
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Mathematics and Statistics Department Faculty
Publication Series Mathematics and Statistics

2010

Effects of Long-Range Nonlinear Interactions in
Double-Well Potentials
C Wang

PG Kevrekidis
University of Massachusetts - Amherst, kevrekid@math.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/math_faculty_pubs

Part of the Physical Sciences and Mathematics Commons

This Article is brought to you for free and open access by the Mathematics and Statistics at ScholarWorks@UMass Amherst. It has been accepted for
inclusion in Mathematics and Statistics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For
more information, please contact scholarworks@library.umass.edu.

Recommended Citation
Wang, C and Kevrekidis, PG, "Effects of Long-Range Nonlinear Interactions in Double-Well Potentials" (2010). Mathematics and
Statistics Department Faculty Publication Series. 1116.
Retrieved from https://scholarworks.umass.edu/math_faculty_pubs/1116

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UMass Amherst

https://core.ac.uk/display/13605636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/math?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/math_faculty_pubs/1116?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1116&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


ar
X

iv
:1

00
5.

53
50

v1
  [

nl
in

.P
S]

  2
8 

M
ay

 2
01

0

Effects of Long-Range Nonlinear Interactions in Double-Well Potentials
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We consider the interplay of linear double-well-potential (DWP) structures and nonlinear long-
range interactions of different types, motivated by applications to nonlinear optics and matter waves.
We find that, while the basic spontaneous-symmetry-breaking (SSB) bifurcation structure in the
DWP persists in the presence of the long-range interactions, the critical points at which the SSB
emerges are sensitive to the range of the nonlocal interaction. We quantify the dynamics by devel-
oping a few-mode approximation corresponding to the DWP structure, and analyze the resulting
system of ordinary differential equations and its bifurcations in detail. We compare results of this
analysis with those produced by the full partial differential equation, finding good agreement be-
tween the two approaches. Effects of the competition between the local self-attraction and nonlocal
repulsion on the SSB are studied too. A far more complex bifurcation structure involving the
possibility for not only supercritical but also subcritical bifurcations and even bifurcation loops is
identified in that case.

I. INTRODUCTION

The studies of Bose-Einstein condensates (BECs) [1–3] and nonlinear optics [4] keep drawing a great deal of
attention due to experimental advances in versatile realizations of such systems, as well as considerable progress in
the analysis of relevant models based on the nonlinear Schrödinger (NLS) -type equations. One of remarkable features
specific to these fields is the possibility of tailoring particular configurations by dint of suitably designed magnetic
and/or optical trapping mechanisms (possibly acting in a combination) that confine the atoms in the case of BEC, or
virtual (photonic) and material structures manipulating the transmission of light in nonlinear optical media. These
achievements motivate the detailed examination of the existence, stability and dynamical behavior of nonlinear modes
in the form of matter or optical waves. The NLS equation [4, 5], as well as its variant known as the Gross-Pitaevskii
(GP) equation [1–3] in the BEC context are often at the center of such analysis.
Within the diverse range of external confinement mechanisms, one that has attracted particular attention is that

provided by double-well potentials (DWPs). Its prototypical realization in the context of BEC relies on the com-
bination of a parabolic (harmonic) trap with a periodic potential, which can be created, as an “optical lattice”, by
the interference of laser beams illuminating the condensate [6]. The use of a DWP created as a trap for BEC (with
the intrinsic self-repulsive nonlinearity) has revealed a wealth of new phenomena in recent experiments [7], including
the tunneling and Josephson oscillations for small numbers of atoms in the condensate, and macroscopic quantum
self-trapped states for large atom numbers. Prior to this work, as well as afterwards, motivated by its findings, a
wide range of theoretical studies investigated such DWP settings, including such issues as finite-mode reductions
and symmetry-breaking bifurcations [8–15], quantum effects [16], and nonlinear variants of the DWP [17]. DWP
settings and spontaneous-symmetry-breaking (SSB) effects in them have also been studied in nonlinear-optical set-
tings, such as formation of asymmetric states in dual-core fibers [18], self-guided laser beams in Kerr media [19], and
optically-induced dual-core waveguiding structures in photorefractive crystals [20].
One of recent developments in both fields of matter and optical waves is the study of effects of long-range nonlinear

