329 research outputs found

    Human 13N-ammonia PET studies: the importance of measuring 13N-ammonia metabolites in blood

    Get PDF
    Dynamic 13N-ammonia PET is used to assess ammonia metabolism in brain, liver and muscle based on kinetic modeling of metabolic pathways, using arterial blood 13N-ammonia as input function. Rosenspire et al. (1990) introduced a solid phase extraction procedure for fractionation of 13N-content in blood into 13N-ammonia, 13N-urea, 13N-glutamine and 13N-glutamate. Due to a radioactive half-life for 13N of 10 min, the procedure is not suitable for blood samples taken beyond 5–7 min after tracer injection. By modifying Rosenspire’s method, we established a method enabling analysis of up to 10 blood samples in the course of 30 min. The modified procedure was validated by HPLC and by 30-min reproducibility studies in humans examined by duplicate 13N-ammonia injections with a 60-min interval. Blood data from a 13N-ammonia brain PET study (from Keiding et al. 2006) showed: (1) time courses of 13N-ammonia fractions could be described adequately by double exponential functions; (2) metabolic conversion of 13N-ammonia to 13N-metabolites were in the order: healthy subjects > cirrhotic patients without HE > cirrhotic patients with HE; (3) kinetics of initial tracer distribution in tissue can be assessed by using total 13N-concentration in blood as input function, whereas assessment of metabolic processes requires 13N-ammonia measurements

    Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates

    Get PDF
    The synergistic interaction between various hemi/cellulolytic enzymes has become more important in order to achieve effective and optimal degradation of complex lignocellulose substrates for biofuel production. This study investigated the synergistic effect of three enzymes endoglucanase (EngE), mannanase (ManA) and xylanase (XynA) on the degradation of corn stalk, grass, and pineapple fruit pulp and determined the optimal degree of synergy between combinations of these enzymes. It was established that EngE was essential for degradation of all of the substrates, while the hemicellulases were able to contribute in a synergistic fashion to increase the activity on these substrates. Maximum specific activity and degree of synergy on the corn stalk and grass was found with EngE:XynA in a ratio of 75:25%, with a specific activity of 41.1 U/mg protein and a degree of synergy of 6.3 for corn stalk, and 44.1 U/mg protein and 3.4 for grass, respectively. The pineapple fruit pulp was optimally digested using a ManA:EngE combination in a 50:50% ratio; the specific activity and degree of synergy achieved were 52.4 U/mg protein and 2.7, respectively. This study highlights the importance of hemicellulases for the synergistic degradation of complex lignocellulose. The inclusion of a mannanase in an enzyme consortium for biomass degradation should be examined further as this study suggests that it may play an important, although mostly overlooked, role in the synergistic saccharification of lignocellulose

    Measurement of the total antioxidant response using a novel automated method in subjects with nonalcoholic steatohepatitis

    Get PDF
    BACKGROUND: Oxidative stress, an increase in oxidants and/or a decrease in antioxidant capacity, is one of the potential biochemical mechanisms involved in the pathogenesis of nonalcoholic steatohepatitis. We aimed to investigate the total antioxidant response using a novel automated method in nonalcoholic steatohepatitis subjects. As a reciprocal measure, we also aimed to determine total peroxide level in the same plasma samples. METHODS: Twenty-two subjects with biopsy proven nonalcoholic steatohepatitis and 22 healthy controls were enrolled. Total antioxidant response and total peroxide level measurements were done in all participants. The ratio percentage of total peroxide level to total antioxidant response was regarded as oxidative stress index. RESULTS: Total antioxidant response of subjects with nonalcoholic steatohepatitis was significantly lower than controls (p < 0.05), while mean total peroxide level and mean oxidative stress index were higher (all p < 0.05). In subjects with nonalcoholic steatohepatitis, fibrosis score was significantly correlated with total peroxide level, total antioxidant response and oxidative stress index (p < 0.05, r = 0.607; p < 0.05, r = -0.506; p < 0.05, r = 0.728, respectively). However, no correlation was observed between necroimflamatory grade and those oxidative status parameters (all p > 0.05). CONCLUSION: Nonalcoholic steatohepatitis is associated with increased oxidant capacity, especially in the presence of liver fibrosis. The novel automated assay is a reliable and easily applicable method for total plasma antioxidant response measurement in nonalcoholic steatohepatitis

    Genome sequencing and carrier testing: decisions on categorization and whether to disclose results of carrier testing

    Get PDF
    We are investigating the use of genome sequencing for preconception carrier testing. Genome sequencing could identify one or more of thousands of X-linked or autosomal recessive conditions that could be disclosed during preconception or prenatal counseling. Therefore, a framework that helps both clinicians and patients understand the possible range of findings is needed to respect patient preferences by ensuring that information about only the desired types of genetic conditions are provided to a given patient

    Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem

    Get PDF
    Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios

    Does Speaking Two Dialects in Daily Life Affect Executive Functions? An Event-Related Potential Study

    Get PDF
    Whether using two languages enhances executive functions is a matter of debate. Here, we take a novel perspective to examine the bilingual advantage hypothesis by comparing bidialect with mono-dialect speakers’ performance on a non-linguistic task that requires executive control. Two groups of native Chinese speakers, one speaking only the standard Chinese Mandarin and the other also speaking the Southern-Min dialect, which differs from the standard Chinese Mandarin primarily in phonology, performed a classic Flanker task. Behavioural results showed no difference between the two groups, but event-related potentials recorded simultaneously revealed a number of differences, including an earlier P2 effect in the bi-dialect as compared to the mono-dialect group, suggesting that the two groups engage different underlying neural processes. Despite differences in the early ERP component, no between-group differences in the magnitude of the Flanker effects, which is an index of conflict resolution, were observed in the N2 component. Therefore, these findings suggest that speaking two dialects of one language does not enhance executive functions. Implications of the current findings for the bilingual advantage hypothesis are discussed
    corecore