981 research outputs found

    Implementing an MSN Nursing Program at a Distance Through an Urban-Rural Partnership

    Get PDF
    Recruiting, retaining, and educating advanced practice nurses is essential to meet the growing need for advanced practice nurses in rural and urban communities. Through the support of Health Resources and Services Administration funding, the urban school of nursing expanded its MSN program and implemented the graduate curriculum on its rural campus by utilizing emerging online and distance education technologies. The purpose of this manuscript is to provide an overview of expanding an existing MSN program offered in an urban, traditional classroom setting to rural graduate nursing students via an online synchronous format. In addition, the article will describe the rural growth of the existing neonatal nurse practitioner program as an exemplar and the different methodologies that are being used in each program to engage the rural nurse practitioner students in clinical courses. In addition, strategies to address barriers related to rural nurse practitioner student recruitment and retention will be discussed

    Empowerment or Engagement? Digital Health Technologies for Mental Healthcare

    Get PDF
    We argue that while digital health technologies (e.g. artificial intelligence, smartphones, and virtual reality) present significant opportunities for improving the delivery of healthcare, key concepts that are used to evaluate and understand their impact can obscure significant ethical issues related to patient engagement and experience. Specifically, we focus on the concept of empowerment and ask whether it is adequate for addressing some significant ethical concerns that relate to digital health technologies for mental healthcare. We frame these concerns using five key ethical principles for AI ethics (i.e. autonomy, beneficence, non-maleficence, justice, and explicability), which have their roots in the bioethical literature, in order to critically evaluate the role that digital health technologies will have in the future of digital healthcare

    In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-Synuclein within E. coli cells

    Get PDF
    α-Synuclein is a small protein strongly implicated in the pathogenesis of Parkinson’s disease and related neurodegenerative disorders. We report here the use of in-cell NMR spectroscopy to observe directly the structure and dynamics of this protein within E. coli cells. To improve the accuracy in the measurement of backbone chemical shifts within crowded in-cell NMR spectra, we have developed a deconvolution method to reduce inhomogeneous line broadening within cellular samples. The resulting chemical shift values were then used to evaluate the distribution of secondary structure populations which, in the absence of stable tertiary contacts, are a most effective way to describe the conformational fluctuations of disordered proteins. The results indicate that, at least within the bacterial cytosol, α-synuclein populates a highly dynamic state that, despite the highly crowded environment, has the same characteristics as the disordered monomeric form observed in aqueous solution

    Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae)

    Get PDF
    Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.United States National Science Foundation [0849186]; Society of Systematic Biologists; American Society of Plant Taxonomists; Duke University Graduate Schoolinfo:eu-repo/semantics/publishedVersio

    A randomised controlled trial of intravenous zoledronic acid in malignant pleural disease: A proof of principle pilot study

    Get PDF
    © 2015 Clive et al. Introduction: Animal studies have shown Zoledronic Acid (ZA) may diminish pleural fluid accumulation and tumour bulk in malignant pleural disease (MPD). We performed a pilot study to evaluate its effects in humans. Methods: We undertook a single centre, double-blind, placebo-controlled trial in adults with MPD. Patients were randomised (1:1) to receive 2 doses of intravenous ZA or placebo, 3 weeks apart and were followed-up for 6 weeks. The co-primary outcomes were change in Visual Analogue Scale (VAS) score measured breathlessness during trial follow-up and change in the initial area under the curve (iAUC) on thoracic Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) from randomisation to week 5. Multiple secondary endpoints were also evaluated. Results: Between January 2010 and May 2013, 30 patients were enrolled, 24 randomised and 4 withdrew after randomisation (1 withdrew consent; 3 had a clinical decline). At baseline, the ZA group were more breathless, had more advanced disease on radiology and worse quality of life than the placebo group. There was no significant difference between the groups with regards change in breathlessness (Adjusted mean difference (AMD) 4.16 (95%CI -4.7 to 13.0)) or change in DCE-MRI iAUC (AMD -15.4 (95%CI -58.1 to 27.3). Two of nine (22%) in the ZA arm had a >10% improvement by modified RECIST (vs 0/11 who received placebo). There was no significant difference in quality of life measured by the QLQ-C30 score (global QOL: AMD -4.1 (-13.0 to 4.9)), side effects or serious adverse event rates. Conclusions: This is the first human study to evaluate ZA in MPD. The study is limited by small numbers and imbalanced baseline characteristics. Although no convincing treatment effect was identified, potential benefits for specific subgroups of patients cannot be excluded. This study provides important information regarding the feasibility of future trials to evaluate the effects of ZA further. Trial Registration: UK Clinical Research Network ID 8877 ISRCTN17030426 www.isrctn.com

    Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions

    Get PDF
    The preparation of nanofluids is very important to their thermophysical properties. Nanofluids with the same nanoparticles and base fluids can behave differently due to different nanofluid preparation methods. The agglomerate sizes in nanofluids can significantly impact the thermal conductivity and viscosity of nanofluids and lead to a different heat transfer performance. Ultrasonication is a common way to break up agglomerates and promote dispersion of nanoparticles into base fluids. However, research reports of sonication effects on nanofluid properties are limited in the open literature. In this work, sonication effects on thermal conductivity and viscosity of carbon nanotubes (0.5 wt%) in an ethylene glycol-based nanofluid are investigated. The corresponding effects on the agglomerate sizes and the carbon nanotube lengths are observed. It is found that with an increased sonication time/energy, the thermal conductivity of the nanofluids increases nonlinearly, with the maximum enhancement of 23% at sonication time of 1,355 min. However, the viscosity of nanofluids increases to the maximum at sonication time of 40 min, then decreases, finally approaching the viscosity of the pure base fluid at a sonication time of 1,355 min. It is also observed that the sonication process not only reduces the agglomerate sizes but also decreases the length of carbon nanotubes. Over the current experimental range, the reduction in agglomerate size is more significant than the reduction of the carbon nanotube length. Hence, the maximum thermal conductivity enhancement and minimum viscosity increase are obtained using a lengthy sonication, which may have implications on application

    Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory

    Get PDF
    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The analysis was based on a search for gamma-rays from the de-excitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90% confidence for either neutron or proton decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton decay modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of 2) Submitted to Physical Review Letter

    Organization and molecular evolution of a disease-resistance gene cluster in coffee trees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most disease-resistance (R) genes in plants encode NBS-LRR proteins and belong to one of the largest and most variable gene families among plant genomes. However, the specific evolutionary routes of NBS-LRR encoding genes remain elusive. Recently in coffee tree (<it>Coffea arabica</it>), a region spanning the <it>S</it><sub><it>H</it></sub><it>3 </it>locus that confers resistance to coffee leaf rust, one of the most serious coffee diseases, was identified and characterized. Using comparative sequence analysis, the purpose of the present study was to gain insight into the genomic organization and evolution of the <it>S</it><sub><it>H</it></sub><it>3 </it>locus.</p> <p>Results</p> <p>Sequence analysis of the <it>S</it><sub><it>H</it></sub><it>3 </it>region in three coffee genomes, E<sup>a </sup>and C<sup>a </sup>subgenomes from the allotetraploid <it>C. arabica </it>and C<sup>c </sup>genome from the diploid <it>C. canephora</it>, revealed the presence of 5, 3 and 4 R genes in E<sup>a</sup>, C<sup>a</sup>, and C<sup>c </sup>genomes, respectively. All these R-gene sequences appeared to be members of a CC-NBS-LRR (CNL) gene family that was only found at the <it>S</it><sub><it>H</it></sub><it>3 </it>locus in <it>C. arabica</it>. Furthermore, while homologs were found in several dicot species, comparative genomic analysis failed to find any CNL R-gene in the orthologous regions of other eudicot species. The orthology relationship among the <it>S</it><sub><it>H</it></sub><it>3</it>-CNL copies in the three analyzed genomes was determined and the duplication/deletion events that shaped the <it>S</it><sub><it>H</it></sub><it>3 </it>locus were traced back. Gene conversion events were detected between paralogs in all three genomes and also between the two sub-genomes of <it>C. arabica</it>. Significant positive selection was detected in the solvent-exposed residues of the <it>S</it><sub><it>H</it></sub><it>3</it>-CNL copies.</p> <p>Conclusion</p> <p>The ancestral <it>S</it><sub><it>H</it></sub><it>3</it>-CNL copy was inserted in the <it>S</it><sub><it>H</it></sub><it>3 </it>locus after the divergence between Solanales and Rubiales lineages. Moreover, the origin of most of the <it>S</it><sub><it>H</it></sub><it>3</it>-CNL copies predates the divergence between <it>Coffea </it>species. The <it>S</it><sub><it>H</it></sub><it>3</it>-CNL family appeared to evolve following the birth-and-death model, since duplications and deletions were inferred in the evolution of the <it>S</it><sub><it>H</it></sub><it>3 </it>locus. Gene conversion between paralog members, inter-subgenome sequence exchanges and positive selection appear to be the major forces acting on the evolution of <it>S</it><sub><it>H</it></sub><it>3</it>-CNL in coffee trees.</p
    corecore