interactions. In the BEC these studies are dealing with condensates formed by magnetically polarized 52Cr atoms [21]
(see recent review [22]), dipolar molecules [23], or atoms in which electric moments are induced by a strong external
field [24]. Matter-wave solitons supported by the dipole-dipole interactions were predicted in isotropic [25], anisotropic
[26], and discrete [27] two-dimensional (2D) settings, and in the quasi-1D configurations [28, 29] (the latter was done
not only in BEC, but also in a model of the Tonks-Girardeau gas [30]). In optics, prominent examples of patterns
supported by long-range effects are stable vortex rings predicted in media with the thermal nonlocal nonlinearity [31],
as well as the experimental realization of elliptically shaped spatial solitons in these media [32].
Our aim in the present work is to examine effects of long-range interactions in the context of DWPs. This is a topic

of increasing current interest; in the context of dipolar multi-dimensional condensates, it was recently addressed in
Refs. [33], where the phase diagram of the system was explored, as a function of the strength of the barrier in the
DWP, number of atoms, and aspect ratio of the system. The possibility of a transition from a symmetric state to an
asymmetric one, and finally to an unstable higher-dimensional configuration was considered. Here, we focus on the 1D
setting, and explore different types of long-range interactions, including the dipole-dipole interactions, as motivated
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by Refs. [28–30], as well as the interactions with Gaussian and exponential kernels, motivated by nonlinear-optical
models [34]. In particular, we consider the effect of the range of the interaction, with the objective to consider a
transition from the contact interactions to progressively longer-range ones. We conclude that the phenomenology of
the short-range interactions persists, i.e., the earlier discovered SSB phenomena [12, 14, 15, 35] still arise in the present
context. However, the critical point of the SSB transitions features a definite, monotonically increasing, dependence
on the interaction range, which is considered in a systematic way. More elaborate scenarios can be detected in the
case where in addition to the long-range interactions, there is a competing short-range component. In such a case,
we identify not only the earlier symmetry-breaking bifurcations but also reverse, “symmetry-restoring” bifurcations,
as well as the potential for symmetry-breaking to arise (for the same parameters) both from the symmetric and from
the antisymmetric solution branch. Both of these are phenomena that, to the best of our knowledge, have not been
reported previously. Interestingly, the only example where subcritical bifurcations have been previously discussed in
the double well setting for GP equations is the very recent one of extremely (and hence somewhat unphysically) high
nonlinearity exponents in [36].
The presentation is structured as follows. In section II, we present the model and the quasi-analytical two-mode

approximation, which clearly reveals the system’s bifurcation properties. In section III, we corroborate these analytical
predictions by full numerical results for different types of the long-range kernel. In section IV, we consider a more
general case, in which the long-range nonlinear repulsion competes with the local attraction. There, we illustrate how
the competition strongly affects the character of the SSB in the DWP setting. Finally, in section V, summarize our
findings and present our conclusions.

II. THE LONG-RANGE MODEL AND THE ANALYTICAL APPROACH

In the quasi-1D setting, the normalized mean-field wave function ψ(x, t) obeys the scaled GP equation,

i∂tψ + µψ = Lψ + s

[
∫

∞

−∞

K (x− x′)|ψ(x′)|2 dx′
]

