45 research outputs found

    Effects of Long-Range Nonlinear Interactions in Double-Well Potentials

    Get PDF
    We consider the interplay of linear double-well-potential (DWP) structures and nonlinear longrange interactions of different types, motivated by applications to nonlinear optics and matter waves. We find that, while the basic spontaneous-symmetry-breaking (SSB) bifurcation structure in the DWP persists in the presence of the long-range interactions, the critical points at which the SSB emerges are sensitive to the range of the nonlocal interaction. We quantify the dynamics by developing a few-mode approximation corresponding to the DWP structure, and analyze the resulting system of ordinary differential equations and its bifurcations in detail. We compare results of this analysis with those produced by the full partial differential equation, finding good agreement between the two approaches. Effects of the competition between the local self-attraction and nonlocal repulsion on the SSB are studied too. A far more complex bifurcation structure involving the possibility for not only supercritical but also subcritical bifurcations and even bifurcation loops is identified in that case.Comment: 12 pages, 9 figure

    Surface solitons in trilete lattices

    Full text link
    Fundamental solitons pinned to the interface between three semi-infinite one-dimensional nonlinear dynamical chains, coupled at a single site, are investigated. The light propagation in the respective system with the self-attractive on-site cubic nonlinearity, which can be implemented as an array of nonlinear optical waveguides, is modeled by the system of three discrete nonlinear Schr\"{o}dinger equations. The formation, stability and dynamics of symmetric and asymmetric fundamental solitons centered at the interface are investigated analytically by means of the variational approximation (VA) and in a numerical form. The VA predicts that two asymmetric and two antisymmetric branches exist in the entire parameter space, while four asymmetric modes and the symmetric one can be found below some critical value of the inter-lattice coupling parameter -- actually, past the symmetry-breaking bifurcation. At this bifurcation point, the symmetric branch is destabilized and two new asymmetric soliton branches appear, one stable and the other unstable. In this area, the antisymmetric branch changes its character, getting stabilized against oscillatory perturbations. In direct simulations, unstable symmetric modes radiate a part of their power, staying trapped around the interface. Highly unstable asymmetric modes transform into localized breathers traveling from the interface region across the lattice without significant power loss.Comment: Physica D in pres

    Utilitarianism: a psychophysical perspective

    Get PDF
    The psychological doctrines of empiricism, associationism, and hedonism served as intellectual sources for the development of utilitarianism in the 18th century and psychophysics in the 19th. Utilitarianism, first articulated by Bentham in 1781, makes four implicit but nevertheless important psychophysical assumptions: (1) that utilities, which reflect "benefit, advantage, pleasure, good or happiness," are quintessentially psychological concepts; (2) that utilities are quantitative; (3) that utilities are commensurable across different objects; and (4) that utilities are commensurable across individuals. Although utilities sometimes reflect the satisfaction of biological needs, they commonly represent psychological valences or values, whose subjective strengths may themselves derive, dynamically, from processes of decision-making
    corecore