111 research outputs found

    Role of ENPP1 on Adipocyte Maturation

    Get PDF
    BACKGROUND: It is recognized that the ability of adipose tissue to expand in response to energy excess, i.e. adipocyte maturation, is important in determining systemic abnormalities in glucose and lipid metabolism. Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1, also known as PC-1) has been recently reported to be involved in the pathogenesis of insulin resistance and related diseases. However, its role on adipose tissue physiology as a mechanism of systemic insulin resistance is not understood. This study was performed to evaluate whether ENPP1 is regulated during adipogenesis and whether over-expression in adipocytes can affect adipocyte maturation, a potential novel mechanism of ENPP1-related insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: ENPP1 expression was found down-regulated during 3T3-L1 maturation, and over-expression of human ENPP1 in 3T3-L1 (pQCXIP-ENPP1 vector) resulted in adipocyte insulin resistance and in defective adipocyte maturation. Adipocyte maturation was more efficient in mesenchymal embryonal cells from ENPP1 knockout mice than from wild-type. CONCLUSIONS: We identify ENPP1 as a novel mechanism of defective adipocyte maturation. This mechanism could contribute to the pathogenesis of insulin resistance in absence of obesity

    Enhanced mitochondrial superoxide scavenging does not Improve muscle insulin action in the high fat-fed mouse

    Get PDF
    Improving mitochondrial oxidant scavenging may be a viable strategy for the treatment of insulin resistance and diabetes. Mice overexpressing the mitochondrial matrix isoform of superoxide dismutase (sod2(tg) mice) and/or transgenically expressing catalase within the mitochondrial matrix (mcat(tg) mice) have increased scavenging of O2(˙-) and H2O2, respectively. Furthermore, muscle insulin action is partially preserved in high fat (HF)-fed mcat(tg) mice. The goal of the current study was to test the hypothesis that increased O2(˙-) scavenging alone or in combination with increased H2O2 scavenging (mtAO mice) enhances in vivo muscle insulin action in the HF-fed mouse. Insulin action was examined in conscious, unrestrained and unstressed wild type (WT), sod2(tg), mcat(tg) and mtAO mice using hyperinsulinemic-euglycemic clamps (insulin clamps) combined with radioactive glucose tracers following sixteen weeks of normal chow or HF (60% calories from fat) feeding. Glucose infusion rates, whole body glucose disappearance, and muscle glucose uptake during the insulin clamp were similar in chow- and HF-fed WT and sod2(tg) mice. Consistent with our previous work, HF-fed mcat(tg) mice had improved muscle insulin action, however, an additive effect was not seen in mtAO mice. Insulin-stimulated Akt phosphorylation in muscle from clamped mice was consistent with glucose flux measurements. These results demonstrate that increased O2(˙-) scavenging does not improve muscle insulin action in the HF-fed mouse alone or when coupled to increased H2O2 scavenging

    ENPP1 Affects Insulin Action and Secretion: Evidences from In Vitro Studies

    Get PDF
    The aim of this study was to deeper investigate the mechanisms through which ENPP1, a negative modulator of insulin receptor (IR) activation, plays a role on insulin signaling, insulin secretion and eventually glucose metabolism. ENPP1 cDNA (carrying either K121 or Q121 variant) was transfected in HepG2 liver-, L6 skeletal muscle- and INS1E beta-cells. Insulin-induced IR-autophosphorylation (HepG2, L6, INS1E), Akt-Ser473, ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 phosphorylation (HepG2, L6), PEPCK mRNA levels (HepG2) and 2-deoxy-D-glucose uptake (L6) was studied. GLUT 4 mRNA (L6), insulin secretion and caspase-3 activation (INS1E) were also investigated. Insulin-induced IR-autophosphorylation was decreased in HepG2-K, L6-K, INS1E-K (20%, 52% and 11% reduction vs. untransfected cells) and twice as much in HepG2-Q, L6-Q, INS1E-Q (44%, 92% and 30%). Similar data were obtained with Akt-Ser473, ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 in HepG2 and L6. Insulin-induced reduction of PEPCK mRNA was progressively lower in untransfected, HepG2-K and HepG2-Q cells (65%, 54%, 23%). Insulin-induced glucose uptake in untransfected L6 (60% increase over basal), was totally abolished in L6-K and L6-Q cells. GLUT 4 mRNA was slightly reduced in L6-K and twice as much in L6-Q (13% and 25% reduction vs. untransfected cells). Glucose-induced insulin secretion was 60% reduced in INS1E-K and almost abolished in INS1E-Q. Serum deficiency activated caspase-3 by two, three and four folds in untransfected INS1E, INS1E-K and INS1E-Q. Glyburide-induced insulin secretion was reduced by 50% in isolated human islets from homozygous QQ donors as compared to those from KK and KQ individuals. Our data clearly indicate that ENPP1, especially when the Q121 variant is operating, affects insulin signaling and glucose metabolism in skeletal muscle- and liver-cells and both function and survival of insulin secreting beta-cells, thus representing a strong pathogenic factor predisposing to insulin resistance, defective insulin secretion and glucose metabolism abnormalities