ψ, (1)

where µ is the chemical potential, and

L = −(1/2)∂2x + V (x) (2)

is the usual single-particle energy operator, which includes the confining DWP

V (x) = (1/2)Ω̂2x2 + V0 sech
2 (x/W ) , (3)

with Ω̂ the normalized harmonic-trap’s strength; Ω̂ ≪ 1 in a quasi-1d situation in BECs. The nonlinear term with
coefficient s accounts for the long-range interatomic interactions, s = ±1 corresponding to the repulsion and attraction,
respectively. Note that the contact interaction is not taken into regard in Eq. (1), as we aim to focus on the effect
produced by the long-range nonlinearity (in the gas of 52Cr atoms, the contact interaction may be readily suppressed
by means of the Feshbach resonance [21]). In this work, we consider mainly symmetric spatial kernels in Eq. (1), that
are positive definite, with the following three natural forms chosen for detailed analysis: the Gaussian,

K(x) =
1

σ
√
π
exp

(

−x
2

σ2

)

, (4)

the exponential,

K(x) =
1

2σ
exp

(

−|x|
σ

)

, (5)

and the cut-off (CO) (alias generalized Lorentzian) kernel,

K(x) =
10

π
σ3(x2 + σ2)−3/2. (6)

The width of the kernels, σ, determines the degree of the nonlocality. All three kinds of the kernels go over into the
δ-function as σ approaches zero, in which case Eq. (1) turns into the usual local NLS/GP equation. All the kernels are

normalized as the δ-function, i.e.,
∫ +∞

−∞
K(x)dx = 1, and the norm of the wave function will be used in the usual form,

N =
∫ +∞

−∞
|ψ(x, t)|2dx. In what follows below, we adopt typical physically relevant values of the scaled parameters,

namely, Ω̂ = 0.1, V0 = 1 and W = 0.5, in which case the two lowest eigenvalues of linear operator L with potential
(3) are numerically found to be ω0 = 0.1328 and ω1 = 0.1557.
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A. The two-mode approximation

The spectrum of the underlying linear Schrödinger equation (s = 0) consists of the ground state, with wave function
u0(x), and excited states, ul(x) (l ≥ 1). In the weakly nonlinear regime, the Galerkin-type two-mode approximation is
employed to decompose the wave function ψ(x, t) over the minimum basis constituted by the ground state u0 and the
first excited state u1, associated to the eigenvalues ω0 and ω1, respectively. For this purpose, it is more convenient to
use a transformed orthonormal basis composed by wave functions centered at the left and right wells, viz., {ϕL, ϕR}
≡

{

(u0 − u1)/
√
2, (u0 + u1)/

√
2
}

. Without the loss of generality, ϕL,R are both chosen to be positive definite. Thus,
the two-mode approximation for the wave function is defined as

ψ(x, t) = cL(t)ϕL(x) + cR(t)ϕR(x), (7)

where cL and cR are complex time-dependent amplitudes. Substituting this into Eq. (1), we obtain

iċLϕR + i ˙cRϕR = (ΩcL − µcL − ωcR)ϕL + (ΩcR − µcR − ωcL)ϕR

+ s|cL|2(cLϕL + cRϕR)

∫

K(x− x′)ϕ2
L(x

′)dx′ + s|cR|2(cLϕL + cRϕR)

∫

K(x− x′)ϕ2
R(x

′)dx′

+ s[(c2Lc
∗

R + |cL|2cR)ϕL + (c∗Lc
2
R + cL|cR|2)ϕR]

∫

K(x− x′)ϕL(x
′)ϕR(x

′)dx′,

(8)

where the asterisk and overdot stand for the complex conjugate and time derivative, while Ω ≡ (ω0 + ω1)/2 and
ω ≡ (ω1 − ω0)/2 are linear combinations of the two lowest eigenvalues. Next, we project Eq. (8) onto the single-well
states ϕL,R, which involves the following overlap integrals:

η0 =

∫∫

K(x− x′)ϕ2
L(x

′)ϕ2
L(x) dx

′dx,

η1 =

∫∫

K(x− x′)ϕ2
L(x

′)ϕ2
R(x) dx

′dx,

η2 =

∫∫

K(x− x′)ϕ2
L(x

′)ϕL(x)ϕR(x) dx
′dx,

η3 =

∫∫

K(x− x′)ϕL(x
′)ϕR(x

′)ϕL(x)ϕR(x) dx
′dx.

