue 

homeostasis [134]. In addition, it is also proposed to prevent chondrocyte senescence, which may 

be involved in promoting both age and trauma-induced OA [135, 136]. However, rapamycin 

exhibits side effects and toxicity at the high doses needed to achieve sufficient joint 

concentrations via systemic delivery [137]. Therefore, rapamycin was encapsulated into PLGA 

particles for IA delivery. The particles were prepared by an o/w emulsion method using PVA as 

a surfactant, resulting in a diameter of about 1 µm. The time required for complete release of 
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rapamycin ranged from 48 h to 21 days, depending on the PLGA composition, with higher molar 

mass resulting in slower release and a higher lactide:glycolide ratio also providing slower 

release. In vitro studies in immortalized human chondrocytes (C28/I2) showed that the particles 

induced autophagy and prevented senescence under genotoxic and oxidative stresses, and helped 

sustain glycosaminoglycan production. In vivo studies showed that Cy7 delivered via the 

particles into mouse joints resulted in a half-life of 3.9 days, compared to 1 day for the free dye 

and the particles could be detected for 30 days. While further studies will be needed to assess the 

potential of the rapamycin particles to prevent OA progression, this study affirms the potential of 

both the drug and the delivery system.  

Gao, Zhang, and coworkers developed a lipid-PLGA delivery system designed to target 

cartilage [138]. The particles consisted of a PLGA core coated in PEG-modified lipid, with a 

conjugated collagen binding peptide WYRGRLC. The particles were 25 nm based on DLS, with 

the small size proposed to be important to enable cartilage penetration. DiD-labeled peptide-

targeted particles exhibited about 2-fold higher penetration into the femoral heads of mice ex 

vivo than non-targeted particles. About 42% of DiD-labeled peptide-targeted particles were 

detected in mouse joints after 48 h compared to only 18% of non-targeted particles. MK-8722, 

an activator of 5’-adenosine monophosphate activated protein kinase, which is known to regulate 

chondrocyte metabolism [139], was then loaded into the PLGA core. The drug was released over 

about 48 h in vitro. In a mouse model of collagenase-induced OA, the drug-loaded particles 

reduced levels of pro-inflammatory cytokines such as TNFa, IL-1b, and nitric oxide synthase 2. 

In addition, the treated mice exhibited reduced synovitis and reduced cartilage damage based on 

histological analysis, compared to control mice. Overall, this delivery system is attractive as the 

phospholipid surface affords biomimetic properties, and the particle diameter is small enough to 

enable penetration into cartilage. However, for some therapeutic applications it may be 

advantageous to further slow the release of the drug and prolong the retention time of the system 

in the joint to enable the drug to be delivered to cartilage even more efficiently.   
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Figure 11. A) Schematic of a collagen-targeted lipid-polymer nanoparticle (ctLP-NP); B) 

Representative images of cartilage sections stained with safranin-O from healthy mice and 

collagen-induced OA mice treated with phosphate-buffered saline (PBS), lipid-polymer 

nanoparticles loaded with MK-8722 (LP-NP(MK), or ctLP-NP(MK). Reproduced from reference 

[138] with permission from Wiley, under the terms of the Creative Commons CC BY license.    

3.2 Poly(lactic acid) (PLA)  

PLA is another polymer that has been extensively studied for biomedical applications [140]. For 

example, PLA microparticles and other drug delivery depots are used clinically in the treatment 

of facial lipoatrophy, periodontal disease, and prostate cancer [141]. Like PLGA, PLA degrades 

to a metabolically processable monomer (lactic acid). Its properties depend on the lactic acid 

stereochemistry, with poly(L-lactic acid) (PLLA) being a semi-crystalline polymer with high 

tensile strength and slow degradation, and poly(D,L-lactic acid) (PDLLA, Figure 7B) being 

amorphous and exhibiting much lower tensile strength and more rapid degradation. Most recent 

applications in IA drug delivery have employed PDLLA.  

 PDLLA was used by Allémann and coworkers to study the effects of particle size on 

biodistribution after IA injection [142]. The particles were prepared by an emulsification method, 

with parameters including emulsification time and stirring speed adjusted to obtain particles with 

average diameters of 300 nm, 3 µm, or 10 µm, based on laser light diffraction. The fluorescent 

dye DiD was incorporated to enable particle tracking in vivo. The release of DiD was slow under 

in vitro conditions, with less than 2% released in synovial fluid over 42 days. The in vivo 
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localization of the particles, as well as particles embedded in a HA gel (0.6% w/v) for injection, 

was assessed in healthy mice and mice with antigen-induced arthritis (usually used to model 

rheumatoid arthritis) to determine the influence of inflammation on particle biodistribution. All 

of the particles were well tolerated, with no significant increases in inflammation scores. The 

fluorescence level in the joint depended on the particle size and the inflammatory status of the 

joint. The 300 nm particles spread from both healthy and inflamed joints, while the 3 µm 

particles spread from inflamed but not healthy joints, which was attributed to increased capillary 

permeability associated with the inflamed state. In the healthy joint cavity, 3 µm particles were 

retained for at least 6 weeks. The 10 µm particles were retained well in both healthy and 

inflamed joints. Incorporation into HA gels improved the retention of the 300 nm and 3 µm 

particles in the joint. Beyond the joint, low levels of particle accumulation were observed in the 

liver and lymph nodes. The 300 nm particles were proposed to be cleared primarily by the 

microvascular, 3 µm particles by both the lymphatic system and the microvasculature, and the 10 

µm particles were cleared slowly by the lymphatic pathway. Overall, the authors suggested that 

particles of at least 3 µm in diameter should be delivered in HA to ensure retention in inflamed 

joints. 

 Allémann and coworkers incorporated crystals of the p38 MAPK inhibitor PH-797804 

(PH) into PDLLA particles [143]. First, the drugs were recrystallized and then wet milled into 

nanocrystals with diameters between 242 and 370 nm as determined by DLS. Then, the 

nanocrystal-polymer particles (NPPs) were prepared by spray drying. Cy7-labeled PDLLA was 

incorporated to track the particles. For comparison, conventional drug-loaded microparticles 

were also prepared by an o/w emulsion method, and DEX was also incorporated into 

conventional microparticles and NPPs. The PH-NPPs had a mean diameter of 14 μm as 

determined by laser light diffraction, and a drug content of 32% w/w. In vitro, a small burst 

release was observed over the first 3 days, likely due to drug at or near the particles surface, but 

only about 20% of the PH was released from NPPs over 3 months, showing the potential of this 

system for sustained drug release. In a mouse adjuvant-induced arthritis model, the NPPs 

reduced inflammation as measured by the presence of neutrophils and granulation tissue, though 

they did not prevent cartilage or bone erosion. The expression of IL-1β was also suppressed. The 

particles were then evaluated in a murine surgical OA model. Both DEX and PH-loaded NPPs 
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resulted in significantly reduced OARSI scores and reduced cartilage loss. At day 63, down-

regulation of the expression of IL-1β and TNFa were detected in plasma for the PH-NPPs, while 

DEX-NPPs only inhibited IL-1β expression. At 2 months, micrometer-sized particles were still 

detected in the joints, mainly in articular soft tissues.  

