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In this paper, we show a significant role that geometric properties of uncertainty sets, such as symmetry, play in

determining the power of robust and finitely adaptable solutions in multi-stage stochastic and adaptive optimiza-

tion problems. We consider a fairly general class of multi-stage mixed integer stochastic and adaptive optimization

problems and propose a good approximate solution policy with performance guarantees that depend on the ge-

ometric properties of the uncertainty sets. In particular, we show that a class of finitely adaptable solutions is a

good approximation for both the multi-stage stochastic as well as the adaptive optimization problem. A finitely

adaptable solution generalizes the notion of a static robust solution and specifies a small set of solutions for each

stage and the solution policy implements the best solution from the given set depending on the realization of

the uncertain parameters in past stages. Therefore, it is a tractable approximation to a fully-adaptable solution

for the multi-stage problems. To the best of our knowledge, these are the first approximation results for the

multi-stage problem in such generality. Moreover, the results and the proof techniques are quite general and also

extend to include important constraints such as integrality and linear conic constraints.
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1. Introduction. In most real world problems, several parameters are uncertain at the opti-

mization phase and decisions are required to be made in the face of these uncertainties. Deterministic

optimization is often not useful for such problems as solutions obtained through such an approach might

be sensitive to even small perturbations in the problem parameters. Stochastic optimization was intro-

duced by Dantzig [15] and Beale [1], and since then has been extensively studied in the literature. A

stochastic optimization approach assumes a probability distribution over the uncertain parameters and
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seeks to optimize the expected value of the objective function typically. We refer the reader to several

textbooks including Infanger [22], Kall and Wallace [24], Prékopa [26], Shapiro [28], Shapiro et al. [29]

and the references therein for a comprehensive review of stochastic optimization.

While the stochastic optimization approach has its merits and there has been reasonable progress in

the field, there are two significant drawbacks of the approach.

(i) In a typical application, only historical data is available rather than probability distributions.

Modeling uncertainty using a probability distribution is a choice we make, and it is not a primitive

quantity fundamentally linked to the application.

(ii) More importantly, the stochastic optimization approach is by and large computationally in-

tractable. Shapiro and Nemirovski [31] give hardness results for two-stage and multi-stage

stochastic optimization problems where they show the multi-stage stochastic optimization is

computationally intractable even if approximate solutions are desired. Dyer and Stougie [16]

show that a multi-stage stochastic optimization problem where the distribution of uncertain

parameters in any stage also depends on the decisions in past stages is PSPACE-hard.

To solve a two-stage stochastic optimization problem, Shapiro and Nemirovski [31] show that a sam-

pling based algorithm provides approximate solutions given that a sufficiently large number of scenarios

are sampled from the assumed distribution and the problem has a relatively complete recourse. A two-

stage stochastic optimization problem is said to have a relatively complete recourse if for every first stage

decision there is a feasible second stage recourse solution almost everywhere, i.e., with probability one

(see the book by Shapiro et al. [29]). Shmoys and Swamy [32, 33] and Gupta et al. [20, 21] consider the

two-stage and multi-stage stochastic set covering problem under certain restrictions on the objective coef-

ficients, and propose sampling based algorithms that use a small number of scenario samples to construct

a good first-stage decision. However, the stochastic set covering problem admits a complete recourse, i.e.,

for any first-stage decision there is a feasible recourse decision in each scenario, and the sampling based

algorithms only work for problems with complete or relatively complete recourse.

More recently, the robust optimization approach has been considered to address optimization under

uncertainty and has been studied extensively (see Ben-Tal and Nemirovski [6, 7, 8], El Ghaoui and

Lebret [17], Goldfarb and Iyengar [19], Bertsimas and Sim [13], Bertsimas and Sim [14]). In a robust

optimization approach, the uncertain parameters are assumed to belong to some uncertainty set and the

goal is to construct a single (static) solution that is feasible for all possible realizations of the uncertain
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parameters from the set and optimizes the worst-case objective. We point the reader to the survey by

Bertsimas et al. [9] and the book by Ben-Tal et al. [4] and the references therein for an extensive review

of the literature in robust optimization. This approach is significantly more tractable as compared to a

stochastic optimization approach and the robust problem is equivalent to the corresponding deterministic

problem in computational complexity for a large class of problems and uncertainty sets [9]. However,

the robust optimization approach has the following drawbacks. Since it optimizes over the worst-case

realization of the uncertain parameters, it may produce highly conservative solutions that may not perform

well in the expected case. Moreover, the robust approach computes a single (static) solution even for a

multi-stage problem with several stages of decision-making as opposed a fully-adaptable solution where

decisions in each stage depend on the actual realizations of the parameters in past stages. This may

further add to the conservativeness.

Another approach is to consider solutions that are fully-adaptable in each stage and depend on the

realizations of the parameters in past stages and optimize over the worst case. Such solution approaches

have been considered in the literature and referred to as adjustable robust policies (see Ben-Tal et al. [5]

and the book by Ben-Tal et al. [4] for a detailed discussion of these policies). Unfortunately, the adjustable

robust problem is computationally intractable and Ben-Tal et al. [5] introduce an affinely adjustable

robust solution approach to approximate the adjustable robust problem. Affine solution approaches (or

just affine policies) were introduced in the context of stochastic programming (see Gartska and Wets [18]

and Rockafeller and Wets [27]) and have been extensively studied in control theory (see the survey by

Bemporad and Morari [3]). Affine policies are useful due to their computational tractability and strong

empirical performance. Recently Bertsimas et al. [12] show that affine policies are optimal for a single

dimension multi-stage problem with box constraints and box uncertainty sets. Bertsimas and Goyal [11]

consider affine policies for the two-stage adaptive (or adjustable robust) problem and give a tight bound

of O(
√
dim(U)) on the performance of affine policies with respect to a fully-adaptable solution where

dim(U) denotes the dimension of the uncertainty set.

In this paper, we consider a class of solutions called finitely adaptable solutions that were introduced

by Bertsimas and Caramanis [10]. In this class of solutions, the decision-maker apriori computes a small

number of solutions instead of just a single (static) solution such that for every possible realization of the

uncertain parameters, at least one of them is feasible and in each stage, the decision-maker implements

the best solution from the given set of solutions. Therefore, a finitely adaptable solution policy is a

generalization of the static robust solution and is a middle ground between the static solution policy and
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the fully-adaptable policy. It can be thought of as a special case of a piecewise-affine policy where the

each piece is a static solution instead of an affine solution. As compared to a fully-adaptable solution,

which prescribes a solution for all possible scenarios (possibly an uncountable set), a finitely adaptable

solution has only a small finite number of solutions. Therefore, the decision space is much sparser and it

is significantly more tractable than the fully-adaptable solution. Furthermore, for each possible scenario,

at least one of the finitely adaptable solutions is feasible. This makes it different from sampling based

approaches where a small number of scenarios are sampled and an optimal decision is computed for only

the sampled scenarios, while the rest of the scenarios are ignored. We believe that finitely adaptable

solutions are consistent with how decisions are made in most real world problems. Unlike dynamic

programming that prescribes an optimal decision for each (possibly uncountable) future state of the

world, we make decisions for only a few states of the world.

We aim to analyze the performance of static robust and finitely adaptable solution policies for the

two-stage and multi-stage stochastic optimization problems, respectively. We show that the performance

of these solution approaches as compared to the optimal fully-adaptable stochastic solution depends on

fundamental geometric properties of the uncertainty set including symmetry for a fairly general class

of models. Bertsimas and Goyal [11] analyze the performance of static robust solution in two-stage

stochastic problems for perfectly symmetric uncertainty sets such as ellipsoids, and norm-balls. We

consider a generalized notion of symmetry of a convex set introduced in Minkowski [25], where the

symmetry of a convex set is a number between 0 and 1. The symmetry of a set being equal to one

implies that it is perfectly symmetric (such as an ellipsoid). We show that the performance of the static

robust and the finitely adaptable solutions for the corresponding two-stage and multi-stage stochastic

optimization problems depends on the symmetry of the uncertainty set. This is a two-fold generalization

of the results in [11]. We extend the results in [11] of performance of a static robust solution in two-

stage stochastic optimization problems, for general convex uncertainty sets using a generalized notion of

symmetry. Furthermore, we also generalize the static robust solution policy to a finitely adaptable solution

policy for the multi-stage stochastic optimization problem and give a similar bound on its performance

that is related to the symmetry of the uncertainty sets. The results are quite general and extend to

important cases such as integrality constraints on decision variables and linear conic inequalities. To

the best of our knowledge, there were no approximation bounds for the multi-stage problem in such

generality.
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2. Models and preliminaries. In this section, we first setup the models for two-stage and

multi-stage stochastic, robust, and adaptive optimization problems considered in this paper. We also

discuss the solution concept of finitely adaptability for multi-stage problems. Then we introduce the

geometric quantity of symmetry of a convex compact set and some properties that will be used in the

paper. Lastly, we define a quantity called translation factor of a convex set.

2.1 Two-stage optimization models. Throughout the paper, we denote vectors and ma-

trices using boldface letters. For instance, x denotes a vector, while α denotes a scalar. A two-stage

stochastic optimization problem, Π2
Stoch, is defined as,

zStoch := min
x,y(b)

cTx+ Eµ[dTy(b)] (2.1)

s.t. Ax+By(b) ≥ b, µ-a.e. b ∈ U ⊆ Rm+ ,

x ∈ Rp1 × Rn1−p1
+ ,

y(b) ∈ Rp2 × Rn2−p2
+ , ∀b ∈ U .

Here, the first-stage decision variable is denoted as x; the second-stage decision variable is y(b) for

b ∈ U , where b is the uncertain right-hand side with the uncertainty set denoted as U . The optimization

in (2.1) for the second stage decisions y(·) is performed over the space of piecewise affine functions, since

there are finitely many bases of the system of linear inequalities Ax +By(b) ≥ b. Note that some of

the decision variables in both the first and second stage are free, i.e., not constrained to be non-negative.

A probability measure µ is defined on U . Both A and B are certain, and there is no restriction on the

coefficients in A,B or on the objective coefficients c,d. The linear constraints Ax + By(b) ≥ b hold

for µ almost everywhere on U , i.e., the set of b ∈ U for which the linear constraints are not satisfied has

measure zero. We use the notation µ-a.e. b ∈ U to denote this.

The key assumption in the above problem is that the uncertainty set U is contained in the nonnegative

orthant. In addition, we make the following two technical assumptions.

(i) zStoch is finite. This assumption implies that zStoch ≥ 0. Since if zStoch < 0, then it must be

unbounded from below as we can scale the solution by an arbitrary positive factor and still get

a feasible solution.

(ii) For any first-stage solution x, and a second-stage solution y(·) that is feasible for µ almost

everywhere on U , Eµ[y(b)] exists.

These technical conditions are assumed to hold for all the multi-stage stochastic models considered in
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the paper as well. We would like to note that since A is not necessarily equal to B, our model does not

admit relatively complete recourse.

A two-stage adaptive optimization problem, Π2
Adapt, is given as,

zAdapt := min
x,y(b)

cTx+ max
b∈U

dTy(b)

s.t. Ax+By(b) ≥ b, ∀b ∈ U ⊆ Rm+ , (2.2)

x ∈ Rp1 × Rn1−p1
+ ,

y(b) ∈ Rp2 × Rn2−p2
+ , ∀b ∈ U .

Note that the above problem is also referred to as an adjustable robust problem in the literature (see

Ben-Tal et al. [5] and the book by Ben-Tal et al. [4]).

The corresponding static robust optimization problem, ΠRob, is defined as,

zRob := min
x,y

cTx+ dTy

s.t. Ax+By ≥ b, ∀b ∈ U ⊆ Rm+ , (2.3)

x ∈ Rp1 × Rn1−p1
+ ,

y ∈ Rp2 × Rn2−p2
+ .

Note that any feasible solution to the robust problem (2.3) is also feasible for the adaptive problem (2.2),

and thus zAdapt ≤ zRob. Moreover, any feasible solution to the adaptive problem (2.2) is also feasible for

the stochastic problem (2.1) and in addition, we have

cTx+ Eµ[dTy(b)] ≤ cTx+ max
b∈U

dTy(b),

leading to zStoch ≤ zAdapt. Hence, we have zStoch ≤ zAdapt ≤ zRob.

We would like to note that when the left hand side of the constraints, i.e., A and B are uncertain, even

a two-stage, two-dimensional problem can have an unbounded gap between the static robust solution and

the stochastic solution.

2.2 Multi-stage optimization models. For multi-stage problems, we consider a fairly gen-

eral model where the evolution of the multi-stage uncertainty is given by a directed acyclic network

G = (N ,A), where N is the set of nodes corresponding to different uncertainty sets, and A is the set of

arcs that describe the evolution of uncertainty from Stage k to (k + 1) for all k = 2, . . . ,K − 1. In each

Stage (k+ 1) for k = 1, . . . ,K− 1, the uncertain parameters uk belong to one of the Nk uncertainty sets,
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Uk1 , . . . ,UkNk
⊂ Rm+ . We also assume that the probability distribution of uk conditioned on the fact that

uk ∈ Ukj for all k = 2, . . . ,K, j = 1, . . . , Nk is known. In our notation, the multi-stage uncertainty net-

work starts from Stage 2 (and not Stage 1) and we refer to the uncertainty sets and uncertain parameters

in Stage (k + 1) using index k. Therefore, in a K-stage problem, the index k ∈ {1, . . . ,K − 1}.