(9)

The equations hold if subscripts L and R are swapped, or the variable x and x′ are interchanged, due to the symmetry
of kernel K. In Fig. 1 we show the values of the four integrals, η0,1,2,3, as functions of parameter σ, for the three
types of kernels defined in Eqs. (4)-(6). We note that η2 and η3 remain negligible for any value of σ, and η0,1 are
both positive when the kernel K is positive definite. Naturally, when σ is small, which corresponds to the limit of
a nearly local nonlinearity, η0 is much larger that the other three overlap integrals, due to the weak overlapping of
the single-well states ϕL,R. As σ increases, η0 decreases while η1 increases and, finally, they tend to become equal.
Regarding the values of these integrals, the upcoming analysis is conducted in two situations: η0 much larger than
all others, and η0 being on the same order of magnitude as η1. Some value of the σb is to be fixed as a boundary
between the two cases. Since η0 is always large, the key point is to set up a rule for comparing η1 with η2,3. To this
end, we define ηrel = η1 −max(|η2|, |η3|) and the criterion is stated as follows: if ηrel ≥ 0.01, η1 is taken into regard
in the analysis of the two-mode approximation; otherwise, η1 is insignificant, and only η0 is kept. For the kernels
considered in this context, the criterion yields σb = 2.96, 1.56 and 1.91 for the Gaussian, exponential and Lorentzian
kernels, respectively.
Thus, with σ < σb, all integrals η1,2,3 are omitted, and only η0 is retained. Then, the projection of Eq. (8) onto

the two-mode set, ϕL,R, leads to the following ODE system:

iċL = (Ω− µ)cL − ωcR + sη0|cL|2cL,
iċR = (Ω− µ)cR − ωcL + sη0|cR|2cR.

(10)

We then introduce the Madelung representation, cL,R = ρL,Re
iθL,R with real time-dependent ρL,R and θL,R, and

derive from Eq. (10) a set of equations for ρL,R and θL,R:







ρ̇L = ωρR sin θ

θ̇L = (µ− Ω) + ω
ρR
ρL

cos θ − sη0ρ
2
L

(11)
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FIG. 1: (Color online) The overlap integrals η0, η1, η2 and η3 as functions of width σ of the kernels of the following types:
Gaussian (left), exponential (middle), and Lorentzian (right), as defined in Eqs. (4)-(6).

where θ ≡ θL − θR is the relative phase between the two modes, and the equations for ρR and θR are obtained by
interchanging subscripts L and R, and θ with −θ, in Eq. (11) directly. We focus on steady solutions to this system,

i.e. ρ̇L,R = θ̇L,R = 0. Then, for solutions with nonzero amplitudes, θ may only take values 0 or π, which correspond,
respectively, to equal or opposite signs of real stationary solutions for cL and cR. Through a straightforward algebra,
three stationary solutions are thus found: the symmetric solution, with θ = 0 and ρ2L,R = (µ−ω0)/sη0, existing when

µ > ω0 (µ < ω0) for s = 1 (s = −1), i.e., for the repulsive (attractive) long-range interactions; the antisymmetric
solution, with θ = π and ρ2L,R = (µ− ω1)/sη0, existing when µ > ω1 (µ < ω1) for s = 1 (s = −1); and an asymmetric

solution, with ρ2L,R = (s(µ − Ω) ±
√

(µ− Ω)2 − 4ω2)/2η0. As we assume η0 > 0, for the repulsive case (s = 1) the
asymmetric state exists only if θ = π, i.e., it bifurcates from the antisymmetric solution when µ > Ω + 2ω. On the
contrary, in the attractive case, it emerges from the symmetric state (θ = 0) when µ < Ω − 2ω. These conclusions
agree with the general principles of the SSB theory, according to which the attractive/repulsive nonlinearity breaks
the symmetry/anti-symmetry of solutions with equal numbers of particles in the two wells [12, 14, 15, 35].
Next, we consider the other situation, in which both η0 and η1 are taken into consideration, while the other two