    Status of Intraductal Therapy for Ductal Carcinoma in Situ

    Get PDF
    The intraductal approach is particularly appealing in the setting of ductal carcinoma in situ (DCIS), a preinvasive breast neoplasm that is thought to be entirely intraductal in its extent. Based on an emerging understanding of the anatomy of the ductal system as well as novel techniques to leverage the access accorded by the intraductal approach, researchers are actively exploring how ductal lavage, ductoscopy, and intraductal infusion of therapeutic agents may enhance breast cancer treatment. Both cytologic and molecular diagnostics continue to improve, and work is ongoing to identify the most effective diagnostic biomarkers for DCIS and cancer, although optimal targeting of the diseased duct remains an important consideration. Ductoscopy holds potential in detection of occult intraductal lesions, and ductoscopically guided lumpectomy could increase the likelihood of a more comprehensive surgical excision. Exciting pilot studies are in progress to determine the safety and feasibility of intraductal chemotherapy infusion. These studies are an important starting point for future investigations of intraductal ablative therapy for DCIS, because as our knowledge and techniques evolve, it is likely that DCIS may be the target most amenable to treatment by intraductal therapy. If such studies are successful, these approaches will allow an important and meaningful transformation in treatment options for women diagnosed with DCIS

    Discordant Gene Expression Signatures and Related Phenotypic Differences in Lamin A- and A/C-Related Hutchinson-Gilford Progeria Syndrome (HGPS)

    Get PDF
    Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disorder displaying features reminiscent of premature senescence caused by germline mutations in the LMNA gene encoding lamin A and C, essential components of the nuclear lamina. By studying a family with homozygous LMNA mutation (K542N), we showed that HGPS can also be caused by mutations affecting both isoforms, lamin A and C. Here, we aimed to elucidate the molecular mechanisms underlying the pathogenesis in both, lamin A- (sporadic) and lamin A and C-related (hereditary) HGPS. For this, we performed detailed molecular studies on primary fibroblasts of hetero- and homozygous LMNA K542N mutation carriers, accompanied with clinical examinations related to the molecular findings. By assessing global gene expression we found substantial overlap in altered transcription profiles (13.7%; 90/657) in sporadic and hereditary HGPS, with 83.3% (75/90) concordant and 16.7% (15/90) discordant transcriptional changes. Among the concordant ones we observed down-regulation of TWIST2, whose inactivation in mice and humans leads to loss of subcutaneous fat and dermal appendages, and loss of expression in dermal fibroblasts and periadnexial cells from a LMNAK542N/K542N patient further confirming its pivotal role in skin development. Among the discordant transcriptional profiles we identified two key mediators of vascular calcification and bone metabolism, ENPP1 and OPG, which offer a molecular explanation for the major phenotypic differences in vascular and bone disease in sporadic and hereditary HGPS. Finally, this study correlates reduced TWIST2 and OPG expression with increased osteocalcin levels, thereby linking altered bone remodeling to energy homeostasis in hereditary HGPS