In related work, Allémann and coworkers used the same NPP approach with KGN [144]. 

The KGN-NPPs had very similar sizes and drug content to the PH-NPPs. A burst release of 

about 20% of KGN was observed over the first day, followed by slow release of KGN, reaching 

about 60% over 90 days. In a murine surgical model of OA, the KGN-NPPs showed a trend 

towards protecting cartilage thickness compared to controls and reduced the plasma levels of 

VEGF, which plays a key role in chondrocyte metabolism in OA progression. On the other hand, 

consistent with the proposed mechanism of action of KGN, no significant effects on 

inflammatory cytokines were observed. A significant improvement in OARSI scores was 

observed for the KGN-NPPs compared to free KGN, demonstrating the benefit of the sustained 

release formulation. Overall, this NPP system exhibits many advantageous features of an IA drug 

delivery system including high drug loading, good retention in joint, slow drug release, and the 

potential to slow OA progression in small animal models. 

3.3 Poly(e-caprolactone) (PCL) 

PCL (Figure 7C) is another polyester that has been used in tissue engineering and drug delivery 

[145]. Compared to PLGA and PLA, the degradation of PCL is much slower, often requiring 2-3 

years in vivo [146]. Unlike PLGA and PLA, PCL does not produce an acidic environment on 

degradation, which can be advantageous in avoiding an undesired inflammatory response to the 

implanted material as it degrades [147]. Recently a couple of examples of PCL-based particles 

for IA delivery were reported.  

Keskin and coworkers prepared PCL particles encapsulating doxycycline and CS [148]. 

Doxycycline (D) is a tetracycline antibiotic that has been shown to have inhibitory effects on 

cartilage matrix degradation [149]. The particles were prepared by an o/w emulsion procedure 

resulting in a mean diameter of 75 μm and a drug content of 18% w/w for the D-loaded particles 

and a mean diameter of 12 μm for the D and CS-loaded particles (10% w/w D, 0.3% w/w CS). 

The low loading of CS can likely be attributed to its high water-solubility and thus low 
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encapsulation efficiency during the o/w particle preparation method.  In vitro, the particles 

released their cargo over 24 days, but actual percentages of cargo released were not given. In 

vitro studies were performed on chondrocytes isolated from rabbits with collagenase-induced 

OA, grown in agarose, and stimulated with IL-1b as a three-dimensional model of OA. Both the 

D-loaded, as well as D and CS-loaded particles, suppressed the release of glycosaminoglycans 

into the culture media at 15 and 24 days and decreased MMP levels at 24 days. In an in vivo 

rabbit model of collagenase-induced OA both particle treatments led to improved radiographic 

scores and Mankin-Pitzker histology scores compared to controls. Some drawbacks of the study 

however included a lack of a CS only particle system, which would be needed to elucidate the 

effects of CS versus D, and the low loading of CS in the particles. 

 Srivastava developed PCL particles for the IA delivery of the NSAID etoricoxib [150]. 

The particles were prepared by an o/w emulsion method using PVA as the surfactant. The PCL 

concentration and drug:PCL ratios were varied, resulting in particles with average diameters 

ranging from 5 – 16 μm, based on SEM, and drug loadings ranging from 2.6 – 3.5% w/w. 

Thermal analysis indicated that PCL retained its semicrystalline structure upon particle 

preparation and that the drug was incorporated in its amorphous form, dispersed in the particles. 

In vitro, about 50% of the drug was released over the first 5 days, and then release slowed, with 

about 90% of etoricoxib released by 20 days. Based on the known very slow degradation of PCL, 

the released was proposed to occur by diffusion through the particle. After IA injection of the 

particles into rats, plasma concentrations of etoricoxib peaked at 28 h, but were detectable over 

four weeks, indicating sustained release of drug. In vivo fluorescence imaging of rats injected IA 

with IR-780-loaded particles indicated that the particles were detectable in the joint for at least 4 

weeks.  

 

3.4 Poly(ester amide)s (PEAs) 

Another class of polymers that has garnered increasing attention in recent years is PEAs. The 

presence of both ester and amide bonds in their backbones allows for both enzymatic and non-

enzymatic hydrolytic cleavage, and they often undergo surface erosion rather than bulk 

degradation, allowing for controlled drug release and reduced concentrations of acidic species 

upon degradation [151]. In addition, as PEAs are synthesized by step-growth polymerization 
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mechanisms, they are modular in their construction, and their monomer components can be 

readily altered to tune their thermal, mechanical, and degradation properties [152, 153]. 

Furthermore, their monomers can be selected from components such as amino acids and 

dicarboxylic acids that are intrinsically present in vivo, so their degradation products can be 

designed to be non-toxic [154, 155]. These properties have made PEAs promising emerging 

candidates for IA delivery.  

Timur and coworkers developed the first CXB-loaded PEA particles with the goal of 

achieving drug release in response to inflammation [156]. The PEA was composed of a bis-(L-

leucine)-1,4-dianhydrosorbitol diester, a bis-(L-leucine)-α,ω-hexane diol-diester, sebacic acid 

and L-lysine benzyl ester (Figure 12A). This PEA was designed to be degraded by serine 

proteases, which are involved in inflammatory responses [157, 158]. The particles were prepared 

by an o/w emulsion process using PVA as a surfactant, resulting in particles with diameters 

ranging from about 10 to 100 μm based on DLS and SEM. In vitro, it was shown that fluorescein 

was released from PEA films that were exposed to lysates from a Hl-60 neutrophil-like cell line, 

a commonly used model for inflammatory cell responses [159]. The release was reduced by the 

addition of a serine protease inhibitor. Furthermore, elevated serine protease activity was 

measured in the synovial fluid and synovium conditioned media from OA patients compared to 

controls. After an initial burst release of about 15% of CXB, the PEA particles released the drug 

slowly over 80 days, showing their potential for slow release in vivo and the CXB delivery 

system reduced the levels of PGE2, confirming an anti-inflammatory effect when injected into 

rats with surgically-induced OA compared to rats injected with particles containing no drug. The 

particles were well-tolerated in the rats, and were found entrapped in the synovium after 3 

weeks. PEA degradation in the joints was monitored by resecting the joint tissues and using 

chromatography with mass spectrometry detection to measure the PEA content. The degradation 

was more rapid in OA knees compared to controls, supporting the hypothesis regarding 

inflammation-responsive hydrolysis of the PEA. Overall, the delivery system was very 

promising in terms of providing sustained and bio-responsive release in the joint. However, IA 

injection of the particles did not lead to reduced OA pathology in the rat model, which may be a 

limitation of the drug and/or the OA model.  
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Figure 12. Chemical structures of poly(ester amide) (PEAs) used for IA drug delivery: A) 

Copolymer of bis-(L-leucine)-1,4-dianhydrosorbitol diester, a bis-(L-leucine)-α,ω-hexane diol-

diester, sebacic acid and L-lysine benzyl ester; B) PEA composed of L-phenylalanine, sebacic 

acid and 1,4-butanediol (PBSe); C) PEA composed of L-phenylalanine, sebacic acid and 1,8-

octanediol (POSe). 

   

The same PEA described above (Figure 12A) was explored by Creemers and coworkers for 

the IA delivery of TA [160]. The TA-loaded particles had an average diameter of 22 μm based 

on SEM. The TA loading was 20% w/w, but 12% of the TA was stated to be located outside the 

particles, presumably adsorbed to their surfaces. In vitro, about 25% of the TA was released 

rapidly during the first couple of days, and then slow release was observed, with about 50% 

released in total after 60 days. In chondrocytes harvested from human patients receiving 

arthroplasty, and activated with TNFa, the TA-loaded PEA particles reduced the production of 

PGE2 significantly compared to controls, showing their ability to suppress inflammatory 

responses. The PEA particles were loaded with the dye IR-780 and injected into surgically-

induced OA rat knees and control rat knees. The fluorescence signal declined gradually over 70 

days, showing their long-term retention in the joint. Serum TA levels were tracked and compared 

for free TA and TA-loaded particles injected IA. The particle system led to lower peak serum 

levels and detectable concentrations over a slightly longer time period (170 vs 120 h). In OA rat 

joints, neither free TA or the particles (empty or TA-loaded) led to any clear effects on cartilage 

integrity, but the TA-loaded PEA particles led to decreased synovial inflammation. Overall, 
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these results confirm the potential of the PEA particle delivery system to provide sustained drug 

release in vivo without an adverse host response, and that the TA delivery system in particular 

may be useful in reducing inflammation-associated pain for OA patients.  

Gillies and coworkers also investigated PEA particles for the delivery of potential OA 

therapies to joints. In the initial study, two different PEAs were compared [161]. One PEA was 

composed of L-phenylalanine, sebacic acid and 1,4-butanediol (PBSe, Figure 12B), while the 

other contained 1,8-octanediol instead of 1,4-butanediol (POSe, Figure 12C). The particles were 

prepared by an o/w emulsion process using PVA as a surfactant, and CXB was loaded at about 

20% w/w. The drug-loaded PBSe and POSe particles had average diameters of 1040 and 640 nm 

respectively based on SEM. Most importantly, the small structural difference between PBSe and 

POSe resulted in an important change in their thermal properties, with CXB-loaded PBSe 

particles having a glass transition temperature (Tg) of 41 °C and the analogous POSe particles 

having a Tg of 30 °C. These thermal data indicate that the PBSe particles would be in a glassy 

state at 37 °C, close to their transition, whereas the POSe particles would be in a rubbery state. 

Tensile testing was performed on CXB-loaded PBSe and POSe immersed in water at 37 °C and 

both materials had Young’s moduli in the range of the modulus for articular cartilage (0.4 – 0.8 

MPa). In vitro, the POSe particles released CXB more rapidly, with about 80% released over 60 

days, while the PBSe particles released only about 30% over the same time period, with no burst 

release. PBSe particles were still observed by SEM after 60 days, while POSe particle were 

largely destroyed in the first 7 days, presumably due to their rubbery state. Based on their more 

promising profile, the CXB-loaded PBSe particles were injected into the knees of healthy sheep. 

The particles were well tolerated by the sheep and were found in the synovial membrane.  

The PBSe particle delivery system was also applied by Gillies and coworkers to the 

encapsulation of the PPARδ antagonist GSK3787 [162]. The particles were prepared by a similar 

o/w emulsion method to that used for CXB, but it was necessary to reduce the drug loading to 

8% w/w to obtain particles. Thermal analysis suggested that the reason for this limit was that 

GSK3787 was phase-separated from the PEA, whereas CXB was homogeneously distributed 

throughout the PEA phase. The GSK3787-loaded particles had an average diameter of 580 nm 

based on SEM. In this work, the compression moduli of individual GSK3787-loaded particles 

were measured by atomic force microscopy, and the average modulus was 2.8 MPa, a bit higher 

than that of articular cartilage. In vitro, GSK3787 was released slowly from the particles, with 
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11% released over 30 days, and no burst release was observed. The drug, empty particles, and 

drug-loaded particles exhibited low cytotoxicity in immature murine articular cartilage (IMAC) 

cells. Ex vivo injections of IR-780-loaded particles into murine knee joints showed that the 

particles were still observable in the joints after 7 days. Overall, the delivery system is 

promising, but further research will be needed to assess its efficacy in OA models in vivo.  

 

3.5 Thermoresponsive polymers 

Thermoresponsive polymers have been extensively studied for biomedical applications [163]. In 

particular, poly(N-isopropylacrylamide) (pNIPAM, Figure 13A) exhibits a lower critical 

solution temperature (LCST) of about 32 °C, where it changes from a water-soluble hydrated 

state to a collapsed or aggregated state, driven by the entropically-favorable release of water 

molecules [164, 165]. This transition has been used to induce gelation and self-assembly of 

polymer systems for IA drug delivery. 

 

 
Figure 13. A) Chemical structure of pNIPAM; B) Particles designed to release the peptide 

KAFAK in response to elevated glutathione concentrations (Reproduced with permission from 

reference [166]. Copyright 2015 American Chemical Society); C) pNIPAM-hyaluronic acid 

(HA) graft copolymer conjugate that self-assemblies into nanoparticles above the lower critical 

solution temperature (LCST) to prolong the lifetime of HA on the joint (Reproduced with 

permission from reference [167]. Published by the Royal Society of Chemistry). 
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 Panitch and coworkers have investigated pNIPAM-based particles for the delivery of 

anti-inflammatory peptides [166, 168-171]. The team developed a 23-mer cell-penetrating 

peptide, referred to as KAFAK, that inhibits mitogen-activated protein kinase-activated protein 

kinase 2 (MK2), with the aim of reducing the expression of pro-inflammatory cytokines such as 

IL-1, TNFa, and IL-6 [172]. However, a delivery system was needed to protect the peptide from 

enzymatic degradation and increase its release time in vivo. In their early work, they prepared 

nanogels from NIPAM, and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) as 

monomers, as well as N,N’-methylenebisacrylamide (MBA), and N,O-

dimethacryloylhydroxylamine (DMHA) as crosslinkers [168]. The cationic KAFAK peptide was 

loaded into the nanogels through ionic complexation, facilitated by AMPS, below the LCST. 

DMHA degrades hydrolytically above pH 5. KAFAK was released over 24 h from the different 

systems, with higher release from the particles containing degradable DMHA. KAFAK was 

unable to completely release from the nondegradable particles.  

The KAFAK-loaded particles were later improved through the incorporation of PEG to 

impart stealth, and disulfide crosslinks to allow for selective degradation of the particles at 

enhanced rates under the conditions of low pH and elevated glutathione concentrations in 

intracellular compartments such as endosomes and lysosomes after cell uptake (Figure 13B) 

[166]. The resulting particles contained about 30% w/w KAFAK and were about 220 nm in 

diameter.  The particles were stable in the absence of reducing agents, but were degraded over 48 

h when the dithiothreitol (DTT) was added. The diameters of the particles decreased continually 

as the temperature was raised from 20 – 50 °C, due to chain collapse of pNIPAM. In addition, 

the presence of DTT or low pH (pH 4.0) induced the release of about 25-30 % of the KAFAK 

over 96 h, whereas in the absence of these stimuli at pH 7.4 only about 7% of the KAFAK was 

released. Considering the incorporation of the peptide by ionic interactions and the fact that more 

complete release could be achieved from particles without anionic AMPS, the low levels of 

KAFAK release are rather surprising, and suggest that irreversible aggregates composed of 

peptide and the pNIPAM-AMPS polymer may form. As pNIPAM is considered a non-

degradable polymer, it would not be expected to break down over the timeframe of the 

experiment to release the peptide. In vitro studies in RAW 264.7 murine macrophages showed 

that the KAFAK-loaded PEGylated reduction-sensitive particles inhibited the production of IL-6 
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and TNFa more effectively than the free peptide, as the free peptide was presumably degraded 

enzymatically in the presence of serum, while the particles protected the peptide. The authors 

also demonstrated the uptake of these particles into primary bovine chondrocytes and showed 

that they colocalized with endolysosomal compartments. Furthermore, they showed that 

fluorescein-labeled particles exhibited greater penetration through inflamed, aggrecan-depleted 

bovine cartilage explants compared to health cartilage. The particles were also able to suppress 

IL-6 secretion in these explants, whereas free KAFAK was not effective due to its degradation.    

 Subsequently, Panitch and coworkers addressed the challenge of limited KAFAK release 

through the development of hollow PEGylated pNIPAM particles [170]. First, degradable 

particle cores were prepared from NIPAM and N,N’-bis(acryloyl)cystamine (BAC) by free 

radical precipitation polymerization, then the shells were prepared from NIPAM, MBA, PEG-

acrylate, and AMPS in the presence of sodium dodecyl sulfate. The cores were subsequently 

degraded using DTT, and then the peptide was loaded into the shells of the hollow particles 

through ionic interactions. The particles had an average diameter of about 290 nm at 25 °C, 

which was reduced to 240 nm at 37 °C, due to the LCST of pNIPAM. The KAFAK loading was 

50% w/w, which was higher than for the solid particles described above, likely to their lower 

peptide diffusion barrier during loading of the hollow compared to solid particles. The hollow 

particles released 50% of the loaded peptide over 4 days in vitro. The particles were taken up by 

RAW 264.7 macrophages and were found in endolysosomal vesicles at 24 h. They were 

demonstrated to penetrate effectively into aggrecan-depleted bovine cartilage ex vivo, and 

significantly reduced IL-6 production in these explants. In recent work, Panitch and coworkers 

improved the hollow pNIPAM particles by lowering the crosslink density to allow the 

incorporation of the peptide YARA, a more specific MK2 inhibitor [171]. They also 

incorporated the degradable crosslinker into the shell, allowing it to degrade, facilitating the 

release of YARA. Overall, these results show the potential of these peptide delivery systems. An 

important next step will be their evaluation in an in vivo OA model.  

Allémann and coworkers conjugated pNIPAM to HA with the goal of increasing the 

residence time of HA injected into the joint (Figure 13C) [167]. The pNIPAM chains were 

grafted onto HA using a strain-promoted azide-alkyne cycloaddition reaction. At physiological 

temperature, the copolymers self-assembled to form particles with diameters ranging from 130 – 
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240 nm based on DLS. The formulations were injectable at room temperature, and when self-

assembled into particles imparted increased resistance of the HA to enzymatic degradation. The 

residence time of fluorescently-labeled particles exceeded 21 days, whereas HA alone diffused 

from the injection site during the first day. In a mouse surgical model of OA, the particles 

protected cartilage and reduced pro-inflammatory cytokines compared to controls. It was also 

suggested that the hydrophobic pNIPAM cores of the assemblies could potentially be used to 

encapsulate and delivery drugs in future studies.  

pNIPAM-based particles have also been employed in OA delivery systems designed to 

simultaneously provide enhanced lubrication and thermoresponsive drug delivery [173] (Figure 

14). Xu, Wang, Zhang, and coworkers prepared nanogels from N-isopropylacrylamide and 2-

methacryloyloxyethyl phosphorylcholine (MPC) by a w/o emulsion polymerization using 

methylene bisacrylamide (MBA) as a crosslinker. The resulting particles had a diameter of about 

220 nm at 25 °C, based on DLS, and the diameter gradually decreased to 145 nm as the 

temperature was increased to 50 °C. The NSAID DCF was loaded into the particles. At 25 °C 

they released 73% of the drug, whereas at 37 °C, 88% of drug was released over 72 h. 