In Stage 2, there is a single node U1, which we refer to as the root node. Therefore, N1 = 1. For

any k = 1, . . . ,K − 1, suppose the uncertain parameters uk in Stage (k + 1), belongs to Ukj for some

j = 1, . . . , Nk. Then for any edge from Ukj to Uk+1
j′ in the directed network, uk+1 ∈ Uk+1

j′ with probability

pkj,j′ , which is an observable event in Stage (k + 2). In other words, in Stage (k + 2), we can observe

which state transition happened in stage (k + 1). Therefore, at every stage, we know the realizations

of the uncertain parameters in past stages as well as the path of the uncertainty evolution in G and

the decisions in each stage depend on both of these. Note that since we also observe the path of the

uncertainty evolution (i.e. what edges in the directed network were realized in each stage), the uncertainty

sets in a given stage need not be disjoint. This model of uncertainty is a generalization of the scenario tree

model often used in stochastic programming (see Shapiro et al. [30]) where the multi-stage uncertainty

is described by a tree. If the directed acyclic network G in our model is a tree and each uncertainty set

is a singleton, our model reduces to a scenario tree model described in [30].

The evolution of the multi-stage uncertainty is illustrated in Figure 1. We would like to note that

this is a very general model of multi-stage uncertainty. For instance, consider a multi-period inventory

management problem, where the demand is uncertain. In each stage, we observe the realized demand and

also a signal from the market about the next period demand such as the weekly retail sales index. In our

model, the observed market signals correspond to the path in the multi-stage uncertainty network and

the observed demand is the actual realization of the uncertain parameters. As another example, consider

a multi-period asset management problem with uncertain asset returns. In each period, we observe the

asset returns and also a market signal such as S&P 500 or NASDAQ indices. Again, the market signals

correspond to the path in the multi-stage uncertainty network in our model and observed asset returns

are the realization of uncertain parameters in the model.

Let P denote the set of directed paths in G from the root node, U1
1 , to node UK−1

j , for all j =

1, . . . , NK−1. We denote any path P ∈ P as an ordered sequence, (j1, . . . , jK−1) of the indices of the

uncertainty sets in each stage that occur on P . Let Ω(P ) denote the set of possible realizations of the
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Figure 1: Illustration of the evolution of uncertainty in a multi-stage problem.

multi-stage uncertainty from uncertainty sets in P . For any P = (j1, . . . , jK−1) ∈ P,

Ω(P ) =
{
ω = (b1, . . . , bK−1)

∣∣ bk ∈ Ukjk , ∀k = 1, . . . ,K − 1
}
. (2.4)

For any P = (j1, . . . , jK−1) ∈ P, and k = 1, . . . ,K − 1, let P [k] denote the index sequence of

Path P from Stage 2 to Stage (k + 1), i.e., P [k] = (j1, . . . , jk). Let P[k] = {P [k] | P ∈ P}. Also,

for any ω = (b1, . . . , bK−1) ∈ Ω(P ), let ω[k] denote the subsequence of first k elements of ω, i.e.,

ω[k] = (b1, . . . , bk).

We define a probability measure for the multi-stage uncertainty as follows. For any k = 1, . . . ,K − 1,

j = 1, . . . , Nk, let µkj be a probability measure defined on Ukj that is independent of the probability

measures over other uncertainty sets in the network. Therefore, for any P = (j1, . . . , jK−1) ∈ P, the

probability measure µP over the set Ω(P ) is the product measure of µkjk , k = 1, . . . ,K−1. Moreover, the

probability that the uncertain parameters realize from path P is given by
∏K−2
k=1 pkjk,jk+1

. This defines a

probability measure on the set of realizations of the multi-stage uncertainty,
⋃
P∈P Ω(P ).

We can now formulate the K-stage stochastic optimization problem ΠK
Stoch, where the right-hand side
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of the constraints is uncertain, as follows.

zKStoch = min cTx+
K−1∑
k=1

EP∈P
[
EµP

[
dTk yk(ω[k],P [k])

]]
s.t. ∀P ∈ P, µP -a.e. ω = (b1, . . . , bK−1) ∈ Ω(P )

Ax+
K−1∑
k=1

Bkyk(ω[k],P [k]) ≥
K−1∑
k=1

bk,

x ∈ Rp1 × Rn1−p1
+ ,

yk(ω[k],P [k]) ∈ Rpk × Rnk−pk
+ , ∀k = 1, . . . ,K − 1,

(2.5)

There is no restriction on the coefficients in the constraint matrices A,Bk or on the objective coefficients

c,dk, k = 1, . . . ,K − 1. However, we require that each uncertainty set Ukj ⊆ Rm+ for all j = 1, . . . , Nk,

k = 1, . . . ,K − 1. As mentioned before, we assume that zKStoch is finite and the expectation of every

feasible multi-stage solution exists.

We also formulate the K-stage adaptive optimization problem ΠK
Adapt as follows.

zKAdapt = min cTx+ max
P∈P,ω∈Ω(P )

min
yk(ω[k],P [k]),k=1,...,K−1

K−1∑
k=1

dTk yk(ω[k],P [k])

s.t. ∀P ∈ P, ∀ω = (b1, . . . , bK−1) ∈ Ω(P )

Ax+
K−1∑
k=1

Bkyk(ω[k],P [k]) ≥
K−1∑
k=1

bk,

x ∈ Rp1 × Rn1−p1
+ ,

yk(ω[k],P [k]) ∈ Rpk × Rnk−pk
+ , ∀k = 1, . . . ,K − 1.

(2.6)

We also formulate the K-stage stochastic optimization problem ΠK
Stoch(b,d), where both the right-hand

side and the objective coefficients are uncertain, as follows. The subscript Stoch(b,d) in the subscript of

the problem name denotes that both the right hand side b and the objective coefficient d are uncertain.

Here, ω denotes the sequence of uncertain right-hand side and objective coefficients realizations and for

any k = 1, . . . ,K−1, ω[k] denotes the subsequence of first k elements. Also, for any P ∈ P, the measure

µP is the product measure of the measures on the uncertainty sets in Path P .

zKStoch(b,d) = min cTx+
K−1∑
k=1

EP∈P
[
EµP

[
dTk yk(ω[k],P [k])

]]
s.t. ∀P ∈ P, µP -a.e. ω =

(
(b1,d1), . . . , (bK−1,dK−1)

)
∈ Ω(P )

Ax+
K−1∑
k=1

Bkyk(ω[k],P [k]) ≥
K−1∑
k=1

bk,

x ∈ Rp1 × Rn1−p1
+ ,

yk(ω[k],P [k]) ∈ Rpk × Rnk−pk
+ , ∀k = 1, . . . ,K − 1.

(2.7)
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Also, we can formulate the K-stage adaptive problem ΠK
Adapt(b,d),

zKAdapt(b,d) = min cTx+ max
P∈P,ω∈Ω(P )

min
yk(ω[k],P [k]),k=1,...,K−1

K−1∑
k=1

dTk yk(ω[k],P [k])

s.t. ∀P ∈ P, ∀ω =
(
(b1,d1), . . . , (bK−1,dK−1)

)
∈ Ω

Ax+
K∑
k=1

Bkyk(ω[k],P [k]) ≥
K∑
k=1

bk,

x ∈ Rp1 × Rn1−p1
+ ,

yk(ω[k],P [k]) ∈ Rpk × Rnk−pk
+ , ∀k = 1, . . . ,K − 1.

(2.8)

In Section 7, we consider an extension to the case where the constraints are general linear conic

inequalities and the right hand side uncertainty set is a convex and compact subset of the underlying

cone. Furthermore, in Section 8, we also consider extensions of the above two-stage and multi-stage

models where some decision variables in each stage are integer.

2.3 Examples. In this section, we show two classical problems that can be formulated in our

framework to illustrate the applicability of our models.

Multi-period inventory management problem. We show that we can model the classical multi-

period inventory management problem as a special case of (2.5). In a classical single-item inventory

management problem, the goal in each period is to decide on the quantity of the item to order under an

uncertain future period demand. In each period, each unit of excess inventory incurs a holding cost and

each unit of backlogged demand incurs a per-unit penalty cost and the goal is to make ordering decisions

such that the sum of expected holding and backorder-penalty cost is minimized.

As an example, we model a 3-stage problem in our framework. Let Ω denote the set of demand

scenarios with a probability measure µ, x denote the initial inventory, yk(b1, . . . , bk) denote the backlog

and zk(b1, . . . , bk) denote the order quantity in Stage (k+1) when the first k-period demand is (b1, . . . , bk).

Let hk denote the per unit holding cost and pk denote the per-unit backlog penalty in Stage (k + 1).

We model the 3-stage inventory management problem as follows where the decision variables are x,

y1(b1), y2(b1, b2) and z1(b1) for all (b1, b2) ∈ U .

min Eb1
[
h1

(
x+ y1(b1)− b1

)
+ p1y1(b1) + Eb2|b1

[
h2

(
x+ z1(b1) + y2(b1, b2)− (b1 + b2)

)
+ p2y2(b1, b2)

]]
s.t. x+ y1(b1) ≥ b1, µ-a.e. (b1, b2) ∈ Ω

x+ z1(b1) + y2(b1, b2) ≥ b1 + b2, µ-a.e. (b1, b2) ∈ Ω

x, y1(b1), y2(b1, b2), z1(b1) ≥ 0.
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The above formulation can be generalized to a multi-period problem in a straightforward manner. We

can also generalize to multi-item variants of the problem. However, we would like to note that we can not

model a capacity constraint on the order quantity, since we require that the constraints are of “greater

than or equal to” form with nonnegative right-hand sides. Nevertheless, the formulation is fairly general

even with this restriction.

Capacity planning under demand uncertainty. In many important applications, we encounter the

problem of planning for capacity to serve an uncertain future demand. For instance, in a call center,

staffing capacity decisions need to be made well in advance of the realization of the uncertain demand.

In electricity grid operations, generator unit-commitment decisions are required to be made at least a

day ahead of the realization of the uncertain electricity demand because of the large startup time of

the generators. In a facility location problem with uncertain future demand, the facilities need to be

opened well in advance of the realized demand. Therefore, the capacity planning problem under demand

uncertainty is important and widely applicable.

We show that this can be modeled in our framework using the example of the facility location problem.

For illustration, we use a 2-stage problem. Let F denote the set of facilities and D denote the set of

demand points. For each facility i ∈ F , let xi be an integer decision variable that denotes the capacity

for facility i. For each point j ∈ D, let bj denote the uncertain future demand and let yij(b) denote the

amount of demand of j assigned to facility i when the demand vector is b. Also, let dij denote the cost of

assigning a unit demand from point j to facility i and let ci denote the per-unit capacity cost of facility

i. Therefore, we can formulate the problem as follows. Let U be the uncertainty set for the demand and

let µ be a probability measure defined on U .

min
∑
i∈F

cixi + Eµ

∑
j∈D

dijyij(b)


s.t.

∑
i∈F

yij(b) ≥ bj , µ-a.e. b ∈ U , ∀j ∈ D

xi −
∑
j∈D

yij(b) ≥ 0, µ-a.e. b ∈ U , ∀i ∈ F

xi ∈ Z+, ∀i ∈ F

yij(b) ∈ R+, ∀i ∈ F , j ∈ D, µ-a.e. b ∈ U .

2.4 Finitely adaptable solutions. We consider a finitely adaptable class of solutions for the

multi-stage stochastic and adaptive optimization problems described above. This class of solutions was

introduced by Bertsimas and Caramanis [10] where the decision-maker computes a small set of solutions
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in each stage apriori.

A static robust solution policy specifies a single solution that is feasible for all possible realizations of

the uncertain parameters. On the other extreme, a fully-adaptable solution policy specifies a solution

for each possible realization of the uncertain parameters in past stages. Typically, the set of possible

realizations of the uncertain parameters is uncountable which implies that an optimal fully-adaptable

solution policy is a function from an uncountable set of scenarios to optimal decisions for each scenario

and often suffers from the “curse of dimensionality”. A finitely adaptable solution is a tractable approach

that bridges the gap between a static robust solution and a fully-adaptable solution. In a general finitely

adaptable solution policy, instead of computing an optimal decision for each scenario, we partition the

scenarios into a small number of sets and compute a single solution for each possible set. The partitioning

of the set of scenarios is problem specific and is chosen by the decision-maker. A finitely adaptable solution

policy is a special case of a piecewise affine solution where the solution in each piece is a static solution.

For the multi-stage stochastic and adaptive problems (2.5) and (2.6), we consider the partition of the

set of scenarios based on the realized path in the multi-stage uncertainty network. In particular, in each

Stage (k + 1), the decision yk depends on the path of the uncertainty realization until Stage (k + 1).

Therefore, there are |P[k]| different solutions for each Stage (k+ 1), k = 1, . . . ,K − 1; one corresponding

to each directed path from the root node to a node in Stage (k+1) in the multi-stage uncertainty network.

