59 research outputs found

    Apilimod Inhibits the Production of IL-12 and IL-23 and Reduces Dendritic Cell Infiltration in Psoriasis

    Get PDF
    Psoriasis is characterized by hyperplasia of the epidermis and infiltration of leukocytes into both the dermis and epidermis. IL-23, a key cytokine that induces TH17 cells, has been found to play a critical role in the pathogenesis of psoriasis. Apilimod is a small-molecule compound that selectively suppresses synthesis of IL-12 and IL-23. An open-label clinical study of oral administration of apilimod was conducted in patients with psoriasis. Substantial improvements in histology and clinical measurements were observed in patients receiving 70mg QD. The expression of IL-23p19 and IL-12/IL-23p40 in skin lesions was significantly reduced in this dose group, with a simultaneous increase in IL-10 observed. A decrease in the levels of TH1 and TH17 cytokines/chemokines in skin lesions followed these p19 and p40 changes. In parallel, a reduction in skin-infiltrating CD11c+ dendritic cells and CD3+ T cells was seen, with a greater decrease in the CD11c+ population. This was accompanied by increases in T and B cells, and decreases in neutrophils and eosinophils in the periphery. This study demonstrates the immunomodulatory activity of apilimod and provides clinical evidence supporting the inhibition of IL-12/IL-23 synthesis for the treatment of TH1- and TH17-mediated inflammatory diseases

    Surfaces of Negative Curvature

    No full text

    Risk model for colorectal cancer in spanish population using environmental and genetic factors: results from the MCC-Spain study

    Get PDF
    Colorectal cancer (CRC) screening of the average risk population is only indicated according to age. We aim to elaborate a model to stratify the risk of CRC by incorporating environmental data and single nucleotide polymorphisms (SNP). The MCC-Spain case-control study included 1336 CRC cases and 2744 controls. Subjects were interviewed on lifestyle factors, family and medical history. Twenty-one CRC susceptibility SNPs were genotyped. The environmental risk model, which included alcohol consumption, obesity, physical activity, red meat and vegetable consumption, and nonsteroidal anti-inflammatory drug use, contributed to CRC with an average per factor OR of 1.36 (95% CI 1.27 to 1.45). Family history of CRC contributed an OR of 2.25 (95% CI 1.87 to 2.72), and each additional SNP contributed an OR of 1.07 (95% CI 1.04 to 1.10). The risk of subjects with more than 25 risk alleles (5th quintile) was 82% higher (OR 1.82, 95% CI 1.11 to 2.98) than subjects with less than 19 alleles (1st quintile). This risk model, with an AUROC curve of 0.63 (95% CI 0.60 to 0.66), could be useful to stratify individuals. Environmental factors had more weight than the genetic score, which should be considered to encourage patients to achieve a healthier lifestyl

    Gene-Environment Interaction Involving Recently Identified Colorectal Cancer Susceptibility Loci

    No full text
    BACKGROUND: Genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) that are associated with risk of colorectal cancer. Prior research has evaluated the presence of gene-environment interaction involving the first 10 identified susceptibility loci, but little work has been conducted on interaction involving SNPs at recently identified susceptibility loci, including: rs10911251, rs6691170, rs6687758, rs11903757, rs10936599, rs647161, rs1321311, rs719725, rs1665650, rs3824999, rs7136702, rs11169552, rs59336, rs3217810, rs4925386, and rs2423279. METHODS: Data on 9,160 cases and 9,280 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) and Colon Cancer Family Registry (CCFR) were used to evaluate the presence of interaction involving the above-listed SNPs and sex, body mass index (BMI), alcohol consumption, smoking, aspirin use, postmenopausal hormone (PMH) use, as well as intake of dietary calcium, dietary fiber, dietary folate, red meat, processed meat, fruit, and vegetables. Interaction was evaluated using a fixed effects meta-analysis of an efficient Empirical Bayes estimator, and permutation was used to account for multiple comparisons. RESULTS: None of the permutation-adjusted P values reached statistical significance. CONCLUSIONS: The associations between recently identified genetic susceptibility loci and colorectal cancer are not strongly modified by sex, BMI, alcohol, smoking, aspirin, PMH use, and various dietary factors. IMPACT: Results suggest no evidence of strong gene-environment interactions involving the recently identified 16 susceptibility loci for colorectal cancer taken one at a time

    Genome-Wide Search for Gene-Gene Interactions in Colorectal Cancer

    Get PDF
    Genome-wide association studies (GWAS) have successfully identified a number of single-nucleotide polymorphisms (SNPs) associated with colorectal cancer (CRC) risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG) is considered to be one source of the missing heritability. To address this, we performed a genome-wide search for pair-wise GxG associated with CRC risk using 8,380 cases and 10,558 controls in the discovery phase and 2,527 cases and 2,658 controls in the replication phase. We developed a simple, but powerful method for testing interaction, which we term the Average Risk Due to Interaction (ARDI). With this method, we conducted a genome-wide search to identify SNPs showing evidence for GxG with previously identified CRC susceptibility loci from 14 independent regions. We also conducted a genome-wide search for GxG using the marginal association screening and examining interaction among SNPs that pass the screening threshold (p<10(-4)). For the known locus rs10795668 (10p14), we found an interacting SNP rs367615 (5q21) with replication p = 0.01 and combined p = 4.19×10(-8). Among the top marginal SNPs after LD pruning (n = 163), we identified an interaction between rs1571218 (20p12.3) and rs10879357 (12q21.1) (nominal combined p = 2.51×10(-6); Bonferroni adjusted p = 0.03). Our study represents the first comprehensive search for GxG in CRC, and our results may provide new insight into the genetic etiology of CRC

    Aquifer environment selects for microbial species cohorts in sediment and groundwater.

    No full text
    Little is known about the biogeography or stability of sediment-associated microbial community membership because these environments are biologically complex and generally difficult to sample. High-throughput-sequencing methods provide new opportunities to simultaneously genomically sample and track microbial community members across a large number of sampling sites or times, with higher taxonomic resolution than is associated with 16 S ribosomal RNA gene surveys, and without the disadvantages of primer bias and gene copy number uncertainty. We characterized a sediment community at 5 m depth in an aquifer adjacent to the Colorado River and tracked its most abundant 133 organisms across 36 different sediment and groundwater samples. We sampled sites separated by centimeters, meters and tens of meters, collected on seven occasions over 6 years. Analysis of 1.4 terabase pairs of DNA sequence showed that these 133 organisms were more consistently detected in saturated sediments than in samples from the vadose zone, from distant locations or from groundwater filtrates. Abundance profiles across aquifer locations and from different sampling times identified organism cohorts that comprised subsets of the 133 organisms that were consistently associated. The data suggest that cohorts are partly selected for by shared environmental adaptation
    corecore