Physiologically, the release rate at 37 °C would be the most relevant, so the system would be 

most useful for the relatively rapid release of therapeutics. The lubrication properties of the 

particles were investigated, and it was found that the coefficient of friction decreased as the 

content of MPC monomer was increased, up to about 20%, and also as the concentration of the 

particles increased, up to 20 mg/mL. The particles reduced wear between polytetrafluoroethylene 

(PTFE) and silicon, with their lubricating properties were attributed to the hydration layer 

associated with the charged groups on MPC, which mimics the behavior of phosphatidylcholine 

lipids. In vitro studies in primary murine chondrocytes showed that the particles had low 

cytotoxicity. In addition, the particle led to increased expression of aggrecan and decreased 

expression of MMP13 and ADAMTS5. In a related biomimetic approach, the same group 

grafted MPC to mesoporous silica nanospheres by photopolymerization [174]. These particles 

were also effective in enhancing lubrication and providing sustained release of DCF over 72 h. In 

a rat surgical model of OA, the DCF-loaded particles with grafted polyMPC led to the least 

cartilage damage, as indicated by histological evaluation, and a significant reduction in OARSI 

score compared to controls. These results were attributed to a down-regulation of catabolic 
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enzymes and up-regulation of anabolic factors arising from both the drug and lubricating 

properties. Overall, this system warrants further study as a potential OA therapy. 

 

Figure 14. Schematic of a delivery system containing zwitterion polymer for lubrication, 

pNIPAM for thermoresponsiveness, and drug loading capabilities. SDS = sodium dodecyl 

sulfate; APS = ammonium persulfate. Reproduced from reference [173] with permission from 

Wiley, under the terms of the Creative Commons CC BY license. 

 

pNIPAM has also been used by Ni, Kong, Zhao, and coworkers for the preparation of 

biomimetic inverse opal-structured particles loaded with both HA and DCF [175]. The particles 

were prepared by first self-assembling silica nanoparticles using a microfluidic device to 

generate colloidal crystal beads with interconnected nanovoids. These beads were then immersed 

in pNIPAM pre-gel, allowing the polymer to diffuse into the beads. The pNIPAM was 

crosslinked photochemically, and the outer hydrogel and the silica were removed. Subsequently, 

methacrylate-functionalized HA and DCF were loaded into the nanopores and the HA was 

crosslinked. The resulting particles were about 200 µm in diameter and released the DCF over 
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about 10 days, with slightly faster release at 39 °C than at 37 °C. The particles were well 

tolerated by human chondrocytes in vitro. In a rat surgical model of OA, the drug-loaded 

lubricating particles led to the most reduced cartilage damage and lowest OARSI scores 

compared to control groups, as well as the highest aggrecan and collagen 2 expression. These 

results the suggest the promise of this particle system for OA and reaffirm the potential benefits 

of combining drugs and lubricating properties in a single delivery system.   

3.6 PVA 

A Phase 2 clinical trial recently began to evaluate the safety, efficacy, and pharmacokinetics of 

EP-104AR in patients with knee OA. The system is composed of crystals of the corticosteroid 

fluticasone propionate, coated with a semipermeable shell of heat-treated PVA, resulting in 

particles with mean diameters in the range of 50 – 100 µm [176]. To determine the 

pharmacokinetic profile of EP-104AR, 0.6 mg and 12 mg doses were injected IA into Beagle 

dogs. The injections were well tolerated based on histopathology. At the lower dose, fluticasone 

propionate was not quantifiable in the plasma. At the higher dose, the peak concentration was 

measured one day post-injection and declined thereafter. After this time, many of the plasma 

concentrations were below the limit of quantitation, but crude estimates suggested a half-life of 

about 45 days for fluticasone propionate in plasma. In synovial fluid, the highest concentrations 

of drug were measured at the first assessment point of 7 days, and decreased with a half-life of 

about 11 days. All but one of the animals receiving the high dose had quantifiable drug 

concentrations at day 60 in the synovial fluid. In addition, quantifiable concentrations of the drug 

were detected in the cartilage of the dogs through day 60 and the half-life in cartilage was 

estimated to be about 14 days. This study showed the potential for EP-104AR to provide safe 

and prolonged delivery of the corticosteroid, which may relieve synovitis-associated pain and 

inflammation in OA patients. The current clinical study will evaluate the difference between the 

change from baseline to 12 weeks of the WOMAC pain subscale for EP-104AR compared to a 

vehicle control as its primary outcome measure. However, like other steroids, this steroid-based 

therapeutic would not be expected to alter the long-term disease course of OA. 

   

3.7 Amphiphilic copolymer assemblies      
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It is well established in the polymer field that amphiphilic polymers tend to assemble in aqueous 

solution into organized structures [177, 178]. This spontaneous process is driven by the 

hydrophobic effect, where hydrophobic molecules, or portions of molecules aggregate to exclude 

water molecules, avoiding the entropically unfavorable organization of water molecules around a 

hydrophobic solute. There are many ways in which amphiphilicity can be introduced to 

polymers, including the preparation of diblock or triblock copolymers where the different blocks 

have different hydrophilicity, as well as random copolymers, graft copolymers and other 

architectures (Figure 15). The size and morphology of the resulting assemblies can be tuned 

based on the structure of the copolymer as well as the conditions under which self-assembly is 

performed. There are several recent examples involving the preparation of amphiphilic 

copolymer particles for the IA delivery of drugs to potentially treat OA. 

 

 
Figure 15. Schematic illustration of an amphiphilic A) block copolymer; B) triblock copolymer; 

C) random copolymer; D) graft copolymer. 

  

  García and coworkers explored self-assembled polymer nanoparticles presenting the IL-

1 receptor antagonist IL-1Ra [179, 180]. The amphiphilic polymer was 20 kg/mol poly(2-

hydroxyethyl methacrylate) (pHEMA) functionalized on its pendent hydroxyl groups with 

nicotinyl chloride (Figure 16A) [179]. The polymers were self-assembled concomitantly with 

protein complexation, leading to particles with average diameters of 200 – 900 nm depending on 

the polymer:protein ratio and the identity of the particular protein. Using BSA with a near-IR 

fluorophore as a model protein, the role of particle size on retention time in rat joints was 

studied. Whereas free BSA had a half-life of only 0.6 days, BSA complexed to 500 and 900 nm 

particles had half-lives of 1.9 and 2.5 days respectively, with about 30% of BSA retained at 14 

days for the 900 nm particles. These results suggested that despite the protein immobilization 
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being non-covalent, the BSA likely remained complexed to the particles. Next, IL-1Ra was 

complexed at 1:1 and 3:2 protein:polymer ratios, leading to particles with average diameters of 

320 and 610 nm respectively, based on DLS and SEM. The particles were non-cytotoxic to 

RAW 264.7 macrophage cells. In addition, the particles inhibited IL-1b-stimulated NF-kB 

activation in a cell line expressing luciferase in response to NF-kB activation, showing that IL-

1Ra retained biological activity after complexation to the polymer assemblies. Overall, the 

bioactivity of the complexed IL-1Ra and enhanced retention of the self-assembled polymer-

protein particles suggest the potential for this new system in the treatment of OA, but to the best 

of our knowledge no further studies on its in vivo activity have been reported. 