    The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considering that a portion of the heterogeneity amongst previous replication studies may be due to a variable proportion of obese subjects in case-control designs, we assessed the association of genetic variants with type 2 diabetes (T2D) in large groups of obese and non-obese subjects.</p> <p>Methods</p> <p>We genotyped <it>RETN</it>, <it>KCNJ11</it>, <it>HNF4A</it>, <it>HNF1A</it>, <it>GCK</it>, <it>SLC30A8</it>, <it>ENPP1</it>, <it>ADIPOQ</it>, <it>PPARG</it>, and <it>TCF7L2 </it>polymorphisms in 1,283 normoglycemic (NG) and 1,581 T2D obese individuals as well as in 3,189 NG and 1,244 T2D non-obese subjects of European descent, allowing us to examine T2D risk over a wide range of BMI.</p> <p>Results</p> <p>Amongst non-obese individuals, we observed significant T2D associations with <it>HNF1A </it>I27L [odds ratio (OR) = 1.14, <it>P </it>= 0.04], <it>GCK </it>-30G>A (OR = 1.23, <it>P </it>= 0.01), <it>SLC30A8 </it>R325W (OR = 0.87, <it>P </it>= 0.04), and <it>TCF7L2 </it>rs7903146 (OR = 1.89, <it>P </it>= 4.5 × 10<sup>-23</sup>), and non-significant associations with <it>PPARG </it>Pro12Ala (OR = 0.85, <it>P </it>= 0.14), <it>ADIPOQ </it>-11,377C>G (OR = 1.00, <it>P </it>= 0.97) and <it>ENPP1 </it>K121Q (OR = 0.99, <it>P </it>= 0.94). In obese subjects, associations with T2D were detected with <it>PPARG </it>Pro12Ala (OR = 0.73, <it>P </it>= 0.004), <it>ADIPOQ </it>-11,377C>G (OR = 1.26, <it>P </it>= 0.02), <it>ENPP1 </it>K121Q (OR = 1.30, <it>P </it>= 0.003) and <it>TCF7L2 </it>rs7903146 (OR = 1.30, <it>P </it>= 1.1 × 10<sup>-4</sup>), and non-significant associations with <it>HNF1A </it>I27L (OR = 0.96, <it>P </it>= 0.53), <it>GCK </it>-30G>A (OR = 1.15, <it>P </it>= 0.12) and <it>SLC30A8 </it>R325W (OR = 0.95, <it>P </it>= 0.44). However, a genotypic heterogeneity was only found for <it>TCF7L2 </it>rs7903146 (<it>P </it>= 3.2 × 10<sup>-5</sup>) and <it>ENPP1 </it>K121Q (<it>P </it>= 0.02). No association with T2D was found for <it>KCNJ11</it>, <it>RETN</it>, and <it>HNF4A </it>polymorphisms in non-obese or in obese individuals.</p> <p>Conclusion</p> <p>Genetic variants modulating insulin action may have an increased effect on T2D susceptibility in the presence of obesity, whereas genetic variants acting on insulin secretion may have a greater impact on T2D susceptibility in non-obese individuals.</p

    Selection of the appropriate method for the assessment of insulin resistance

    Get PDF
    Insulin resistance is one of the major aggravating factors for metabolic syndrome. There are many methods available for estimation of insulin resistance which range from complex techniques down to simple indices. For all methods of assessing insulin resistance it is essential that their validity and reliability is established before using them as investigations. The reference techniques of hyperinsulinaemic euglycaemic clamp and its alternative the frequently sampled intravenous glucose tolerance test are the most reliable methods available for estimating insulin resistance. However, many simple methods, from which indices can be derived, have been assessed and validated e.g. homeostasis model assessment (HOMA), quantitative insulin sensitivity check index (QUICKI). Given the increasing number of simple indices of IR it may be difficult for clinicians and researchers to select the most appropriate index for their studies. This review therefore provides guidelines and advices which must be considered before proceeding with a study

    Twenty years of stereotype threat research: A review of psychological mediators

    Get PDF
    This systematic literature review appraises critically the mediating variables of stereotype threat. A bibliographic search was conducted across electronic databases between 1995 and 2015. The search identified 45 experiments from 38 articles and 17 unique proposed mediators that were categorized into affective/subjective (n = 6), cognitive (n = 7) and motivational mechanisms (n = 4). Empirical support was accrued for mediators such as anxiety, negative thinking, and mind-wandering, which are suggested to co-opt working memory resources under stereotype threat. Other research points to the assertion that stereotype threatened individuals may be motivated to disconfirm negative stereotypes, which can have a paradoxical effect of hampering performance. However, stereotype threat appears to affect diverse social groups in different ways, with no one mediator providing unequivocal empirical support. Underpinned by the multi-threat framework, the discussion postulates that different forms of stereotype threat may be mediated by distinct mechanisms

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore