351 research outputs found

    Novel Signal Noise Reduction Method through Cluster Analysis, Applied to Photoplethysmography

    Get PDF
    Physiological signals can often become contaminated by noise from a variety of origins. In this paper, an algorithm is described for the reduction of sporadic noise from a continuous periodic signal. The design can be used where a sample of a periodic signal is required, for example, when an average pulse is needed for pulse wave analysis and characterization. The algorithm is based on cluster analysis for selecting similar repetitions or pulses from a periodic single. This method selects individual pulses without noise, returns a clean pulse signal, and terminates when a sufficiently clean and representative signal is received. The algorithm is designed to be sufficiently compact to be implemented on a microcontroller embedded within a medical device. It has been validated through the removal of noise from an exemplar photoplethysmography (PPG) signal, showing increasing benefit as the noise contamination of the signal increases. The algorithm design is generalised to be applicable for a wide range of physiological (physical) signals

    A Geometric Characterization of the Power of Finite Adaptability in Multistage Stochastic and Adaptive Optimization

    Get PDF
    In this paper, we show a significant role that geometric properties of uncertainty sets, such as symmetry, play in determining the power of robust and finitely adaptable solutions in multistage stochastic and adaptive optimization problems. We consider a fairly general class of multistage mixed integer stochastic and adaptive optimization problems and propose a good approximate solution policy with performance guarantees that depend on the geometric properties of the uncertainty sets. In particular, we show that a class of finitely adaptable solutions is a good approximation for both the multistage stochastic and the adaptive optimization problem. A finitely adaptable solution generalizes the notion of a static robust solution and specifies a small set of solutions for each stage; the solution policy implements the best solution from the given set, depending on the realization of the uncertain parameters in past stages. Therefore, it is a tractable approximation to a fully adaptable solution for the multistage problems. To the best of our knowledge, these are the first approximation results for the multistage problem in such generality. Moreover, the results and the proof techniques are quite general and also extend to include important constraints such as integrality and linear conic constraints.National Science Foundation (U.S.) (Grant EFRI-0735905

    Successful sample preparation for serial crystallography experiments

    Get PDF
    Serial crystallography, at both synchrotron and X-ray free-electron laser light sources, is becoming increasingly popular. However, the tools in the majority of crystallization laboratories are focused on producing large single crystals by vapour diffusion that fit the cryo-cooled paradigm of modern synchrotron crystallography. This paper presents several case studies and some ideas and strategies on how to perform the conversion from a single crystal grown by vapour diffusion to the many thousands of micro-crystals required for modern serial crystallography grown by batch crystallization. These case studies aim to show (i) how vapour diffusion conditions can be converted into batch by optimizing the length of time crystals take to appear; (ii) how an understanding of the crystallization phase diagram can act as a guide when designing batch crystallization protocols; and (iii) an accessible methodology when attempting to scale batch conditions to larger volumes. These methods are needed to minimize the sample preparation gap between standard rotation crystallography and dedicated serial laboratories, ultimately making serial crystallography more accessible to all crystallographers

    Gene conversion in human rearranged immunoglobulin genes

    Get PDF
    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V<sub>H</sub> segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V<sub>H</sub> replacements with no addition of untemplated nucleotides at the V<sub>H</sub>–V<sub>H</sub> joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V<sub>H</sub> replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion

    Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors of Nsp3 papain-like protease

    Get PDF
    The COVID-19 pandemic has emerged as the biggest life-threatening disease of this century. Whilst vaccination should provide a long-term solution, this is pitted against the constant threat of mutations in the virus rendering the current vaccines less effective. Consequently, small molecule antiviral agents would be extremely useful to complement the vaccination program. The causative agent of COVID-19 is a novel coronavirus, SARS-CoV-2, which encodes at least nine enzymatic activities that all have drug targeting potential. The papain-like protease (PLpro) contained in the nsp3 protein generates viral non-structural proteins from a polyprotein precursor, and cleaves ubiquitin and ISG protein conjugates. Here we describe the expression and purification of PLpro. We developed a protease assay that was used to screen a custom compound library from which we identified dihydrotanshinone I and Ro 08-2750 as compounds that inhibit PLpro in protease and isopeptidase assays and also inhibit viral replication in cell culture-based assays

    The time dimension of neural network models

    Get PDF
    This review attempts to provide an insightful perspective on the role of time within neural network models and the use of neural networks for problems involving time. The most commonly used neural network models are defined and explained giving mention to important technical issues but avoiding great detail. The relationship between recurrent and feedforward networks is emphasised, along with the distinctions in their practical and theoretical abilities. Some practical examples are discussed to illustrate the major issues concerning the application of neural networks to data with various types of temporal structure, and finally some highlights of current research on the more difficult types of problems are presented

    Search for first generation leptoquark pair production in the electron + missing energy + jets final state

    Get PDF
    We present a search for the pair production of first generation scalar leptoquarks (LQ) in data corresponding to an integrated luminosity of 5.4 fb1^{-1} collected with the D0 detector at the Fermilab Tevatron Collider in ppbar collisions at s=1.96\sqrt{s}=1.96 TeV. In the channel LQLQˉeνeqqLQ \bar{LQ} \rightarrow e\nu_e qq', where q, q' are u or d quarks, no significant excess of data over background is observed, and we set a 95% C.L. lower limit of 326 GeV on the leptoquark mass, assuming equal probabilities of leptoquark decays to eq and νeq\nu_e q'.Comment: 7 pages, 6 figures, submitted to PRD-R
    corecore