 

 
Figure 16. A) Chemical structure of pHEMA functionalized with nicotinyl chloride; B) PEG-

PLGA functionalized with a FITC-labeled peptide to target collagen type 2; C) KGN-

functionalized polyurethane; D) Adenosine-functionalized PLA-PEG block copolymer; E) 
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Schematic of TGFa-functionalized micelles composed of PEG-PCL and PEG-PLL block 

copolymers and PEG-lipid (DSPE). 

 

 Lo and coworkers explored the potential for the short collagen type 2 binding peptide 

sequence WYRGRL to provide targeting of PEG-PLGA nanoparticles to cartilage tissue [181]. 

The particles were prepared from a mixture of 1:9 maleimide-functionalized-PEG-

PLGA:methoxy-terminated-PEG-PLGA using a double emulsion technique (Figure 16B). FITC-

tagged WYRGRLC peptide was then conjugated onto the NP surface via the cysteine thiol 

group. The average diameter of the particles was 256 nm, as measured by DLS. Polyacrylamide 

gel electrophoresis results showed that the FITC moiety did not disrupt the binding of the peptide 

to type 2 collagen. In vitro, the peptide-functionalized particles bound to human chondrocytes 

whereas particles functionalized with a random peptide sequence did not, based on fluorescence 

microscopy. The targeted particles also bound to cartilage tissue sections ex vivo. This study 

provided support for potential targeted delivery of the particles to cartilage. However, further 

studies will need to be performed to assess the ability of the particles to release drugs in a 

controlled manner and to exhibit sustained retention and cartilage penetration in vivo.   

 KGN-conjugated polyurethane particles were reported by Fan and coworkers [182]. 

Amphiphilic polyurethanes were synthesized via step-growth polymerization of PEG, N-

butyloxycarbonyl (BOC)-protected serinol, and hexamethylene diisocyanate, followed by 

removal of the BOC protecting groups (Figure 16C). KGN was then conjugated to the resulting 

pendent amines by a carbodiimide coupling. Particles were formed upon dialysis of the 

conjugation product against water, followed by lyophilization. Based on TEM and DLS, the 

resulting particles had an average diameter of about 25 nm. In vitro, about 20% of KGN was 

released over 15 days, and then it reached a plateau for a further 15 days. As amide bond 

hydrolysis to release KGN would not be expected to exhibit such a release profile, these results 

raise the question of whether the observed release corresponded to non-covalently bound drug. In 

vitro studies with primary rat chondrocytes showed that the particles were non-toxic at 

concentrations leading to the release of up to 100 nM of KGN based on the release studies and 

that they did not induce pro-inflammatory activity in these cells. In a rat surgical model of OA, 

the particles (administered every 3 weeks) led to less extensive cartilage degradation and lower 

OARSI scores at the 12 week end point than control non-treated rats. It was proposed that the 
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cationic charge of the particles, resulting from the non-functionalized amines, as well as their 

small size, facilitated their penetration into the cartilage matrix, providing an intra-cartilage 

release of KGN.  

 Ulman, Cronstein, and coworkers studied adenosine-functionalized PLA-PEG block 

copolymer nanoparticles [183]. It has been proposed that extracellular adenosine is an important 

homeostatic mechanism for chondrocytes and that loss of adenosine receptor-mediated 

homeostasis may contribute to OA development. Liposomal suspensions of adenosine prevented 

the development of OA, but did not exhibit sufficiently sustained release, so the authors 

proposed that covalent conjugation of adenosine to a polymeric nanocarrier would allow more 

effective and sustained activation of the adenosine receptor. The conjugates were prepared by 

azide-alkyne click reactions between an azide on the PEG terminus and adenosine functionalized 

with an alkyne at either the 3’,4’-OH groups, 5’ OH group, or 6-NH2 group. Both 400 and 2000 

g/mol PEG blocks were studied. The particles were prepared by an o/w emulsion process using 

poloxamer 188 as a surfactant, resulting in average diameters of 129 – 144 nm based on DLS. In 

RAW 264.7 macrophages, only the particles prepared from the 3’,4’-OH conjugate with a 2000 

g/mol PEG block (Figure 16D) stimulated the adenosine receptors. In primary murine 

chondrocytes, these nanoparticles reduced the IL-1b-stimulated expression of IL-6, MMP-13, 

and collagen 10. The effect was reversed by a receptor antagonist. IA injection of the adenosine-

functionalized particles into the knees of rats reduced swelling, decreased the OARSI score, and 

prevented cartilage loss in a surgical OA model compared to controls. Overall, these particles 

show promise for OA treatment. 

 Recently, Cheng, Qin, and coworkers used polymer micelles to deliver TGFa [184], a 

ligand capable of activating the epidermal growth factor receptor (EGFR), which is implicated in 

OA progression [185] (Figure 16E). The micelles were composed of PEG-PCL, poly(L-lysine) 

(PLL)-PCL, and an azide-functionalized PEG-lipid. TGFa was conjugated to the micelle surface 

using a strain-promoted azide-alkyne cycloaddition reaction. The particles had a diameter of 26 

nm based on DLS. The cationic surface charge imparted by the PLL-PCL enhanced cartilage 

penetration 5-fold over 6 days compared to particles without PLL-PCL. In addition, the particles 

led to enhanced retention of TGFa in mouse knee joints over 28 days compared with the free 

protein. In a mouse surgical model of OA, administration of the TGFa micelles led to elevated 

EGFR activity in cartilage and reduced cartilage damage based on histological analysis. In 
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addition, the micelles inhibited the thickening of the subchondral bone plate based on three-

dimensional micro-computed tomography, and reduced synovitis and pain. Overall this 

combination of drug and delivery system shows promise for further translation as a potential OA 

therapy. 

        

3.8 Dendrimers 

Dendrimers are a unique class of synthetic polymers that is composed of branching monomers. 

These monomers are incorporated onto a multivalent core, layer-by-layer, through step-wise 

synthesis, leading to well-defined branched macromolecules [186]. The dendrimer generation 

refers to the number of concentric layers surrounding the core. Compared to linear polymers, 

which have two end groups that do not usually impact substantially the properties of the 

polymer, dendrimers have many peripheral groups that dominate their properties. In addition, as 

the number of peripheral groups increases exponentially at each generation, the density of 

peripheral groups also increases, leading to spherical, globular conformations. Dendrimers have 

been of particular interest for biomedical applications because they can be synthesized with very 

reproducible molar masses, and their surface groups can be easily functionalized to introduce 

multiple drugs, imaging agents, or moieties to control their solubility, toxicity, and tissue 

targeting [187, 188]. So far, only one class of dendrimers, referred to as polyamidoamine 

(PAMAM) dendrimers (Figure 17A) has been explored for IA delivery. 
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Figure 17. A) Chemical structure of a PAMAM dendrimer; B) Schematics of PAMAM 

dendrimers conjugated to KGN either at the dendrimer surface or at the termini of PEG chains; 

C) Schematic of a PAMAM dendrimer conjugated to PEG and IGF-1. In B and C the number of 

PEG chains and amines are just representative and do not reflect the numbers of these groups in 

the actual structure. 

 

 Chang, Chen, and coworkers conjugated KGN to PAMAM dendrimers with the goal of 

inducing chondrocyte differentiation of MSCs [189]. First, PEG was conjugated to about 20 of 

the dendrimer’s 64 peripheral amines, then KGN was conjugated to about 10 of the remaining 

amines to give the conjugate called PPK (Figure 17B). Alternatively, KGN was first conjugated 

to one end of a H2N-PEG-NH2, and then the other end was conjugated to the dendrimer amines 

using a linker. Additional PEG chains were added to achieve similar overall PEGylation to PPK, 

giving a second conjugate called KPP with the drug on its periphery. Both dendrimers had 

average diameters of about 35 nm based on DLS, positive zeta-potentials, and were non-toxic to 

bone marrrow MSCs up to at least 50 µM equivalent of KGN. Treatment of the MSCs with 1 

µM equivalent of KGN led to upregulated expression of chondrogenic marker genes and 

increased levels of collagen type 2 and aggrecan for the free drug and both dendrimers compared 

to untreated controls. Overall, KPP was more effective in inducing chondrogenic differentiation, 
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because the PEG may have shielded the KGN in PPK. The PEGylated PAMAM dendrimers 

were labeled with Cy7, injected into the joints of healthy rats, and their residence time was 

compared to that of free Cy7 using in vivo imaging. Most of the signal for the free Cy7 

disappeared within the first 24 h, whereas 60% of the fluorescence of the Cy7-labeled dendrimer 

remained after 3 days. Similar results were also obtained in rat joints with IA induced by papain 

injection, with fluorescence from the dendrimers still detectable at 3 weeks. The retention of the 

dendrimers in the joint was attributed to their cationic charge allowing for binding to negatively 

charged species in the synovial fluid or to aggregation and subsequent macrophage uptake, 

providing a depot for prolonged release. 

 Hammond and coworkers studied cationic PAMAM dendrimers for IA delivery with the 

goal of achieving penetration into cartilage tissue, to effectively deliver IGF-1 to chondrocytes 

[190] (Figure 17C). Fourth and sixth generation dendrimers, with 64 and 256 peripheral amino 

groups respectively, were PEGylated at 0 – 60% of their amines. Fluorescently-labeled IGF-1 

was conjugated via a thiol-maleimide linkage and shown to retain biological activity equivalent 

to that of free IGF-1. Cartilage uptake of the dendrimers was measured after incubation with 

bovine cartilage disks for 24 h. All of the dendrimers preferentially partitioned into anionic 

cartilage tissue, presumably due to electrostatic interactions due to their cationic charges. 

PEGylation decreased this uptake. On the other hand, PEGylation enhanced the viability of 

CHON-001 chondrocytes incubated with the dendrimers for 48 h. To balance these effects, a 

generation four PAMAM with 35% of its amines PEGylated and a generation six PAMAM with 

45% of its amines PEGylated were selected for further study, as they provided high cartilage 

uptake, while retaining 100% cell viability at 10 µM of dendrimer. The dendrimer conjugates 

and free IGF-1 were injected IA into rat knees and the fluorescence within joints was monitored 

for 1 month using in vivo imaging. While free IGF-1 had a half-life of only 0.4 days, the 

generation four and six dendrimer conjugates had half-lives of 1 day and 4 days respectively. At 

6 days, IGF-1 was detected throughout the femoral cartilage. The sixth generation PAMAM-

IGF-1 conjugate was evaluated in a surgical rat model of OA. Compared to untreated rats and 

those treated with free IGF-1, rats treated with the dendrimer exhibited reduced cartilage 

degradation, reduced synovial inflammation, and reduced osteophyte burden. Overall, this study 

demonstrated how the size and peripheral functionalization of dendrimers could be successfully 

used to tune their toxicity and cartilage penetration, enhancing the efficacy of a potential OA 
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therapeutic by more effectively delivering it to chondrocytes. The PAMAM carrier can 

potentially be conjugated to other drugs, including both small molecules and proteins.  

 

4. Challenges and future perspectives 
Thus far, a wide array of polymers ranging from biopolymers to synthetic polymers, and hybrids 

thereof have been investigated for the preparation of particles for IA drug delivery to treat OA. 

However, in the context of polymer chemistry, where nearly an unlimited array of structures are 

possible and thousands of different polymers have been reported, the number of polymers that 

have been investigated is actually quite limited. Many more examples of polymers with “smart” 

functions such as stimuli-responsive drug release have been reported for anti-cancer drug 

delivery [191-193]. Researchers and companies interested in translating discoveries to the clinic 

in a timely manner often use established polymers such as PLGA, which have received 

regulatory approval previously for other applications. This is a valid approach, but the 

consequence is that promising emerging polymers may be overlooked and opportunities lost. In 

this context, it is important for both academic teams and industry to investigate new materials, 

and to perform clinical trials on these materials, with the goal of achieving regulatory approval 

for a greater diversity of polymer platforms. 

 One aspect that requires careful consideration for any injectable polymer is its 

biodegradability. Of the biopolymers investigated for IA delivery over the past 5 years, 

polysaccharides such as chitosan, HA, and CS likely degrade most rapidly [194-196], while silk 

fibroin degrades more slowly [103, 104]. Of the synthetic polymers discussed in this review, 

polyesters such as PLGA and PDLLA degrade more rapidly, while PCL and PEAs degrade more 

slowly [140, 141, 146]. Ultimately, the desired timeframe for polymer degradation will depend 

on the drug’s desired release profile. Synthetic polymers, such as pNIPAM, with carbon-carbon 

bonds throughout their backbones, would not be expected to degrade at appreciable rates in vivo, 

and would need to be excreted through renal or hepatic routes after leaving the joint to avoid 

accumulation over the long term. This lack of degradability could be a hindrance to clinical 

translation, as the long-term fate and effects of such materials after IA injection remains 

unknown.  