are neglected (i.e., σ ≥ σb). In this case, projecting Eq. (8) onto ϕL,R results in the following system:

iċL = (Ω− µ)cL − ωcR + scL(|cL|2η0 + |cR|2η1),
iċR = (Ω− µ)cR − ωcL + scR(|cR|2η0 + |cL|2η1).

(12)

In terms of the Madelung representation, we transform Eqs. (12) into







ρ̇L = ωρR sin θ

θ̇L = (µ− Ω) + ω
ρR
ρL

cos θ − sη0ρ
2
L − sη1ρ

2
R,

(13)

with the equations for ρR and θR produced by swapping subscripts L and R, and θ with −θ, as before. In this case,
a set of three stationary states are again obtained: the symmetric one, θ = 0 and ρ2L,R = (µ − ω0)/s(η0 + η1); the

antisymmetric state, θ = π and ρ2L,R = (µ − ω1)/s(η0 + η1). Finally, the asymmetric state, θ = π (θ = 0) for s = 1

(s = −1) and ρ2L,R = ((µ−Ω)/sη0±
√

(µ− Ω)2/η20 − 4ω2/∆η2)/2, where ∆η = η0−η1 > 0 for the kernels we consider,

exists at µ > Ω + 2ωη0/∆η (µ < Ω − 2ωη0/∆η) for s = 1 (s = −1). The value of µ at which the SSB bifurcation
happens is tagged as µcr. Since η0/∆η is an increasing function of σ, the value of µcr increases (decreases) as σ grows
for s = 1 (s = −1).
The two-mode approximation is a powerful means for identifying different steady states of the underlying problem.

The solutions found above are also used as initial conditions in solving the full NLS equation (1), as reported in
section III.

B. The bifurcation analysis

The two-mode approximation strongly facilitates the qualitative analysis of the SSB bifurcation, as well as exploring
the system’s dynamics. To proceed, we define the population imbalance between the two wells,

z = (NL −NR)/N = (|cL|2 − |cR|2)/N, (14)
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where NL,R = |cL,R|2 ≡ ρ2L,R, hence the total norm is N = NL +NR. Together with the relative phase, θ = θL − θR,
we eventually derive the following dynamical equations:











ż = 2ω
√

1− z2 sin θ

θ̇ = −2ωz cos θ√
1− z2

− sηNz.
(15)

This form of the equations is relevant for both cases, when only η0 or both η0 and η1 dominate, as discussed before.
Note that η stands for η0 in the former case, and for ∆η in the latter one. Equations (15) take the Hamiltonian form,











ż = −∂H
∂θ

,

θ̇ =
∂H
∂z

,

(16)

with Hamiltonian

H = 2ω
√

1− z2 cos θ − 1

2
sηNz2. (17)

Equations (15) possess the stationary solutions, (z1, θ1) and (z2, θ2), with z1 = z2 = 0, θ1 = 0, θ2 = π, which
represent the symmetric and the antisymmetric solutions, respectively. Besides that, the asymmetric stationary
solutions may exist when N ≥ N cr, with N cr = |2ω/η|, taking the form of

θ = π (θ = 0), z2 = 1− 4ω2

η2N2
, (18)

for s = 1 (s = −1). The asymmetric solution emerges from the antisymmetric (symmetric) one through a pitchfork
bifurcation, in the case of the defocusing (focusing) nonlinearity. Since η = η0 for σ < σb and η = η0 − η1 for σ > σb,
Fig. 1 suggests that η is, generally, a decreasing function of σ, and consequently N cr is increasing with respect to σ.
This way, the bifurcation takes place at larger value of N when the the nonlocality range is wider, which is consistent
with the conclusion concerning µcr.
Next, from Eq. (15) we derive the equation of motion,

z̈ = −4ω2z + |η|Nz
√

4ω2 − 4ω2z2 − ż2, (19)

which leads to the system
{

ż = p,

ṗ = −4ω2z + |η|Nz
√

4ω2 − 4ω2z2 − p2.
(20)

When N < N cr, there is a unique stationary solution, p = z = 0, which is a fixed point of the center type. When

N > N cr, the origin, (0, 0), becomes a saddle, with another pair of fixed points (centers), p = 0, z = ±
√

1− 4ω2

|η|2N2
,

representing the asymmetric solutions. Figure 2 shows the phase space of system (20), along with the linearization
near the fixed points for the example of the Gaussian kernel with σ = 5.0 and N = 0.5, in which case N cr = 0.33.

III. NUMERICAL APPROACH

We first consider the repulsive interaction case (s = 1). Branches of stationary solutions to the full partial differential
equation (1) are explored for all three kernels defined in Eqs. (4)-(6) with various values of parameter σ. The results
are plotted in Figs. 3 - 6, where the solutions are expressed in terms of N , the number of atoms, as a function of
the chemical potential µ. The stationary solutions are sought by employing a fixed-point Newton-Raphson iteration
onto a finite difference scheme with ∆x = 0.1 and using the continuation of the solutions with respect to µ. The
linear stability of each solution ψ0, is analyzed by considering the standard linearization around it in the form
ψ(x, t) = ψ0 + ε[a(x)eλt + b∗(x)eλ

∗t]. The relevant linear eigenvalue problem is written as

(

L1 L2

−L∗

2 −L∗

1

)

= iλ

(

a
b

)

, (21)
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FIG. 2: (Color online) Phase diagrams in the Gaussian-kernel model with with σ = 5.0 and N = 0.5, in which case Ncr = 0.33.
The left panel is obtained from complete system (20), displaying three fixed points, (0, 0) and (±0.7498, 0). The middle and
right panels are the phase planes of the linearized system near fixed points (0, 0) (middle) and (0.7498, 0) (right).

where operators L1, L2 are defined as

L1φ =

[

−1

2
∂2x + V − µ+ s

∫

∞

−∞

K (x− x′)|ψ0(x
′)|2 dx′

]

φ+ s

∫

∞

−∞

K (x − x′)ψ0(x
′)ψ∗

0(x
′)φ(x′) dx′,

L2φ = s

∫

∞

−∞

K (x− x′)ψ0(x
′)ψ∗

0(x
′)φ(x′) dx′

(22)

for any function φ. The stationary state is called unstable if there exist any eigenvalues λ with ℜ(λ) 6= 0, otherwise
it is stable (i.e. all corresponding eigenvalues are purely imaginary).
We present the results of Gaussian kernel in detail as an example. In each panel (Fig. 3), the solid blue line with

highest value of N for any µ among the three branches is the symmetric stationary solution; the continuation of it
to the linear limit (N → 0) shows that it starts from µ = ω0 (the eigenvalue associated to the ground mode of the
underlying linear system), and it is stable for any µ. The branch with a part of it denoted by dashed red line is the
antisymmetric solution, arising from the linear limit at µ = ω1, corresponding to the first excited state. It starts as
a stable state from the linear mode (denoted by solid blue line) and, as µ increases, after some critical point µcr,
it is destabilized due to the emergence of the asymmetric branch through a supercritical pitchfork; notice that the
asymmetric branch remains stable after it occurs. This bifurcation was predicted by the two-mode analysis in the
previous section.
The four panels of Fig. 3 are the bifurcation diagrams of the model with the Gaussian kernel, for σ = 0.1, 1, 5 and

