237 research outputs found
Financing SME growth in the UK: meeting the challenges after the global financial crisis
In the aftermath of the Global Financial Crisis new forms of SME finance are emerging in the place of traditional banking and equity finance sources. This Special Issue has its origins in a conference organised in June 2014 by the Centre for Enterprise and Economic Development Research (CEEDR) at Middlesex University Business School, where all but the final two papers were presented. The Conference was designed to provide a timely forum for leading academics, practitioners and policy makers to disseminate current research and practitioner knowledge exploring finance gaps and how best to address the financing needs of small high growth potential businesses
Measurement of soil carbon oxidation state and oxidative ratio by (13)C nuclear magnetic resonance
Extent: 14p.The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O₂and CO₂ fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO₂sink using atmospheric measurements of changing O₂ and CO₂levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known Cox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state ¹³C NMR with the molecular mixing model, agrees with elemental analyses to ±0.036 Cox units (±0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of −0.26 and a range from −0.45 to 0.30, corresponding to OR values of 1.08 ± 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated with the fire had an OR of 1.091 (±0.003). Fire appears to be a major factor driving the soil C pool to higher oxidation states and lower OR values. Episodic fluxes caused by disturbances like fire may have substantially different ORs from ecosystem respiration fluxes and therefore should be better quantified to reduce uncertainties associated with our understanding of the global atmospheric carbon budget.W. C. Hockaday, C. A. Masiello, J. T. Randerson, R. J. Smernik, J. A. Baldock, O. A. Chadwick and J. W. Harde
Carbon sequestration by Australian tidal marshes
Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr -1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2 -equivalent value of USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes
Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein
Bacteria exploit surface proteins to adhere to other bacteria, surfaces and host cells. Such proteins need to project away from the bacterial surface and resist significant mechanical forces. SasG is a protein that forms extended fibrils on the surface of Staphylococcus aureus and promotes host adherence and biofilm formation. Here we show that although monomeric and lacking covalent cross-links, SasG maintains a highly extended conformation in solution. This extension is mediated through obligate folding cooperativity of the intrinsically disordered E domains that couple non-adjacent G5 domains thermodynamically, forming interfaces that are more stable than the domains themselves. Thus, counterintuitively, the elongation of the protein appears to be dependent on the inherent instability of its domains. The remarkable mechanical strength of SasG arises from tandemly arrayed 'clamp' motifs within the folded domains. Our findings reveal an elegant minimal solution for the assembly of monomeric mechano-resistant tethers of variable length
Constrained distance transforms for spatial atlas registration
BACKGROUND: Spatial frameworks are used to capture organ or whole organism image data in biomedical research. The registration of large biomedical volumetric images is a complex and challenging task, but one that is required for spatially mapped biomedical atlas systems. In most biomedical applications the transforms required are non-rigid and may involve significant deformation relating to variation in pose, natural variation and mutation. Here we develop a new technique to establish such transformations for mapping data that cannot be achieved by existing approaches and that can be used interactively for expert editorial review. RESULTS: This paper presents the Constrained Distance Transform (CDT), a novel method for interactive image registration. The CDT uses radial basis function transforms with distances constrained to geodesics within the domains of the objects being registered. A geodesic distance algorithm is discussed and evaluated. Examples of registration using the CDT are presented. CONCLUSION: The CDT method is shown to be capable of simultaneous registration and foreground segmentation even when very large deformations are required
Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration
Peatlands have been subject to artificial drainage for centuries. This drainage has been in response to agricultural demand, forestry, horticultural and energy properties of peat and alleviation of flood risk. However, the are several environmental problems associated with drainage of peatlands. This paper describes the nature of these problems and examines the evidence for changes in hydrological and hydrochemical processes associated with these changes. Traditional black-box water balance approaches demonstrate little about wetland dynamics and therefore the science of catchment response to peat drainage is poorly understood. It is crucial that a more process-based approach be adopted within peatland ecosystems. The environmental problems associated with peat drainage have led, in part, to a recent reversal in attitudes to peatlands and we have seen a move towards wetland restoration. However, a detailed understanding of hydrological, hydrochemical and ecological process-interactions will be fundamental if we are to adequately restore degraded peatlands, preserve those that are still intact and understand the impacts of such management actions at the catchment scale
Digital Atlasing and Standardization in the Mouse Brain
Computer Systems, Imagery and Medi
Author Correction: The future of Blue Carbon science.
An amendment to this paper has been published and can be accessed via a link at the top of the paper
- …