 The mechanical properties of particles injected into the joint are important, yet they have 

received little attention to date. Suspensions of drug crystals, including TAcs, are injected 
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routinely in clinical practice. However, the deposition of crystals such as calcium pyrophosphate 

in the synovium can lead to crystalline arthritis [197]. The reasons for crystal tolerance versus 

reactivity are not well understood and should be considered in the development of any 

crystallizing drug/delivery platform. The moduli of polyesters like PLGA, PDLLA, and PCL 

range from about 300 MPa to about 2 GPa [198, 199], much higher than that of joint tissues 

other than bone [200]. Therefore, it seems reasonable to be concerned that particles composed of 

polymers like PLGA could cause mechanical irritation in the joint. Particles can activate innate 

immune mechanisms, leading to intense inflammation via toll-like receptor binding of particles 

acting as danger-associated molecular patterns (DAMPs) [201]. This effect may be mitigated by 

the delivery of a corticosteroid or NSAID, as these are commonly used treatments for synovitis 

[197], but as the field moves toward the delivery of new disease-modifying drugs, it will be 

critical to ensure that the delivery system does not trigger joint inflammation. 

 Of the particle systems described in this review, the drug release times varied 

considerably, ranging from hours to months. In general, assemblies composed of hydrophilic 

polymers such as chitosan tended to release drugs rapidly in vitro, presumably due to enhanced 

water penetration [70, 71, 80]. On the other hand, the encapsulation of drugs into more 

hydrophobic polymers like PLGA [112, 115], PDLLA [143], and PEAs [156, 160-162] can lead 

to the release of drug over months. Nevertheless, even particles that released drug over months in 

vitro exhibited burst-type release profiles in vivo, with high and then rapidly decreasing 

concentrations of drug in the joint, suggesting there are additional factors such as enzymes and 

trafficking of the particles out of the joint that occur in vivo [114, 176]. Engineering the release 

profile of a drug from the delivery system is a complex issue. The concerns regarding a high 

initial burst release of drug include the potential for high local drug concentrations to lead to off-

target effects in the joint or systemic side effects, resulting from high plasma drug 

concentrations. Aside from potential side effects, sustained low concentrations of highly potent 

drugs in the joint after an initial burst release may be sufficient for therapeutic effects. In other 

cases, these low concentrations may be insufficient. In addition, depending on the mechanism of 

action of the drug, the clinical benefits may long exceed the half-life of the drug, while in other 

cases, sustained drug concentrations at a critical threshold may be needed. Overall, delivery 

systems capable of releasing drugs over extended time periods, and even in response to disease 

flares, as recently demonstrated for hydrogels [202, 203] may be beneficial. On the other hand, 
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for safety considerations clinicians may also want to “turn off” drug release if necessary. Such 

abilities have been engineered into genome editing approaches for OA [204], but may be 

challenging to incorporate into delivery systems for small molecule drugs.  

A further challenge is a lack of ability to correlate in vitro drug release profiles with in 

vivo release. It would be beneficial to measure drug release under more biologically relevant 

conditions in vitro. For example, enzymes could be added to the release media to mimic 

proteolytic degradation as suggested by Timur and coworkers [156]. However, even these 

approaches may be insufficient. In vivo animal models are likely the best pre-clinical correlate, 

but perhaps in vitro organ culture systems and/or organ-on-a-chip technologies could play a role 

in future early stage research. 

 Particle size and charge have been investigated to some extent, but remain important 

aspects for further study. To reach drug targets in chondrocytes, penetration through cartilage, a 

dense network of collagen fibrils and glycosaminoglycans, remains a challenge for most delivery 

systems [96]. The pore size has been suggested to be about 60 – 200 nm, so small nanoparticles 

are required, and as the matrix is anionic, a cationic particle charge can also facilitate cartilage 

penetration [96]. So far, effective cartilage penetration has been demonstrated for polypeptide 

complexes [107], PAA-coated PLGA particles [57], pNIPAM-based particles [170], and 

PEGylated PAMAM dendrimers [190]. The conjugation of peptide targeting groups was also 

shown to facilitate the accumulation of delivery systems in cartilage [57, 132, 181]. Differences 

in penetration between OA diseased cartilage and healthy cartilage were also observed [57]. On 

the other hand, while small nanosized particles more effectively penetrate cartilage than larger, 

micrometer-sized particles, they are also cleared more rapidly from the joint. The longest in vivo 

joint retention times have been observed for particles with diameters of at least 10 µm [142, 143, 

156, 160]. These particles tend to accumulate in the synovium, from which drugs can be released 

and delivered to other joint tissues. For example, after their release from particles, drugs can be 

drawn into cartilage tissue through cycles of compression and relaxation upon joint loading, the 

process by which nutrients are normally delivered to cartilage and wastes are cleared. Therefore, 

a micrometer-sized delivery system does not preclude the delivery of drugs into cartilage. 

Intermediately-sized particles (>200 nm to <10 µm) are eliminated at a rate that depends on the 

inflammatory state, which has been attributed to changes in vascular permeability with 

inflammation [142].  
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 Finally, matching the right drug with a suitable delivery system will be a critical factor in 

the efficacy of the drug delivery system. So far, most research on particles for IA drug delivery 

have involved the use of corticosteroids or NSAIDs. This approach is useful for demonstrating 

the safety of a new drug delivery system and its potential to provide sustained drug release in the 

joint. However, it is well established NSAIDs and corticosteroids do not alter OA progression 

[20, 25]. Many new targets are emerging for OA, leading to numerous new potential disease-

modifying therapies [30]. However, demonstrating the clinical efficacy and safety of these drugs 

has been an ongoing challenge. It is possible that regular systemic administration or a single IA 

injection of a small molecule or protein therapeutic may be insufficient to achieve the desired 

effects in the joint without dangerous side effects. Therefore, drug delivery systems can play an 

important role in making these potential therapies more effective. However, it is unlikely that 

there will be one delivery platform that will be suitable for all drugs. For each therapeutic it will 

be important to select and tailor the delivery system to release the appropriate concentration of 

drug, over the right time frame, at a suitable location in the joint. Thus, success in the future will 

ultimately depend on combining the right drug with right delivery system. 
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