10. The main parts of the panels display the numerically found solutions of the full system, while the small plot in
each panel shows the corresponding analytical solutions predicted by the two-mode approximation, as obtained in
Section II. The numerical and analytical branches of the solutions demonstrate good agreement in all the four cases.
Recall that we have obtained the critical values at which the bifurcation takes place, µcr (or equivalently N cr), in an
analytical form. As for the Gaussian kernel (with the chosen border at σb = 2.96), σ = 0.1 and σ = 1 are categorized
as belonging to the first case, with solely η0 taken into account, among all the overlap integrals. The analytically
predicted value is µcr = 0.1671 (since µcr = Ω+2ω), while its numerically found counterpart is µcr = 0.1684 for both
σ = 0.1 and 1. On the other hand, σ = 5 and σ = 10 pertain to the the second case, in which both η0 and η1 are kept.
In this case, the analytical prediction is µcr = Ω+2ωη0/∆η, which depends on η0,1 and thus varies for different values
of σ. The predicted values of µcr is 0.1757 and 0.2120, for σ = 5 and 10, respectively, while the respective numerical
values are µcr = 0.1745 and 0.2075. Despite a small discrepancy between the two groups of the values (numerical
versus analytical), the analytical results still succeed in predicting the trend of the behavior of µcr, viz., µcr increases
with the growth of σ, or, in other words, the SSB bifurcation takes place at higher values of N cr, as shown in Fig. 4.
Next we consider cases with the long-range interaction based on the other two kernels, viz., the exponential and

Lorentzian ones, given by Eq. (5) and (6), respectively. The corresponding bifurcation diagrams, similar to the case
of the Gaussian kernel, are presented in Fig. 5 and Fig. 6, with the same notations as adopted above.
Lastly, we also briefly discuss the self-attractive case, with s = −1 in Eq. (1). Two examples are selected, using

the Gaussian kernel with σ = 1 and 5, to help illustrating the similarities and differences with the self-repulsive case.
The complete bifurcation diagrams are plotted, for this case, in Fig. 7, with the notation similar to that introduced
above.
In this case, the two branches arise from the linear modes at µ = ω0 and ω1, pertaining to the symmetric and

antisymmetric stationary solutions, which exist for µ < ω0 or µ < ω1, respectively. This time, the supercritical SSB
pitchfork bifurcation occurs on the symmetric branch, leading to the emergence of the asymmetric state. The pitchfork
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FIG. 3: (Color online) The normalized norm, N , of the numerically found stationary solutions of the underlying GP equation
with the Gaussian kernel, for the case of repulsive interaction (s = 1), as a function of chemical potential µ. The four panels
correspond to cases with different values of σ, viz., σ = 0.1 (top left), σ = 1 (top right), σ = 5 (bottom left), and, finally, σ = 10
(bottom right). The stationary solutions predicted by the two-mode approximation for each case are shown in the small plot in
the top left corner of each panel. The blue solid lines and red dashed lines denote stable and unstable solutions, respectively.

0 5 10 15 20

0.2

0.25

0.3

0.35

σ

µcr

FIG. 4: (Color online) The critical value of the chemical potential, µcr, at which the supercritical pitchfork bifurcation takes
place in the case of the self-repulsive nonlinearity with the Gaussian kernel, as a function of σ. The blue solid line and the red
dashed-dotted line denote the numerically obtained values and their counterparts predicted by the two-mode approximation,
respectively. Note that there is a small jump at σ = 2.96 on the dashed-dotted line, due to the definition if the border between
the two situations [described by Eqs. (10) and (12), respectively] in the two-mode analysis.

is found at µcr = 0.1213 and 0.1128 for σ = 1 and 5 respectively, in good agreement with the critical values predicted
by the two-mode approximation, which are 0.1212 and 0.1104. In each panel of Fig. 7, the diagram produced by the
two-mode approximation, corresponding to its numerical counterpart, is displayed in the top right corner, exhibiting
a very good agreement between the two.
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FIG. 5: (Figure online) Norm N of the numerically found solutions and their counterparts predicted by the two-mode approx-
imation (shown in the corners) for the case of the self-repulsive nonlinearity with the exponential kernel, as a function of µ.
Here and in the next figure, the value of σ is chosen as σ = 1 (left), σ = 5 (right), and the notation is the same as in Fig. 3.
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FIG. 6: (Color online) The norm of the numerical and approximate analytical solutions for the case of the self-repulsive
nonlinearity with the Lorentzian kernel, as a function of µ.