For any realization of uncertain parameters and the path in the uncertainty network, the solution policy

implements the solution corresponding to the realized path. Figure 2 illustrates the number of solutions

in the finitely adaptable solution for each stage and each uncertainty set in a multi-stage uncertainty

network. In the example in Figure 2, there are following four directed paths from Stage 2 to Stage K

(K = 4): P 1 = (1, 1, 1),P 2 = (1, 1, 2),P 3 = (1, 2, 2),P 4 = (1, 2, 3). We know that P j [1] = (1) for all

j = 1, . . . , 4. Also, P 1[2] = P 2[2] = (1, 1) and P 3[2] = P 4[2] = (1, 2). Therefore, in a finitely adaptable

solution, we have the following decision variables apart from x.

Stage 2 : y1(1)

Stage 3 : y2(1, 1),y2(1, 2)

Stage 4 : y3(1, 1, 1),y3(1, 1, 2),y3(1, 2, 2),y3(1, 2, 3).

2.5 The symmetry of a convex set. Given a nonempty compact convex set U ⊂ Rm and

a point u ∈ U , we define the symmetry of u with respect to U as follows.

sym(u,U) := max{α ≥ 0 : u+ α(u− u′) ∈ U , ∀u′ ∈ U}. (2.9)
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U1
1

U2
1

U2
2

U3
1

U3
2

U3
3

{y1(1)}

{y2(1, 1)}

{y2(1, 2)}

{y3(1, 2, 3)}

{y3(1, 1, 1)}

{y3(1, 1, 2), y3(1, 2, 2)}

Figure 2: A Finitely Adaptable Solution for a 4-stage problem. For each uncertainty set, we specify the

set of corresponding solutions in the finitely adaptable solution policy.

In order to develop a geometric intuition on sym(u,U), we first show the following result. For this

discussion, assume U is full-dimensional.

Lemma 2.1 Let L be the set of lines in Rm passing through u. For any line l ∈ L, let u′l and u′′l be the

points of intersection of l with the boundary of U , denoted δ(U) (these exist as U is full-dimensional and

compact). Then,

a) sym(u,U) ≤ min
(‖u− u′′l ‖
‖u− u′l‖

,
‖u− u′l‖
‖u− u′′l ‖

)
,

b) sym(u,U) = min
l∈L

min
(‖u− u′′l ‖
‖u− u′l‖

,
‖u− u′l‖
‖u− u′′l ‖

)
.

Proof. Let sym(u,U) = α1. Consider any l ∈ L and consider u′l ∈ δ(U) as illustrated in Figure 3.

Let u′l,r = u+ α1(u−u′l). From (2.9), we know that u′l,r ∈ U . Note that u′l,r is a scaled reflection of u′l

about u by a factor α1. Furthermore, u′l,r lies on l. Therefore, u′l,r ∈ U implies that

‖u− u′l,r‖ ≤ ‖u− u′′l ‖ ⇒ α1 · ‖u− u′l‖ ≤ ‖u− u′′l ‖,

which in turn implies that

sym(u,U) = α1 ≤
‖u− u′′l ‖
‖u− u′l‖

.

Using a similar argument starting with u′′l instead of u′l, we obtain that

sym(u,U) ≤ ‖u− u
′
l‖

‖u− u′′l ‖
.
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To prove the second part, let

α2 = min
l∈L

min
(‖u− u′′l ‖
‖u− u′l‖

,
‖u− u′l‖
‖u− u′′l ‖

)
.

From the above argument, we know that sym(u,U) ≤ α2. Consider any u′ ∈ U . We show that

(u+ α2(u− u′)) ∈ U .

Let l denote the line joining u and u′. Clearly, l ∈ L. Without loss of generality, suppose u′ belongs

to the line segment between u and u′l. Therefore, u− u′ = γ(u− u′l) for some 0 ≤ γ ≤ 1 and

‖u− u′‖ ≤ ‖u− u′l‖. (2.10)

We know that

α2 ≤
‖u− u′′l ‖
‖u− u′l‖

⇒ α2‖u− u′l‖ ≤ ‖u− u′′l ‖

⇒ α2‖u− u′‖ ≤ ‖u− u′′l ‖,
where the last inequality follows from (2.10). Therefore, u + α2‖u − u′‖ belongs to the line segment

between u and u′′l and thus, belongs to U . Therefore, sym(u,U) ≥ α2. 2

u′
l

u′′
lU . Note that

u′
l,r

sym(u,U) = min
l∈L

min
(
‖u− u′′

l ‖
‖u− u′

l‖
,
‖u− u′

l‖
‖u− u′′

l ‖

)

l

u

Figure 3: Geometric illustration of sym(u,U).

The symmetry of set U is defined as

sym(U) := max{sym(u,U) | u ∈ U}. (2.11)

An optimizer u0 of (2.11) is called a point of symmetry of U . This definition of symmetry can be traced

back to Minkowski [25] and is the first and the most widely used symmetry measure. Refer to Belloni and

Freund [2] for a broad investigation of the properties of the symmetry measure defined in (2.9) and (2.11).
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Note that the above definition generalizes the notion of perfect symmetry considered by Bertsimas and

Goyal [11]. In [11], the authors define that a set U is symmetric if there exists u0 ∈ U such that, for any

z ∈ Rm, (u0 +z) ∈ U ⇔ (u0−z) ∈ U . Equivalently, u ∈ U ⇔ (2u0−u) ∈ U . According to the definition

in (2.11), sym(U) = 1 for such a set. Figure 4 illustrates symmetries of several interesting convex sets.

Figure 4: The figure on the left is a symmetric polytope with symmetry 1. The middle figure illustrates

a standard simplex in Rm with symmetry 1/m. The right figure shows the intersection of a Euclidean

ball with Rm+ , which has symmetry 1/
√
m.

Lemma 2.2 (Belloni and Freund [2]) For any nonempty convex compact set U ⊆ Rm, the symmetry

of U satisfies,

1
m
≤ sym(U) ≤ 1.

The symmetry of a convex set is at most 1, which is achieved for a perfectly symmetric set; and at least

1/m, which is achieved by a standard simplex defined as ∆ = {x ∈ Rm+ |
∑m
i=1 xi ≤ 1}. The lower bound

follows from Löwner-John Theorem [23] (see Belloni and Freund [2]). The following lemma is used later

in the paper.

Lemma 2.3 Let U ⊂ Rm+ be a convex and compact set such that u0 is the point of symmetry of U . Then,(
1 +

1
sym(U)

)
· u0 ≥ u, ∀u ∈ U .

Proof. From the definition of symmetry in (2.11), we have that for any u ∈ U ,

u0 + sym(U)(u0 − u) = (sym(U) + 1)u0 − sym(U)u ∈ U ,

which implies that (sym(U) + 1)u0 − sym(U)u ≥ 0 since U ⊂ Rm+ . 2



Bertsimas, Goyal and Sun: Power of Finite Adaptability in Multi-Stage Problems
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 16

2.6 The translation factor ρ(u,U). For a convex compact set U ⊂ Rm+ , we define a

translation factor ρ(u,U), the translation factor of u ∈ U with respect to U , as follows.

ρ(u,U) = min{α ∈ R+ | U − (1− α) · u ⊂ Rm+}.

In other words, U ′ := U − (1 − ρ)u is the maximum possible translation of U in the direction −u such

that U ′ ⊂ Rm+ . Figure 5 gives a geometric picture. Note that for α = 1, U − (1 − α) · u = U ⊂ Rm+ .

Therefore, 0 < ρ ≤ 1. And ρ approaches 0, when the set U moves away from the origin. If there exists

u ∈ U such that u is at the boundary of Rm+ , then ρ = 1. We denote

ρ(U) := ρ(u0,U),

where u0 is the symmetry point of the set U . The following lemma is used later in the paper.

Figure 5: Geometry of the translation factor.

Lemma 2.4 Let U ⊂ Rm+ be a convex and compact set such that u0 is the point of symmetry of U . Let

s = sym(U) = sym(u0,U) and ρ = ρ(U) = ρ(u0,U). Then,(
1 +

ρ

s

)
· u0 ≥ u, ∀u ∈ U .

Proof. Let U ′ = U − (1−ρ)u0. Let u1 := u0− (1−ρ)u0. Also let z := u0−u1 = (1−ρ)u0. Figure

5 gives a geometric picture. Note that sym(U ′) = sym(U) = s. From Lemma 2.3, we know that(
1 +

1
s

)
u1 ≥ u′, ∀u′ ∈ U ′.
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Adding z on both sides, we have,(
1 +

1
s

)
u1 + z ≥ u, ∀u ∈ U ,

⇒
(

1 +
1
s

)
ρu0 + (1− ρ)u0 ≥ u, ∀u ∈ U ,

⇒
(

1 +
ρ

s

)
u0 ≥ u, ∀u ∈ U .

2

3. Our contributions. The contributions of this paper are two-fold. We present two significant

generalizations of the model and results in Bertsimas and Goyal [11], where the authors characterize the

performance of static robust solutions for two-stage stochastic and adaptive optimization problems under

the assumption that the uncertainty sets are perfectly symmetric.

Firstly, we generalize the two-stage results to general uncertainty sets. We show that the performance

of a static robust solution for two-stage stochastic and adaptive optimization problems depends on the

general notion of symmetry (2.11) of the uncertainty set. The bounds are independent of the constraint

matrices and any other problem data. Our bounds are also tight for all possible values of symmetry and

reduce to the results in [11] for perfectly symmetric sets.

Secondly, we consider the multi-stage extensions of the two-stage models in [11] as described above and

show that a class of finitely adaptable solutions which is a generalization of the static robust solution, is

a good approximation for both the stochastic and the adaptive problem. The proof techniques are very

general and easily extend to the case where some of the decision variables are integer constrained and

the case where the constraints are linear conic inequalities for a general convex cone. To the best of our

knowledge, these are the first performance bounds for the multi-stage problem in such generality.

Our main contributions are summarized below.

Stochastic optimization. For the two-stage stochastic optimization problem under right-hand side

uncertainty, we show the following bound under a fairly general condition on the probability measure,

zRob ≤
(

1 +
ρ

s

)
· zStoch,

where s = sym(U) and ρ = ρ(U) are the symmetry and the translation factor of the uncertainty set,

respectively. Note that the above bound compares the cost of an optimal static solution with the expected

cost of an optimal fully-adaptable two-stage stochastic solution and shows that the static cost is at most

(1 + ρ/s) times the optimal stochastic cost. The performance of the static robust solution for the two-



Bertsimas, Goyal and Sun: Power of Finite Adaptability in Multi-Stage Problems
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 18

stage stochastic problem can possibly be even better. For the two-stage problem, we only implement the

first-stage part of the static robust solution. For the second-stage, we compute an optimal solution after

the uncertain parameters (right hand side in our case) is realized. Therefore, the expected second-stage

cost for this solution policy is at most the second-stage cost of the static robust solution and the total

expected cost is at most zRob ≤ (1 + ρ/s) · zStoch. Since zRob is an upper bound on the expected cost

of the solution obtained from an optimal static solution, the bound obtained by comparing zRob to the

optimal stochastic cost is in fact a conservative bound.

For multi-stage problems, we show that a K-stage stochastic optimization problem, ΠK
Stoch, can be

well approximated efficiently by a finitely adaptable solution. In particular, there is a finitely adaptable

solution with at most |P| solutions that is a (1 + ρ/s)-approximation of the original problem where s is

the minimum symmetry over all sets in the uncertainty network and ρ is the maximum translation factor

of any uncertainty set. Note that when all sets are perfectly symmetric, i.e., s = 1, the finitely adaptable

solution is a 2-approximation, generalizing the result of [11] to multi-stage. We also show that the bound

of (1 + ρ/s) is tight.

Note that since 0 < ρ ≤ 1 and s ≥ 1/m,(
1 +

ρ

s

)
≤ (m+ 1),

which shows that, for a fixed dimension, the performance bound for robust and finitely adaptable solutions

is independent of the particular data of an instance. This is surprising since when the left-hand side has

uncertainty, i.e., A,B are uncertain, even a two-stage two-dimensional problem can have an unbounded

gap between the static robust solution and the stochastic solution as mentioned earlier. This also indicates

that our assumptions on the model, namely, the right-hand side uncertainty (and/or cost uncertainty)

and the uncertainty set contained in the nonnegative orthant, are tight. If these assumptions are relaxed,

the performance gap becomes unbounded even for fixed dimensional uncertainty.

For the case when both cost and right-hand side are uncertain in ΠK
Stoch(b,d), the performance of any

finitely adaptable solution can be arbitrarily worse as compared to the optimal fully-adaptable stochastic

solution. This result follows along the lines of arbitrary bad performance of a static robust solution in

two-stage stochastic problems when both cost and right-hand sides are uncertain as shown in Bertsimas

and Goyal [11].

Adaptive optimization. We show that for a multi-stage adaptive optimization problem, ΠK
Adapt, where

only the right-hand side of the constraints is uncertain, the cost of a finitely adaptable solution is at
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most (1 + ρ/s) times the optimal cost of a fully-adaptable multi-stage solution, where s is the minimum

symmetry of all sets in the uncertainty network and ρ is the maximum translation factor of the point

of symmetry over all the uncertainty sets. This bound follows from the bound for the performance of a

finitely adaptable solution for the multi-stage stochastic problem. Furthermore, if the uncertainty comes

from hypercube sets, then a finitely adaptable solution with at most |P| solutions at each node of the

uncertainty network is an optimal solution for the adaptive problem.

For the case when both cost and right-hand side are uncertain in ΠK
Adapt(b,d), we show that the worst-

case cost a finitely adaptable solution with at most |P| different solutions at each node of the uncertainty

network is at most (1 + ρ/s)2 times the cost of an optimal fully-adaptable solution.

Extensions. We consider an extension of the above multi-stage models to the case where the constraints

are linear conic inequalities and the uncertainty set belongs to the underlying cone. We also consider the

case where some of the decision variables are constrained to be integers. Our proof techniques are quite

general and the results extend to both these cases.

For the case of linear conic inequalities and the uncertainty set contained in the underlying convex

cone, we show that a finitely adaptable (static robust) solution is a (1 + ρ/s)-approximation for the

multi-stage (two-stage respectively) stochastic and adaptive problem with right hand side uncertainty.

The result also holds for the adaptive problem with both the right hand side and objective coefficient

uncertainty and the performance bound for the finitely adaptable (static robust) solution is (1 + ρ/s)2

for the multi-stage (two-stage respectively) problem.

We also consider the case where some of the decision variables are integer constrained. For the multi-

stage (two-stage) stochastic problem with right hand side uncertainty, if some of the first-stage decision

variables are integer constrained, a finitely adaptable (static robust respectively) solution is a d(1 +ρ/s)e

approximation with respect to an optimal fully-adaptable solution. For the multi-stage adaptive problem,

we can handle integer constrained decision variables in all stages unlike the stochastic problem where we

can handle integrality constraints only on the first stage decision variables. We show that for the multi-

stage (two-stage) adaptive problem with right hand side uncertainty and integrality constraints on some

of the decision variables in each stage, a finitely adaptable (static robust respectively) solution is a

d(1 + ρ/s)e-approximation. For the multi-stage (two-stage) adaptive problem with both right hand side

and objective coefficient uncertainty and integrality constraints on variables, a finitely adaptable (static

robust respectively) solution is a d(1 + ρ/s)e · (1 + ρ/s)-approximation.
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Outline. The rest of the paper is organized as follows. In Section 4, we present the performance

bound of a static-robust solution that depends on the symmetry of the uncertainty set for the two-stage

stochastic optimization problem. We also show that the bound is tight and present explicit bounds for

several interesting and commonly used uncertainty sets. In Section 5, we present the finitely adaptable

solution policy for the multi-stage stochastic optimization problem and discuss its performance bounds.

In Section 6, we discuss the results for multi-stage adaptive optimization problems. In Sections 7 and 8,

we present extensions of our results for the models with linear conic constraints and integrality constraints

respectively.

4. Two-stage stochastic optimization problem. In this section, we consider the two-

stage stochastic optimization problem (2.1) and show that the performance of a static robust solution

depends on the symmetry of the uncertainty set.

Theorem 4.1 Consider the two-stage stochastic optimization problem in (2.1). Let µ be the probability

measure on the uncertainty set U ⊂ Rm+ , b0 be the point of symmetry of U , and ρ = ρ(b0,U) be the

translation factor of b0 with respect to U . Denote s = sym(U). Assume the probability measure µ

satisfies,

Eµ[b] ≥ b0. (4.1)

Then,

zRob ≤
(

1 +
ρ

s

)
· zStoch. (4.2)

Proof. From Lemma 2.4, we know that(
1 +

ρ

s

)
b0 ≥ b, ∀b ∈ U . (4.3)

For brevity, let τ := (1+ρ/s). Suppose (x,y(b) : b ∈ U) is an optimal fully-adaptable stochastic solution.

We first show that the solution, (τx, τE[y(b)]), is a feasible solution to the robust problem (2.3). By the

feasibility of (x,y(b) µ-a.e. b ∈ U), we have

A(τx) +B(τy(b)) ≥ τb, µ− a.e.b ∈ U .

Taking expectation on both sides, we have

A(τx) +B
(
τE[y(b)]

)
≥ τE[b] ≥ τb0 ≥ b, ∀b ∈ U ,

where the second inequality follows from (4.1) and the last inequality follows from (4.3). Therefore,

(τx, τE[y(b)]) is a feasible solution for the robust problem (2.3) and,

zRob ≤ τ · (cTx+ dTE[y(b)]). (4.4)
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Also, by definition, zStoch = cTx+ dTEb[y(b)], which implies that zStoch ≤ τ · zRob 2

For brevity, we refer to (4.2) as the symmetry bound. The following comments are in order.

(i) The symmetry bound (4.2) is independent of the problem data A,B, c,d, depending only on the

geometric properties of the uncertainty set U , namely the symmetry and the translation factor

of U .

(ii) Theorem 4.1 can also be stated in a more general way, removing Assumption (4.1) on the prob-

ability measure, and use the symmetry of the expectation point. In particular, the bound (4.2)

holds for s = sym(Eµ[b],U) and ρ = ρ(Eµ[b],U).

However, we would like to note that (4.1) is a mild assumption, especially for symmetric un-

certainty sets. Any symmetric probability measure on a symmetric uncertainty set satisfies this

assumption. It also emphasizes the role that the symmetry of the uncertainty set plays in the

bound.

(iii) As already mentioned in Section 3, a small relaxation from the assumptions of our model would

cause unbounded performance gap. In particular, if the assumption, U ⊂ Rm+ , is relaxed, or the

constraint coefficients are uncertain, the gap between zRob and zStoch cannot be bounded even

in small dimensional problems. The following examples illustrate this fact.

(a) U * Rm+ : Consider the instance where m = 1 and c = 0, d = 1, A = 0, B = 1, the uncertainty

set U = [−1, 1], and a uniform distribution on U . The optimal stochastic solution has cost

zStoch(b) = 0, while zRob(b) = 2. Thus, the gap is unbounded.

(b) A,B uncertain: Consider the following instance taken from Ben-Tal et al. [4],

min x

s.t.

− 1
2b

1

x+

 1

b− 2

 y(b) ≥

1

0

 ,∀b ∈ [0, r],

x, y(b) ≥ 0,∀b ∈ [0, r],

where 0 < r < 1. From the constraints, we have that x ≥ 2/(1− r). Therefore, the optimal

cost of a static solution is at least 2/(1− r). However, the optimal stochastic cost is at most

4. For details, refer to [4]. When r approaches 1, the gap tends to infinity.

4.1 Tightness of the bound. In this section, we show that the bound given in Theorem 4.1

is tight. In particular, we show that for any given symmetry and translation factor, there exist a family
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of instances of the two-stage stochastic optimization problem such that the bound in Theorem 4.1 holds

with equality.

Theorem 4.2 Given any symmetry 1/m ≤ s ≤ 1 and translation factor, 0 < ρ ≤ 1, there exist a family

of instances such that zRob = (1 + ρ/s) · zStoch.

Proof. For p ≥ 1, let

B+
p = {b ∈ Rm+ | ‖b‖p ≤ 1}.

In Appendix A.2, we show that

sym(B+
p ) =

(
1
m

) 1
p

,

and the symmetry point is,

b0(B+
p ) =

1
m1/p + 1

e,

where b0(U) denotes the symmetry point for any set U . Also, let (B+
p )′ := B+

p + re, for some r ≥ 0.

Then, given any symmetry s ≥ 1/m and translation factor, ρ ≤ 1, we can find a p ≥ 1 and r ≥ 0 such

that

s =
(

1
m

) 1
p

, ρ =
1

(m1/p + 1)r + 1
.

Now consider a problem instance where A = 0,B = I, c = 0,d = e, and a probability measure whose

expectation is at the symmetry point of (B+
p )′. The optimal static robust solution is y = (r + 1)e and

the optimal stochastic solution is y(b) = b for all b ∈ (B+
p )′. Therefore,

zStoch =
(
r +

1
m1/p + 1

)
m, zRob = (r + 1)m,

and,

zRob

zStoch
=

r + 1(
r + 1

m1/p+1

) = 1 +
ρ

s
,

which shows the bound in Theorem 4.1 is tight. 2

4.2 An alternative bound. In this section, we present another performance bound on the

robust solution for the two-stage stochastic problems, and compare it with the symmetry bound (4.2).

For an uncertainty set U , let bh as bhj := maxb∈U bj . Also, suppose the probability measure µ satis-

fies (4.1), i.e., Eµ[b] ≥ b0, where b0 is the symmetry point of U . Let

θ∗s := min{θ : θ · b0 ≥ bh}. (4.5)
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Using an argument similar to the proof of Theorem 4.1, we can show that the performance gap is at most

θ∗s , where the subscript s stands for stochasticity, i.e.,

zRob ≤ θ∗s · zStoch. (4.6)

Let s = sym(b0,U) and ρ = ρ(b0,U). From Lemma (2.4), we also know that(
1 +

ρ

s

)
· b0 ≥ b, ∀b ∈ U .

Therefore, θ∗s ≤ (1 + ρ/s). So, θ∗s is upper bounded by the symmetry bound obtained in Theorem 4.1.

For brevity, we refer to (4.5) as a scaling bound. A geometric picture is given in Figure 6. As shown in

the figure, u is obtained from scaling Eµ[b] by a factor greater than one such that u dominates all the

points in U , and θ∗s is the smallest such factor.

Figure 6: A geometric perspective on the stochasticity gap.

In the following section, we show that the scaling bound can be strictly tighter than the symmetry

bound. On the other hand, the symmetry bound relates the performance of a static robust solution to key

geometric properties of the uncertainty set. Furthermore, both bounds are equal for several interesting

classes of uncertainty sets as discussed in the following section. In Theorem 4.2, we show that the

symmetry bound is tight for any ρ ≤ 1, s ≥ 1/m for a family of uncertainty sets.

The symmetry bound reveals several key qualitative properties of the performance gap that are difficult

to see from the scaling bound. For example, for any symmetric uncertainty set, without the need to

compute bh and θ∗s , we have a general bound of two on the stochasticity gap. Since symmetry of any

convex set is at least 1/m, the bound for any convex uncertainty set is at most (m + 1). Both these

bounds are not obvious from the scaling bound. Most importantly, in practice the symmetry bound
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gives an informative guideline in designing uncertainty sets where the robust solution has guaranteed

performance.

4.3 Examples: Stochasticity gap for specific uncertainty sets. In this subsection,

we give examples of specific uncertainty sets and characterize their symmetry. Both bounds on the

stochasticity gap, the symmetry bound (4.2) as well the scaling bound (4.5), are presented in Table 1

for several interesting uncertainty sets. In most of the cases, the scaling bound is equal to the symmetry

bound. The proofs of the symmetry computation of various uncertainty sets are deferred to the Appendix.

No. Uncertainty set Symmetry Stochasticity gap

1 {b : ‖b‖p ≤ 1, b ≥ 0} 1
m1/p

1 +m
1
p (a,b)

2
{b : ‖b− b‖p ≤ 1, b1 ≥ b1} ⊂ Rm+ 1

21/p
1 + max

1≤i≤m
bi
−1

(b)

1 ≤ p <∞

3 {b : ‖b− b‖∞ ≤ 1, b1 ≥ b1} ⊂ Rm+ 1 1 + max
1≤i≤m

bi
−1

(a,b)

4 {b : ‖b− b‖p ≤ 1} ⊂ Rm+ 1 1 + max
1≤i≤m

b
−1

i (a,b)

5 {b : ‖E(b− b)‖2 ≤ 1} ⊂ Rm+ 1 1 + max
1≤i≤m

E−1
ii

bi
(a,b)

6 {b : ‖b‖p1 ≤ 1, ‖b‖p2 ≤ r, b ≥ 0} 1
rm1/p1

1 + rm
1

p1 (a,b)

7
Budgeted uncertainty set ∆k k

m
1 +

m

k
(a,b)

(1 ≤ k ≤ m)

8
Demand uncertainty set DU(µ,Γ)

1 1 +
Γ
µ

(a,b)

(µ ≥ Γ)

9
Demand uncertainty set DU(µ,Γ) √

mµ+ Γ
(1 +

√
m)Γ

1 +
(1 +

√
m)Γ√

mµ+ Γ
(a,b)

( 1√
m

Γ < µ < Γ)

10
Demand uncertainty set DU(µ,Γ) √

mµ+ Γ√
m(µ+ Γ)

1 +
√
m(µ+ Γ)√
mµ+ Γ

(a,b)

(0 ≤ µ ≤ 1√
m

Γ)

11 {b : L ≤ eT b ≤ U, b ≥ 0} 1
m− L

U

(m+ 1)− L

U
(a,b)

12 conv(∆1, {e})
1

m− 1
m (a,b)

13 conv(b1, . . . , bk)
1
m
≤ s ≤ 1 max

1≤i≤m

bhi
bi

(b)

14 {B ∈ Sm+ | I •B ≤ 1} 1
m

1 +m (a)

Table 1: Symmetry and corresponding stochasticity gap for various uncertainty sets. Note that footnote

(a) or (b) means the tight bound is from the symmetry bound (4.2) or the scaling bound (4.6).
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An Lp-ball intersected with the nonnegative orthant. We define,

B+
p := {b ∈ Rm+ | ‖b‖p ≤ 1},

for p ≥ 1. In Appendix A.2 we show the following.

sym(B+
p ) =

(
1
m

) 1
p

, b0(B+
p ) =

1

m
1
p + 1

e. (4.7)

Therefore, if U = B+
p and the probability measure satisfies condition (4.1), then zRob ≤ (1+m

1
p )zStoch.

The bound is tight as shown in Theorem 4.2. There are several interesting cases for B+
p uncertainty sets.

In particular,

(i) For p = 1, B+
p is the standard simplex centered at the origin. The symmetry is 1/m and

stochasticity gap is m+ 1.

(ii) For p = 2, B+
p is the Euclidean ball in the nonnegative orthant. Its symmetry is 1/

√
m, and the

stochasticity gap is 1 +
√
m.

(iii) For p = ∞, B+
p is a hypercube centered at e/2 and touches the origin. The symmetry is 1 and

the stochasticity gap is 2.

Ellipsoidal uncertainty set. An ellipsoidal uncertainty set is defined as,

U := {b ∈ Rm+ | ‖E(b− b)‖2 ≤ 1}, (4.8)

where E is an invertible matrix. Since U is symmetric, the stochasticity gap is bounded by 2 if U ⊆ Rm+

and the probability measure satisfies (4.1). In Appendix A.3, we show that the bound can be improved

to the following.

zRob ≤
(

1 + max
1≤i≤m

E−1
ii

bi

)
zStoch ≤ 2zStoch.

Intersection of two Lp-balls. Consider the following uncertainty set.

U := {b ∈ Rm+ | ‖b‖p1 ≤ 1, ‖b‖p2 ≤ r}, for 0 < r < 1 and 1 ≤ p1 < p2. (4.9)

Assume the following condition holds,

r

‖e‖p2
>

1
‖e‖p1

⇔ rm
1

p1 > m
1

p2 , (4.10)

which guarantees that the intersection of the two unit norm balls is non-trivial. In Appendix A.4, we

show that

sym(U) =
1

rm
1

p1

, b0(U) =
r

rm
1

p1 + 1
e. (4.11)
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The budgeted uncertainty set. The budgeted uncertainty set is defined as,

∆k :=

{
b ∈ [0, 1]m

∣∣∣∣ m∑
i=1

bi ≤ k
}
, for 1 ≤ k ≤ m. (4.12)

In Appendix A.5, we show that

sym(∆k) =
k

m
, b0(∆k) =

k

m+ k
e. (4.13)

Demand uncertainty set. We define the following set,

DU :=

{
b ∈ Rm+

∣∣∣∣ ∣∣∣∣∑i∈S bi − |S|µ√
|S|

∣∣∣∣ ≤ Γ, ∀S ⊆ N := {1, . . . ,m}
}
. (4.14)

Such a set can model the demand uncertainty where b is the demand of m products; µ and Γ are the

center and the span of the uncertain range.

The set DU has different symmetry properties, depending on the relation between µ and Γ. If µ ≥ Γ,

the set DU is in fact symmetric. Intuitively, DU is the intersection of an L∞ ball centered at µe with

(2m − 2m) halfspaces that are symmetric with respect to µe. If µ < Γ, DU is not symmetric any more

— part of it is cut off by the nonnegative orthant. In Appendix A.6, we present a proof of the following

proposition, which summarizes the symmetry property of DU for all the cases.

Proposition 4.1 Assume the uncertainty set is DU,

(i) If µ ≥ Γ, then,

sym(DU) = 1, b0(DU) = µe. (4.15)

(ii) If
1√
m

Γ < µ < Γ, then,

sym(DU) =
√
mµ+ Γ

(1 +
√
m)Γ

, b0(DU) =
(
√
mµ+ Γ)(µ+ Γ)√
mµ+ (2 +

√
m)Γ

e. (4.16)

(iii) If 0 ≤ µ ≤ 1√
m

Γ, then,

sym(DU) =
√
mµ+ Γ√
m(µ+ Γ)

, b0(DU) =
(
√
mµ+ Γ)(µ+ Γ)

2
√
mµ+ (1 +

√
m)Γ

e. (4.17)

5. Multi-stage stochastic problem under RHS uncertainty. In this section, we

consider the multi-stage stochastic optimization problem, ΠK
Stoch, under right hand side uncertainty where

the multi-stage uncertainty is described by a directed network as discussed earlier. We show that a

finitely adaptable class of solutions is a good approximation for the fully-adaptable multi-stage problem.

Furthermore, the performance ratio of the finitely adaptable solution depends on the geometric properties
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of the uncertainty sets in the multi-stage uncertainty network. The number of solutions at each Stage

(k + 1) for k = 1, . . . ,K − 1 depends on the number of directed paths in the uncertainty network from

the root node to nodes in Stage (k + 1). Therefore, if P is the set of all directed paths from Stage 2 to

Stage K, the total number of solutions in any stage in the finitely adaptable solution policy is bounded

by |P|.

Theorem 5.1 Let s = mink,j sym(uk,j ,Ukj ) and ρ = maxk,j ρ(uk,j ,Ukj ). Suppose Eb[b | b ∈ Ukj ] ≥ uk,j

where uk,j is the point of symmetry of Ukj ⊆ Rm+ for all j = 1, . . . , Nk, k = 1, . . . ,K − 1. Then there

is a finitely adaptable solution policy that can be computed efficiently and has at most |P| solutions in

each stage, where P is the set of directed paths from the root node in Stage 2 to nodes in Stage K in the

multi-stage uncertainty network, such that the expected cost is at most (1 + ρ/s) times the optimal cost

of ΠK
Stoch.

5.1 Algorithm. We first describe an algorithm to construct a finitely adaptable solution. In

each Stage (k+ 1) for k = 1, . . . ,K − 1, the set of finitely adaptable solutions contains a unique solution

corresponding to each directed path from the root node in Stage 2 to a node in Stage (k+ 1). Therefore,

we consider |P[k]| solutions in Stage (k + 1) each indexed by P [k] for all P ∈ P. In other words,

the finitely adaptable solution is specified by the first-stage solution x, and for each Stage (k + 1) for

k = 1, . . . ,K−1, yk(P [k]) for all P [k] ∈ P[k]. Recall that for any P = (j1, . . . , jK−1) ∈ P, the probability

that the uncertain parameters realize from the path P is given by,

Pr(j1, . . . , jK−1) =
K−2∏
k=1

pkjk,jk+1
, (5.1)

and the measure µP is defined as a product measure of the measures on the uncertainty sets in Path P .

We first show that for any k = 1, . . . ,K − 1, j = 1, . . . , Nk, (1 + ρ/s) · uk,j dominates all points in Ukj

coordinatewise.

Lemma 5.1 For any k = 1, . . . ,K, j = 1, . . . , Nk, for all u ∈ Ukj ,(
1 +

ρ

s

)
· uk,j ≥ u.

Proof. Let ρ1 = ρ(uk,j ,Ukj ), s1 = sym(uk,j ,Ukj ). From Lemma 2.4, we know that(
1 +

ρ1

s1

)
· uk,j ≥ u, ∀u ∈ Ukj .

By definition in Theorem 5.1, we know that ρ1 ≤ ρ and s1 ≥ s. Therefore, for all u ∈ Ukj ,(
1 +

ρ

s

)
· uk,j ≥

(
1 +

ρ1

s1

)
· uk,j ≥ u.
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2

We consider the following multi-stage problem to compute the finitely adaptable solution.

zA = min cTx+
K−1∑
k=1

EP∈P [dTk yk(P [k])]

s.t. ∀P = (j1, . . . , jK−1) ∈ P

Ax+
K−1∑
k=1

Bkyk(P [k]) ≥
(

1 +
ρ

s

)
·
K−1∑
k=1

uk,jk

x ∈ Rp1 × Rn1−p1
+ ,

yk(P [k]) ∈ Rpk × Rnk−pk
+ , ∀k = 1, . . . ,K − 1.

(5.2)

The number of constraints in (5.2) is equal to |P| ·m, where m is the number of rows of A,Bk for all

k = 1, . . . ,K − 1. Also, the number of decision variables in each Stage (k + 1) for k = 1, . . . ,K − 1 is

|P[k]|, namely, yk(P [k]) for all P [k] ∈ P[k]. Therefore, the solution is finitely adaptable as there are

only a finite number of solutions in each stage. Furthermore, in some cases, the number of directed paths

is small and polynomial in the size of the uncertainty network. For instance, if the uncertainty network

is a path, we require exactly one solution at each stage in our finitely adaptable solution. If the network

is a tree, then there is a single path to each uncertainty set from the root node in Stage 2 and therefore,

the number of solutions in the finitely adaptable solution is exactly equal to the number of uncertainty

sets in the uncertainty network. However, in general, the number of directed paths can be exponential

in the input size. For example, for the case of a recombining directed network in Figure 1, the number

of directed paths from the root node to the node j in Stage (k + 1), j = 1, . . . , Nk is equal to
(
k
j

)
, which

is exponential in k, while the input size is O(k2).

In the next subsection, we show that the finitely adaptable solution computed in (5.2) is a good

approximation of a fully-adaptable optimal stochastic solution.

5.2 Proof of Theorem 5.1. For brevity, let τ = (1 + ρ/s). The proof proceeds as follows.

We first consider a particular finitely adaptable solution feasible to (5.2), which implies that its expected

cost is at least zA. We then extend this particular finitely adaptable solution to a fully-adaptable one

without changing its expected cost. Finally, we show that the expected cost of the extended solution is

equal to τ times the expected cost of an optimal fully-adaptable solution.

Let x̂, ŷk(ω[k],P [k]) denote an optimal fully-adaptable solution for ΠK
Stoch for all k = 1, . . . ,K − 1,

P ∈ P, µP -a.e. ω ∈ Ω(P ). For the first step of the proof, we consider the following particular finitely
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adaptable solution for (5.2). For all P ∈ P, k = 1, . . . ,K − 1, let

yk(P [k]) = τ · Eω∈Ω(P ) [ŷk(ω[k],P [k])] . (5.3)

Also, let x = τ · x̂. We show that the above finitely adaptable solution is feasible for (5.2). Consider any

P = (j1, . . . , jK−1) ∈ P. Now,

Ax̂+
K−1∑
k=1

Bkŷk(ω[k],P [k]) ≥
K−1∑
k=1

bk, µP -a.e. ω = (b1, . . . , bK−1) ∈ Ω(P ).

Taking conditional expectation with respect to µP on both sides, we have that

Ax̂+
K−1∑
k=1

BkEµP

[
ŷk (ω[k],P [k])

]
≥
K−1∑
k=1

EµP

[
bk
]
≥

K∑
k=1

uk,jk , (5.4)

where the last inequality follows as EµP
[bk] ≥ uk,jk . Therefore, for any P = (j1, . . . , jK−1) ∈ P,

Ax+
K−1∑
k=1

Bkyk(P [k]) = A(τ · x̂) +
K−1∑
k=1

Bk

(
τ · EµP

[
dTk ŷk (ω[k],P [k])

])
= τ ·

(
Ax̂+

K−1∑
k=1

BkEµP

[
dTk ŷk(ω[k],P [k])

])

≥ τ ·
(
K−1∑
k=1

uk,jk

)
, (5.5)

where (5.5) follows from (5.4). Therefore, the solution x,y is a feasible solution for (5.2). Let z be the

expected cost of x, y, i.e.,

z = cTx+
K−1∑
k=1

EP∈P [dTk yk(P [k])].

Clearly, zA ≤ z. For the second step of the proof, we extend the finitely adaptable solution x,y to a

feasible solution x̃, ỹ for ΠK
Stoch as follows.

x̃ = x

ỹk(ω[k],P [k]) = yk(P [k]), ∀P ∈ P, ∀k = 1, . . . ,K − 1.
(5.6)

We show that the extended solution x̃, ỹ is a feasible solution for ΠK
Stoch. Consider any P =

(j1, . . . , jK−1) ∈ P, ω = (b1, . . . , bK−1) ∈ Ω(P ). Therefore,

Ax̃+
K−1∑
k=1

Bkỹk(ω[k],P [k]) = Ax+
K−1∑
k=1

Bkyk(P [k])

≥ τ ·
K−1∑
k=1

uk,jk (5.7)

≥
K−1∑
k=1

bk,

where (5.7) follows from the feasibility of the solution x,y for (5.2) and the last inequality follows from
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Lemma 5.1. Let z̃ be the expected cost of x̃, ỹ, i.e.,

z̃ = cT x̃+
K−1∑
k=1

EP∈P
[
EµP

[dTk ỹk(ω[k],P [k])]
]

= cTx+
K−1∑
k=1

EP∈P
[
EµP

[dTk yk(P [k])]
]

= cTx+
K−1∑
k=1

EP∈P [dTk yk(P [k])] (5.8)

= z

where (5.8) follows from (5.6). Now, we compare z̃ to the expected cost of an optimal fully-adaptable

solution as follows.

z̃ = z

= cTx+
K−1∑
k=1

EP∈P [dTk yk(P [k])]

= cT (τ · x) +
K−1∑
k=1

EP∈P
[
dTk
(
τ · EµP

[ŷk(ω[k],P [k])]
)]

= τ · zKStoch, (5.9)

where (5.9) follows from the optimality of x̂, ŷ for ΠK
Stoch. Combining zA ≤ z and (5.9), we obtain that

zA ≤ τ · zKStoch. �

Stochastic problem under cost and RHS uncertainty. For the multi-stage stochastic problem,

ΠK
Stoch(b,d) where both the objective coefficients and the right hand side are uncertain, a finitely adaptable

solution performs arbitrarily worse as compared to the fully-adaptable solution. It follows from one of the

results in Bertsimas and Goyal [11], where the authors show that a static-robust solution may perform

arbitrarily worse as compared to an optimal fully-adaptable two-stage solution for the stochastic problem

when both cost and right hand side are uncertain.

6. Multi-stage adaptive problem. In this section, we consider multi-stage adaptive op-

timization problems and show that a finitely adaptable solution is a good approximation to the fully-

adaptable solution. Furthermore, the performance bound of a finitely adaptable solution is related to the

symmetry and translation factors of the uncertainty sets as in the case of stochastic optimization prob-

lems. The approximation guarantee for the case when only the right hand sides of the multi-stage adaptive

problem are uncertain, ΠK
Adapt, follows directly from the approximation bounds for the stochastic prob-

lem. Surprisingly, we can also show that a finitely adaptable solution is also a good approximation for the

multi-stage adaptive problem when both the right hand sides and the objective coefficients are uncertain,
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ΠK
Adapt(b,d), unlike the stochastic counterpart. Our results generalize the performance of a static robust

solution for two-stage adaptive optimization problem under right hand side and/or objective coefficient

uncertainty.

6.1 Right hand side uncertainty, ΠK
Adapt. We show that there is a finitely adaptable

solution with at most |P| solutions for each stage and each uncertainty set, that is a good approximation of

the fully-adaptable problem. Furthermore, such a finitely adaptable solution can be computed efficiently

using exactly the algorithm described in Section 5.1. The performance bound of the finitely adaptable

solution policy follows directly from its performance bound with respect to the stochastic problem in

Theorem 5.1. Therefore, we have the following theorem.

Theorem 6.1 Suppose s = mink,j sym(Ukj ) and uk,j ∈ Ukj ⊆ Rm+ is the point of symmetry for all

j = 1, . . . , Nk, k = 1, . . . ,K − 1. Let ρ = maxk,j ρ(Ukj ) for all j = 1, . . . , Nk, k = 1, . . . ,K − 1. Then

there is a finitely adaptable solution policy that can be computed efficiently and has at most |P| solutions

in each stage, where P is the set of directed paths from the root node to any node in Stage K of the

multi-stage uncertainty network, such that its worst-case cost is at most (1 + ρ/s) times the optimal cost

of ΠK
Adapt.

6.2 RHS and cost uncertainty. In this section, we consider the multi-stage adaptive op-

timization problem where both the right hand side and the objective coefficients are uncertain. While

for the stochastic problem, the performance of a finitely adaptable solution can be arbitrarily bad with

respect to an optimal stochastic solution, surprisingly, we can show that there exists a finitely adaptable

solution with at most |P| solutions for each stage for each uncertainty set, that is a good approximation

for the multi-stage problem.

Theorem 6.2 Suppose s = mink,j sym(Ukj ) and uk,j ∈ Ukj ⊆ Rm+nk
+ is the point of symmetry for all

j = 1, . . . , Nk, k = 1, . . . ,K−1. Also, let ubk,j ,u
d
k,j denote the right hand side and the objective coefficient

uncertainty in uk,j respectively. Let ρ = maxk,j ρ(Ukj ) for all j = 1, . . . , Nk, k = 1, . . . ,K−1. Then there

is a finitely adaptable solution policy that can be computed efficiently and has at most |P| solutions where

P is the set of directed paths from the root node to any node in Stage K of the multi-stage uncertainty

network, such that its worst-case cost is at most (1 + ρ/s)2 times the optimal cost of ΠK
Adapt(b,d).

Proof. From Lemma 2.4, we know that for any uncertainty set Ukj in Stage (k+1), u ≤ (1+ρ/s)·uk,j

for all u ∈ Ukj . We compute a finitely adaptable solution by solving the following multi-stage problem
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similar to the one used to compute a finitely adaptable solution for the stochastic counterpart.

min cTx+ max
P∈P

min
yk(P [k]),k=1,...,K−1

K−1∑
k=1

dTk yk(P [k])

s.t. ∀P = (j1, . . . , jK−1) ∈ P

Ax+
K−1∑
k=1

Bkyk(P [k]) ≥
(

1 +
ρ

s

)
·
K−1∑
k=1

ubk,jk ,

x ∈ Rp1 × Rn1−p1
+ ,

yk(ω[k],P [k]) ∈ Rpk × Rnk−pk
+ , ∀k = 1, . . . ,K − 1.

(6.1)

Note that the above problem is similar to (5.2) except the objective function. Using an argument similar

to the second part of the proof of Theorem 5.1 (see Section 5.2), we can show that a finitely adaptable

solution of (6.1) can be extended to a feasible fully-adaptable solution for ΠK
Adapt(b,d) of the same worst-

case cost.

Suppose (x̂, ŷk(ω[k],P [k])) for all k = 1, . . . ,K−1, P ∈ P,ω ∈ Ω(P ) denote a optimal fully-adaptable

solution for ΠK
Adapt(b,d). As defined earlier, for any P = (j1, . . . , jK−1) ∈ P, let

ωP = (u1,j1 , . . . ,uK−1,jK−1), (6.2)

Consider the following approximate solution for (6.1).

x̃ =
(

1 +
ρ

s

)
· x̂, (6.3)

and for any P ∈ P, for all k = 1, . . . ,K − 1,

ỹk(P [k]) =
(

1 +
ρ

s

)
· ŷk(ωP [k],P [k]). (6.4)

For brevity, as before, let τ = (1 + ρ/s). We first need to show that the solution x̃, ỹ is feasible for (6.1).

For any P = (j1, . . . , jK−1) ∈ P,

Ax̃+
K−1∑
k=1

Bkỹk(P [k]) = τ ·
(
Ax̂+

K−1∑
k=1

Bkŷk(ωP [k],P [k])

)
≥ τ ·

(
K−1∑
k=1

uk,jk

)
,

where the last inequality follows from the feasibility for ŷ for ωP . Thus, the solution x̃, ỹ is feasible

for (6.1).

To bound the worst-case cost of the solution, we show that for any P ∈ P, the cost of the approximate

finitely adaptable solution is at most (1 + ρ/s)2 times the worst-case cost of the optimal fully-adaptable
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solution. Consider any P = (j1, . . . , jK−1) ∈ P. Now,

cT x̃+
K−1∑
k=1

dTk ỹk(P [k]) = τ ·
(
cT x̂+

K−1∑
k=1

dTk ŷk(ωP [k],P [k])
)

≤ τ ·
(
cT x̂+

K−1∑
k=1

(
τ · (udk,jk)T ŷk(ωP [k],P [k])

) )
(6.5)

= τ · cT x̂+ τ2 ·
(
K−1∑
k=1

(udk,jk)T ŷk(ωP [k],P [k])

)
≤ τ2 · zKAdapt(b,d), (6.6)

where (6.5) follows as d ≤ τ · udk,jk for all (b,d) ∈ Ukjk , k = 1, . . . ,K − 1. Inequality (6.6) follows as

ωP ∈ Ω(P ) and thus, is a feasible scenario in ΠK
Adapt(b,d). 2

6.3 An alternative bound. In this section, we discuss an alternative bound for the perfor-

mance of the finitely adaptable solution as compared to the optimal fully-adaptable solution similar to

the one we present for the stochastic problem. For the sake of simplicity, we present this alternative

bound for the adaptive problem under right hand side uncertainty, ΠK
Adapt. The bound extends in a

straightforward manner to the case of both right hand side and cost uncertainty.

The proof of Theorem 6.1 (and also Theorem 6.2) is based on the construction of a good finitely

adaptable solution from an optimal fully-adaptable solution in the following manner. For each P ∈ P,

we consider the scenario ωP where in each stage the uncertain parameter realization is the point of

symmetry of the corresponding uncertainty set on path P . We show that the solution for scenario

ωP scaled by a factor (1 + ρ/s) is a good feasible finitely adaptable solution for all ω ∈ Ω(P ). Since

ωP ∈ Ω(P ), the cost for an optimal solution for this scenario is a lower bound on zKAdapt which implies

a bound of (1 + ρ/s) for the finitely adaptable solution with respect to the optimal. Now, if for some

other scenario ω′(P ) ∈ Ω(P ), a smaller scaling factor than (1 + ρ/s) suffices to obtain a feasible finitely

adaptable solution for all ω ∈ Ω(P ) for all P ∈ P, this would imply a smaller bound on the performance

of the finitely adaptable solution.

Following the discussion in Section 4.2, we define bh(U) as follows. For all j = 1, . . . ,m, bhj (U) :=

maxb∈U bj . Let

θ(U) = min{θ | ∃b ∈ U , θ · b ≥ bh(U)}.

Note that θ(U) ≤ (1+ρ/s) as (1+ρ/s) ·b0 ≥ bh(U), where b0 is the point of symmetry of U , ρ = ρ(b0,U),

and s = sym(b0,U). Let b1(U) denote the vector b ∈ U that achieves the minimum value of θ. Let

θ∗a = max
k=1,...,K,j=1,...,Nk

θ(Ukj ).
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For each k = 1, . . . ,K − 1, j = 1, . . . , Nk, θ(Ukj ) is defined by a feasible uncertainty realization from Ukj .

Therefore, scaling the solution corresponding to b1(Ukj ) by a factor θ∗a ≥ θ(Ukj ) produces a feasible finitely

adaptable solution. Also, as we note above, θ∗a ≤ (1+ρ/s). Therefore, θ∗a is upper bounded by the bound

in Theorem 6.1. We refer to θ∗a as a scaling bound as earlier.

We can interpret the scaling bound geometrically as follows. For any U ⊆ Rm+ , let θ = θ(U), b1 = b1(U),

and bh = bh(U). We know that

θ · b1 ≥ bh ⇒ b1 ≥ 1
θ
· bh.

Therefore, 1/θ is the minimum scaling factor for bh such that it is dominated by some point in U

coordinate-wise. Note that (1/θ) · bh does not necessarily belong to U but is always contained in,

Ũ = {b ∈ Rm+ | ∃b′ ∈ U , b′ ≥ b}. (6.7)

To see this, consider the following uncertainty set, U ⊂ R3
+, where U = conv

(
(0, 0, 0), (1, 0, 1), (0, 1, 1)

)
.

We can alternatively define U as U = {b ∈ [0, 1]3 | b3 = b1 + b2}. It is easy to observe that bh = (1, 1, 1).

We show that b1 = (1/2, 1/2, 1) ∈ U and θ = 2. We know that θb1j ≥ 1 for all j = 1, 2. Therefore,

b13 = b11 + b12 ≥
2
θ
.

Furthermore, b13 ≤ 1 which implies that θ ≥ 2. For θ = 2, b1 = (1/2, 1/2, 1) ∈ U satisfies θb1 ≥ bh. Now,

1
θ
· bh =

1
2
· (1, 1, 1) /∈ U .

However, b1 ≥ (1/θ)bh, and b1 ∈ U which implies that (1/θ)bh ∈ Ũ as defined in (6.7). The geometric

picture is given in Figure 7. Note that in Figure 7, b1 = (1/θ)bh but this is not true in general as

illustrated in the above example.

For certain uncertainty sets, the scaling bound of θ∗a is strictly better than the bound in Theorem 6.1.

(i) Hypercube. Suppose each uncertainty set in the multi-stage uncertainty network is a hypercube.

Therefore, s = 1. Also, suppose ρ = 1 where ρ is as defined in Theorem 6.1. The bound

in Theorem 6.1 is (1 + ρ/s) = 2. On the other hand, θ∗a = 1 since bh(U) ∈ U , when U is a

hypercube. Therefore, the two bounds are in fact different. The scaling bound implies that

the finitely adaptable solution is optimal, while the symmetry bound implies that it is only a

2-approximation for the multi-stage adaptive optimization problem.

(ii) Hypersphere. Suppose the uncertainty sets are all hyperspheres in Rm+ , i.e., L2-balls, with unit

radius and centered at e = (1, 1, . . . , 1). Therefore, ρ = 1 and also s = 1 which implies that the
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Figure 7: A geometric perspective on the adaptability gap.

bound from Theorem 6.1 is 2. On the other hand, it is easy to note that the scaling bound,

θ∗a =
2

1 + 1/
√
m
.

In this case, the scaling bound is not significantly better than the bound in Theorem 6.1.

7. Extension to general cones. We consider extensions of our results to the case where the

constraints are general linear conic inequalities and the uncertainty set belongs to the underlying cone.

For simplicity, we discuss the two-stage case. The generalization also applies to the multi-stage problems.

7.1 Stochastic problem with linear conic constraints. We consider the following

two-stage conic stochastic optimization problem.

zK
Stoch := min

x,y(b)
cTx+ Eµ[dTy(b)]

s.t. Ax+ By(b) �K b, µ-a.e. b ∈ U , (7.1)

x ∈ Rp1 × Rn1−p1
+ ,

y(b) ∈ Rp2 × Rn2−p2
+ ,

where K is a closed pointed convex cone in a finite dimensional space, such as the nonnegative orthant

Rm+ , the second-order cone (SOC) {(b, t) ∈ Rm+1 : ‖b‖2 ≤ t}, and the semidefinite cone Sm+ . Here A,B are

mappings from Rn1 and Rn2 to the finite dimensional space that contains K, respectively. For example,

if K is the nonnegative orthant or the second-order cone, both A and B are matrices of the appropriate
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dimension. If K is the semi-definite (SDP) cone, then A,B are linear mappings defined as,

Ax =
n1∑
i=1

xiAi, By =
n2∑
i=1

yiBi,

where Ai and Bi are symmetric matrices. The linear conic inequality (7.1) is equivalent to the inclusion

in the cone, i.e., Ax+ By(b) �K b ⇔ Ax+ By(b)− b ∈ K.

Lemma 7.1 Suppose the convex, compact set U ⊂ K, and b0 is the point of symmetry of U . Then,(
1 +

1
sym(U)

)
· b0 �K b, ∀b ∈ U .

Proof. By the definition of symmetry and the assumption that U ⊂ K, we have for any b ∈ U ,

b0 + sym(U)(b0 − b) = (sym(U) + 1)b0 − sym(U)b ∈ K. 2

Theorem 7.1 Consider the two-stage stochastic optimization problem in (7.1). Let µ be the probability

measure on the uncertainty set U , b0 be the point of symmetry of U , and ρ = ρ(b0,U) be the translation

factor of b0 with respect to U . Denote s = sym(U). Assume the probability measure µ satisfies, Eµ[b] �K

b0. Then the cost of an optimal static solution is at most (1 + ρ/s) · zK
Stoch.

The proof of the above theorem is similar to the proof of Theorem 4.1. For the sake of completeness,

we present the proof of Theorem 7.1 in Appendix B. A similar result holds for the corresponding adaptive

optimization problem as well.

8. Extensions to integer variables. We can extend our results to the case when some

decision variables are integer constrained for both the stochastic as well as the adaptive optimization

problems. In the case of the multi-stage stochastic optimization problem with right hand side uncertainty,

we can handle integer decision variables only in the first stage. Whereas for the multi-stage adaptive

problem, we can handle integer decision variables in every stage for both versions, ΠK
Adapt and ΠK

Adapt(b,d).

8.1 Multi-stage stochastic problem. We consider the multi-stage stochastic problem,

ΠK
Stoch as defined in (2.5) with an additional constraint that some of the first-stage decision variables

x are required to be integers. Even for this case, we show that a finitely adaptable solution provides a

good approximation.

Theorem 8.1 Consider the multi-stage stochastic problem ΠK
Stoch (2.5), with additional integer con-

straints on some first stage decision variables. Suppose Eb[b | b ∈ Ukj ] = uk,j for all j = 1, . . . , Nk,

k = 1, . . . ,K − 1. Let s = mink,j sym(uk,j ,Ukj ) and ρ = maxk,j ρ(uk,j ,Ukj ). Then there is a finitely
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adaptable solution policy that can be computed efficiently and has at most |P| solutions in each stage,

where P is the set of directed paths from the root node to nodes in Stage K in the multi-stage uncertainty

network, such that the expected cost is at most d(1 + ρ/s)e times the optimal cost.

The proof of Theorem 8.1 is exactly similar to the proof of Theorem 5.1 except that we need to handle

the integrality constraints in constructing a feasible finitely adaptable solution. Therefore, instead of

scaling the optimal fully-adaptable solution by a factor of (1+ρ/s) to construct a feasible finitely adaptable

solution,we need to scale by d(1 + ρ/s)e to preserve the integrality constraints. This implies that the

performance ratio of the finitely adaptable solution with respect to an optimal fully-adaptable solution is

at most d(1+ρ/s)e. Note that the stochastic problem, with both right hand side and objective coefficients

uncertainty, can not be well approximated by a finitely adaptable solution even without the integrality

constraints.

8.2 Multi-stage adaptive optimization problem. For the multi-stage adaptive prob-

lem, we can handle integer decision variables in all stages. In particular, we have the following theorems.

Theorem 8.2 Consider the multi-stage adaptive problem, ΠK
Adapt (2.6), with additional integer con-

straints on some decision variables in each stage. Suppose s = mink,j sym(Ukj ) and uk,j ∈ Ukj is the

point of symmetry for all j = 1, . . . , Nk, k = 1, . . . ,K − 1. Let ρ = maxk,j ρ(Ukj ) for all j = 1, . . . , Nk,

k = 1, . . . ,K − 1. Then there is a finitely adaptable solution policy that can be computed efficiently and

has at most |P| solutions where P is the set of directed paths from the root node to any node in Stage

K of the multi-stage uncertainty network, such that its worst-case cost is at most d(1 + ρ/s)e times the

optimal cost.

Theorem 8.3 Consider the multi-stage adaptive problem, ΠK
Adapt(b,d) (2.8), with additional integer con-

straints on some decision variables in each stage. Suppose s = mink,j sym(Ukj ) and uk,j ∈ Ukj is the point

of symmetry for all j = 1, . . . , Nk, k = 1, . . . ,K − 1. Also, let ubk,j ,u
d
k,j denote the right hand side and

the objective coefficient uncertainty in uk,j respectively. Let ρ = maxk,j ρ(uk,j ,Ukj ) for all j = 1, . . . , Nk,

k = 1, . . . ,K − 1. Then there is a finitely adaptable solution policy that can be computed efficiently and

has at most |P| solutions where P is the set of directed paths from the root node to any node in Stage

K of the multi-stage uncertainty network, such that its worst-case cost is at most d(1 + ρ/s)e · (1 + ρ/s)

times the optimal cost of ΠK
Adapt(b,d).
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9. Conclusions. In this paper, we propose tractable solution policies for two-stage and multi-

stage stochastic and adaptive optimization problems and relate the performance of the approximate

solution approaches with the fundamental geometric properties of the uncertainty set. For a fairly general

stochastic optimization problem, we show that the performance of a static robust solution for the two-

stage problem and a finitely adaptable solution for the multi-stage problem is related to the symmetry

and translation factor of the uncertainty sets. In particular, the performance bound is (1+ρ/s) where ρ is

the translation factor of the uncertainty sets and s is the symmetry. We also show that the bound is tight,

i.e., given any symmetry and translation factor, there exists a family of instances where the uncertainty

sets have the given symmetry and translation factor, and the cost of an optimal static robust solution is

exactly equal to (1 + ρ/s) times the optimal stochastic cost. For most commonly used uncertainty sets,

the performance bound gives quite interesting results. For instance, if the sets are perfectly symmetric,

i.e., s = 1, the bound is less than or equal to 2. Refer to Table 1 for a list of examples of several interesting

uncertainty sets and corresponding bounds. In any model, the uncertainty set is the modeler’s choice.

Our bound offers important insights in this choice of uncertainty set as well.

While we show that the stochastic problem with only right hand side uncertainty can be well approx-

imated, the static robust solution and the finitely adaptable solution are not a good approximation for

the case where both the right hand side and the objective coefficients are uncertain. However, for the

adaptive optimization problem, we show that the static robust and the finitely adaptable solution are

a good approximation for the two-stage and multi-stage version respectively, even when both the right

hand side and the objective coefficients are uncertain. The performance bound in this case is (1 + ρ/s)2

where again ρ is the translation factor of the uncertainty sets and s is the symmetry. This bound is not

as strong as the bound for the stochastic problem. We also present an alternate geometric bound for this

case.
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Appendix A. Examples: Symmetry of specific sets. Our main tool in calculating

the symmetry of a convex compact set is the following proposition in Belloni and Freund [2],

Proposition A.1 (Belloni and Freund [2]) Let S be a convex body, and consider the representation

of S as the intersection of halfspaces: S = {x ∈ Rm|aTi x ≤ bi, i ∈ I} for some (possibly unbounded)

index set I, and let δ∗i := maxx∈S{−aTi x} for i ∈ I. Then for all x ∈ S,

sym(x, S) = inf
i∈I

{
bi − aTi x
δ∗i + aTi x

}
.

A.1 General Lp half-ball for p ≥ 1. Define an Lp half-ball as

HBp := {b ∈ Rm | ‖b‖p ≤ 1, b1 ≥ 0}.

The dual norm is the Lq norm with 1
p + 1

q = 1. The symmetry of Lp half-ball is summarized as follows,

Proposition A.2 The symmetry and point of symmetry of an Lp half-ball are,

sym(HBp) =
(

1
2

) 1
p

, b0(HBp) =
1

2
1
p + 1

e1.

Proof. The Lp half-ball can be represented by halfspaces as

HBp = {b ∈ Rm | − b1 ≤ 0,πT b ≤ 1,∀‖π‖q ≤ 1, π1 ≥ 0}.

For each π in the dual unit ball (i.e., ‖π‖q = 1), define

δ∗(π) := max
‖b‖p≤1,b1≥0

−πT b,

whose optimum b∗ satisfies b∗1 = 0, ‖b∗‖p = 1. Therefore we have,

δ∗(π) = max
‖b̃‖q=1

−π̃T b̃ = ‖π̃‖q = (1− πq1)1/q,

where b = (b1; b̃) and π = (π1; π̃). Also define δ∗(e1) := max
b∈HBp

b1 = 1. Now we can compute the

symmetry of HBp. Due to the geometry, the point of symmetry has the form b0 = αe1. We have,

sym(HBp) = max
α∈[0,1]

min
{

inf
π1∈[0,1]

1− π1α

(1− πq1)
1
q + π1α

,
α

1− α

}
.

The maximum is achieved when the inf term is equal to the second term, because the inf term is decreasing

in α and the second term is increasing in α. The inf term has optimality condition,

−α((1− πq1)
1
q + π1α) = (1− π1α)

( −πq−1
1

(1− π1)
1
p

+ α

)
.
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Therefore, we have,
α

−πq−1
1

(1−π1)
1
p
− α

=
α

1− α,

which implies that −πq−1
1

(1−π1)
1
p

= 1, i.e., π1 = ( 1
2 )

1
q , and α = 1

2
1
p +1

. 2

A.2 Intersection of an Lp ball with Rm
+ for p ≥ 1. Recall that an Lp-ball intersected

with the nonnegative orthant is defined as B+
p := {b ∈ Rm | ‖b‖p ≤ 1, b ≥ 0}. We show that the

symmetry and symmetry point of B+
p are as defined in (4.7). The Lp half-ball can be represented by

halfspaces as

B+
p = {b ∈ Rm | − b ≤ 0,πT b ≤ 1,∀‖π‖q ≤ 1,π ≥ 0},

where ‖ · ‖q is the dual-norm with 1
p + 1

q = 1. Therefore, define δ∗(π) := max
b∈B+

p

−πT b = 0, and

δ∗(ek) := max
b∈B+

p

bk = 1. Therefore, the symmetry can be computed as,

sym(B+
p ) := max

α∈[0,( 1
m )

1
p ]

min
{

inf
‖π‖q=1,π≥0

1− αeTπ
αeTπ

,
α

1− α

}
,

where we use the property that the symmetry point b0 = αe for some α ∈ [0, 1/‖e‖p]. The max-

imum is achieved when the inf term is equal to the second term. The inf term can be computed,

since max
‖π‖q=1,π≥0

eTπ = ‖e‖p. Thus, at the symmetry point, we have
1

α‖e‖p
− 1 =

α

1− α . Therefore,

α =
1

‖e‖p + 1
=

1

m
1
p + 1

, which gives the results.

A.3 Ellipsoidal uncertainty set. An ellipsoidal uncertainty set that is contained in the

nonnegative orthant can be defined as,

U := {b | ‖E(b− b)‖2 ≤ 1} ⊂ Rm+ . (A.1)

We assume the ellipsoid has full dimension, thus, b > 0. The symmetry of an ellipsoid is 1. But

the translation factor depends on the position of the center b. The following proposition computes the

translation factor.

Proposition A.3 Assume the uncertainty set U is defined in (A.1). The translation factor ρ(b,U) is

given as,

ρ(b,U) = max
1≤i≤m

√
E−1
ii

bi
,

where E−1
ii is the i-th diagonal element of the inverse matrix E−1.

Proof. From the definition, the translation factor is the smallest ρ such that

bli := min{bi|‖E(b− ρb)‖2 ≤ 1} ≥ 0, ∀i = 1, 2, . . . ,m.
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From the optimality conditions, we can get that bli = ρbi −
√
E−1
ii , which gives the result. 2

A.4 Intersection of two Lp balls with Rm
+ . Consider the uncertainty set U defined

in (4.9) where 1 ≤ p1 < p2, 0 < r < 1, and suppose (4.10) holds. We show that the symmetry and

symmetry point of U are as defined in (4.11).

The uncertainty set U can be represented by the intersection of halfspaces,

U = {b ∈ Rm | − b ≤ 0,πT b ≤ 1,λT b ≤ r, ∀‖π‖q1 ≤ 1,π ≥ 0, ‖λ‖q2 ≤ r,λ ≥ 0},

where 1
p1

+ 1
q1

= 1, 1
p2

+ 1
q2

= 1. Compute the following quantities,

δ∗(π) := max
b∈U
−πT b = 0, ∀‖π‖q1 ≤ 1,π ≥ 0,

δ∗(λ) := max
b∈U
−λT b = 0, ∀‖λ‖q2 ≤ r,λ ≥ 0,

δ∗(ek) := max
b∈U

bk = r, ∀k = 1, . . . ,m.

Since the set U is symmetric with respect to the direction e, the symmetry point must have the form

b0 = αe. The symmetry can be computed as,

sym(U) := max
α∈[0,( 1

m )
1

p1 ]

min
{

inf
‖π‖q1=1,π≥0

1− αeTπ
αeTπ

, inf
‖λ‖q2=1,λ≥0

1− αeTλ
αeTλ

,
α

r − α

}
, (A.2)

As is shown in the proof of the previous proposition, we have,

inf
‖π‖q1=1,π≥0

1− αeTπ
αeTπ

=
1

α‖e‖p1
− 1,

inf
‖λ‖q2=1,λ≥0

1− αeTλ
αeTλ

=
r

α‖e‖p2
− 1.

Using condition (4.10), we know the first term is dominated by the second term for any α, therefore, the

maximum in the symmetry formula (A.2) is achieved when

1
α‖e‖p1

− 1 =
α

r − α.

Therefore, α =
r

r‖e‖p1 + 1
=

r

rm
1

p1 + 1
, which gives the results.

A.5 Budgeted uncertainty set. An important type of uncertainty sets is the budgeted

uncertainty set, ∆k as defined in (4.12). We show that the symmetry and the symmetry point are as

defined in (4.13).

First, we observe that the symmetry point b0(∆k) must be of the form b0 = αe, due to the geometry

of ∆k. Then, use Proposition A.1, for k ≥ 1, we have,

sym(∆k) = max
0≤α≤ k

m

min
{

α

1− α,
k −mα
mα

}
.

By the monotonicity of α
1−α and k−mα

mα , the maximum is achieved at α = k
m+k . Thus, the symmetry

point of ∆k is b0 = k
m+ke and sym(∆k) = k

m .



Bertsimas, Goyal and Sun: Power of Finite Adaptability in Multi-Stage Problems
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 44

A.6 Demand uncertainty set. Proof of Proposition 4.1. For µ ≥ Γ, the hypercube

centered at µe is completely contained in the positive orthant. For each S, define

δ∗(S+) := max
b∈DU

−eTSb = −|S|µ+
√
|S|Γ,

δ∗(S−) := max
b∈DU

eTSb = |S|µ+
√
|S|Γ.

The symmetry of b is given as follows,

sym(b,DU) = min
S⊆DU

{ |S|µ+
√
|S|Γ− eTSb

−|S|µ+
√
|S|Γ + eTSb

,
−|S|µ+

√
|S|Γ + eTSb

|S|µ+
√
|S|Γ− eTSb

}
.

Therefore, sym(µe,DU) = 1, which proves (4.15).

For 1√
m

Γ < µ < Γ, µ is in one of the intervals of [ 1√
2
Γ,Γ), [ 1√

3
Γ, 1√

2
Γ], . . . , ( 1√

m
Γ, 1√

m−1
Γ]. We show

that (4.16) holds for µ ∈ [ 1√
2
Γ,Γ]. A similar argument works for other intervals.

Let us assume µ ∈ [ 1√
2
Γ,Γ]. Notice that |S|µ−

√
|S|Γ ≥ 0 for all |S| ≥ 2. Therefore, the constraints

in the definition of DU (4.14) can be written as,

|S|µ−
√
|S|Γ ≤

∑
i∈S

bi ≤ |S|µ+
√
|S|Γ, ∀|S| ≥ 2.

But for all |S| = 1, since µ− Γ < 0, we will have 0 ≤ bi ≤ µ+ Γ for all i = 1, . . . ,m. Thus, according to

Proposition A.1, we can compute the following quantities for all |S| ≥ 2,

δ∗(S+) := max
b∈DU

−eTSb = −|S|µ+
√
|S|Γ,

δ∗(S−) := max
b∈DU

eTSb = |S|µ+
√
|S|Γ,

and for |S| = 1, we have δ∗(i+) := maxb∈DU−bi = 0, δ∗(i−) := maxb∈DU bi = µ+ Γ for all i = 1, . . . ,m.

Since DU is symmetric about the direction e, the point of symmetry has the form b0 = αe. The range

of possible α is determined by the constraint mµ−√mΓ ≤ mα ≤ mµ+
√
mΓ. Now we can compute the

symmetry of αe,

sym(αe,DU) = min


(µ+ Γ)− α

α
,

α

(µ+ Γ)− α,
(|S|µ+

p
|S|Γ)− |S|α

(−|S|µ+
p
|S|Γ) + |S|α

,
(−|S|µ+

p
|S|Γ) + |S|α

(|S|µ+
p
|S|Γ)− |S|α

, ∀|S| ≥ 2

ff
.

(A.3)

The symmetry of DU is given as,

sym(DU) = max
{
sym(αe,DU) : α ∈ [µ− 1√

m
Γ, µ+

1√
m

Γ]
}
.

Observe that (|S|µ+
√
|S|Γ)−|S|α

(−|S|µ+
√
|S|Γ)+|S|α

is a decreasing function in α, and (−|S|µ+
√
|S|Γ)+|S|α

(|S|µ+
√
|S|Γ)−|S|α

is an increasing

function in α. Both functions have value 1 when α = µ, and decrease when |S| increases. The formula

(A.3) can be simplified as,

sym(αe,DU) = min
{

(µ+ Γ)− α
α

,
α

(µ+ Γ)− α,
(mµ+

√
mΓ)−mα

(−mµ+
√
mΓ) +mα

,
(−mµ+

√
mΓ) +mα

(mµ+
√
mΓ)−mα

}
. (A.4)
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The maximum of sym(αe,DU) is achieved at the following intersection,

α

(µ+ Γ)− α =
(mµ+

√
mΓ)−mα

(−mµ+
√
mΓ) +mα

,

which gives the symmetry and the symmetry point in (4.16). Since (A.4) also holds when µ is in any

other interval, it implies that (4.16) is true for all 1√
m

Γ < µ < Γ.

When 0 ≤ µ ≤ 1√
m

Γ, following a similar argument, we have,

sym(αe,DU) = min
|S|≥1

{
(|S|µ+

√
|S|Γ)− |S|α
|S|α ,

|S|α
(|S|µ+

√
|S|Γ)− |S|α

}
.

Then, the maximum is achieved when
α

(µ+ Γ)− α =
(mµ+

√
mΓ)−mα
mα

, which gives the results in

(4.17). 2

A.7 Parallel slabs. A parallel slab is defined as PS := {b ∈ Rm+ | L ≤ eT b ≤ U} for 0 ≤ L ≤ U

and U > 0. The symmetry and symmetry point of a parallel slab is given as,

Proposition A.4

sym(PS) =
1

m− L
U

, (A.5)

b0(PS) =
U2

(m+ 1)U − Le. (A.6)

Proof. Define the following quantities,

δ∗L := max
b∈PS

eT b = U, δ∗U := max
b∈PS

−eT b = −L,

and for each k = 1, . . . ,m,

δ∗(ek) := max
b∈PS

ek
T b = U.

According to the geometry of the set, the point of symmetry is of the form b0 = αe. Thus, the symmetry

can be written as,

sym(PS) = max
α∈[ L

m , U
m ]

min
{
mα− L
U −mα,

U −mα
mα− L ,

α

U − α

}
.

The first two terms are inverse of each other, therefore one increasing and the other decreasing in α; the

third term is increasing in α. Thus, the maximum is attained when the second term is equal to the third,

i.e.,

U −mα
mα− L =

α

U − α,

which gives the results. 2
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A.8 U = Conv(∆1, {e}). The convex hull of the standard m-simplex ∆1 = {b ∈ Rm | eT b ≤

1, b ≥ 0} and a point e = (1, . . . , 1)T has a slightly improved symmetry comparing with the simplex

itself, as shown below.

Proposition A.5 The symmetry and point of symmetry of U = Conv(∆1, {e}) are given as,

sym(U) =
1

m− 1
, b0(U) =

1
m
e.

Proof. The set U can be represented by halfspaces as

U = {b ∈ Rm | − b ≤ 0,πTi b ≤ 1,∀i = 1, . . . ,m},

where πi has (2−m) in the i-th entry and 1 elsewhere. For each i, define,

δ∗i = max
b∈U

bi = 1, δ(πi)∗ = max
b∈U
−πTi b = m− 2.

By the symmetry of U , we know the symmetry point should be on the e direction. Therefore, we have,

sym(U) = max
α∈[0,1]

min
{

1− απTi e
(m− 2) + απTi e

,
α

1− α

}
, (A.7)

= max
α∈[0,1]

min
{

1− α
m− 2 + α

,
α

1− α

}
. (A.8)

The maximum is achieved when 1−α
m−2+α = α

1−α , which gives α = 1
m and symmetry is 1

m−1 . 2

A.9 The matrix simplex. Define the uncertainty set U as follows,

U = {B ∈ Sm+ | I •B ≤ 1}, (A.9)

where Sm+ is the cone of positive semidefinite matrices, I is the identity matrix. We use it as an example

of uncertainty sets for robust SDP problems. The following proposition shows that U has a similar

symmetry property as a simplex in Rm.

Proposition A.6 Let U be defined in (A.9) and B0 be the center of symmetry of U . We have,

sym(U) =
1
m
, B0 =

1
m+ 1

I.

Proof. The set U can be written in the form of intersection of halfspaces,

U = {B ∈ Sm | I •B ≤ 1, (qqT ) •B ≤ 1,∀‖q‖2 = 1}.

Then, we can compute the following quantities,

δ∗(q) = max
B∈U

(qqT ) •B = max
p:‖p‖=1

(qTp)2 = 1, (A.10)

δ∗(I) = −min
B∈U

I •B = 0. (A.11)
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The second equality in (A.10) comes from the fact that the extreme points of U are rank-1 matrices ppT

with pTp = 1. (A.11) follows from I • B ≥ 0 and the minimum is achieved at B = 0. Now we can

compute the symmetry of U as,

sym(U) = max
B∈U

min
{

1− I •B
I •B , inf

q:‖q‖=1

(qqT ) •B
1− (qqT ) •B

}
. (A.12)

To compute the inf term is equivalent to solving the following problem, which admits a closed form solution

by Courant minimax theorem: λ1(B) = minq:‖q‖=1 q
TBq, where λ1(B) is the smallest eigenvalue of B,

denoted as (λ1, . . . , λm) in ascending order. Then, (A.12) can be rewritten as,

sym(U) = max
eTλ≤1,λ≥0

min
{

1− eTλ
eTλ

,
λ1

1− λ1

}
, (A.13)

which can be reformulated as,

sym(U) = max
z,λ

{
z : eTλ ≤ 1

z + 1
, eTλ ≤ 1, λ ≥ 0, λi ≥

z

z + 1
,∀i = 1, . . . ,m.}

From the constraints, we have
1

z + 1
≥ eTλ ≥ mz

z + 1
⇒ z ≤ 1

m
.

In fact, z = 1/m can be achieve by the feasible solution λi = 1/(m + 1) for all i. This completes the

proof. 2

Appendix B. Proof of Theorem 7.1. Proof of Theorem 7.1. Let U ′ be the transla-

tion of the uncertainty set U with the translation factor ρ, i.e. U ′ = U−(1−ρ)b0. Let b1 := b0−(1−ρ)b0.

Also let z := b0 − b1 = (1− ρ)b0. Following a similar argument as in the proof of Theorem 4.1, we have(
1 +

1
s

)
b1 �K b′, ∀b′ ∈ U ′.

Translating back to the original uncertainty set U by adding z on both sides, we have,(
1 +

1
s

)
b1 + z �K b, ∀b ∈ U ,

⇒
(

1 +
1
s

)
ρb0 + (1− ρ)b0 �K b, ∀b ∈ U ,

⇒
(

1 +
ρ

s

)
b0 �K b, ∀b ∈ U . (B.1)

For brevity, let τ := (1 + ρ/s). Suppose (x,y(b), µ-a.e. b ∈ U) is an optimal solution of the stochastic

optimization problem (7.1). We have,

A(τx) +B(τy(b)) �K τb, µ-a.e. b ∈ U .

Equivalently,

A(τx) +B(τy(b))− τb ∈ K, µ-a.e. b ∈ U .
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Therefore, the expectation with respect to the probability measure µ satisfies,

A(τx) +B(Eµ[τy(b)])− Eµ[τb] ∈ K.

Thus, we have

A(τx) +B(Eµ[τy(b)]) �K Eµ[τb] �K τb0 �K b, ∀b ∈ U .

The last inequality uses (B.1). Therefore, (τx,Eµ[τy(b)]) is a feasible static robust solution. Therefore,

the cost of an optimal static robust solution is at most,

cT (τx) + dTEµ[τy(b)] = τ(cTx+ dTEµ[y(b)]).

Furthermore, zK
Stoch = cTx+ dTEµ[y(b)], which implies that the cost of an optimal static solution is at

most τ · zK
Stoch. 2