IV. COMPETING SHORT- AND LONG-RANGE INTERACTIONS

In this section, we consider a model illustrating effects of the competition of the long-range interactions with local
ones, based on the following GP equation,

i∂tψ + µψ = Lψ + s

[
∫

∞

−∞

K (x− x′)|ψ(x′)|2 dx′
]

ψ + g|ψ|2ψ, (23)

where coefficient g accounts for the contact nonlinearity. The interactions are fully attractive or repulsive if s and g
are both negative or positive, respectively. However, in such cases the results turn out to be similar to those reported
above for the nonlocal nonlinearity. A more interesting case arises for sg < 0, i.e., for the competing interactions.
Effects of the competition on 1D solitons were recently studied in detail in Ref. [29].
We use the analysis presented in the previous section as a starting point for our considerations here. Thus, we fix

the long-range interaction coefficient s = ±1, and then vary the local interaction coefficient, g from 0 to −1 (g < 0
implies the local attraction), using Gaussian kernel (4) with σ = 5 and s = 1 as a case example. As the attractive
local interactions grow stronger, interesting phenomena emerge in the development of the corresponding bifurcation
diagram, as is shown in Fig. 8.
When g is close to zero, the three branches of stationary states are similar to those in the case of pure long-range

interactions, as shown in the bottom left panel of Fig. 3. An example for g = −0.2 is presented in the top left panel
of Fig. 8, where the norm N of each branch is larger at any value of µ, in comparison to the case of g = 0. Also, the
bifurcation takes place at a larger critical value, µcr = 0.1805.
As g grows more negative, we notice that the symmetric and the antisymmetric branches, while monotonically

increasing with µ at small values of N , switch to become monotonically decreasing functions of µ at a large value
of N . Simultaneously, we observe the bifurcation of two asymmetric states, each from a different branch. While it
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FIG. 7: (Color online) Norm N of the numerical solutions, together with their analytical counterparts (shown in the small plots
on the top right corners), for the case of the self-attractive nonlinearity (s = −1), as a function of µ. The Gaussian kernel is
taken, with σ = 1 (left) and σ = 5 (right). The notation is the same as in Fig. 3.
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FIG. 8: (Color online) Norm N of the numerically found solutions in the case of the competing interactions for Gaussian kernel
(4) with σ = 5, as a function of µ. The coefficient of the long-range interactions is s = 1, while the local-interaction coefficient
is g = −0.2 (top left), −0.3 (top right), −0.35 (bottom left) and −0.45 (bottom right). The notation is the same as in Fig. 3.

is commonly known that attractive and repulsive interactions favor bifurcations from symmetric and anti-symmetric
branches, respectively, here we encounter the first (to our knowledge) example that features bifurcations from both
branches. This unusual situation extends up to g = −0.32. The complete bifurcation diagram is displayed in the top
right panel of Fig. 8, for the case of g = −0.3. In this case, the symmetric and antisymmetric branches arise, as usual,
from their linear limits at µ = ω0 and µ = ω1, respectively. A supercritical pitchfork bifurcation occurring (as before)
on the antisymmetric branch gives rise to an asymmetric state at µ = −0.195, destabilizing the antisymmetric one.
What is, however, different here is that this asymmetric state “survives” only within a narrow parametric interval
before it merges back into the antisymmetric branch through another subcritical (“symmetry-restoring”) pitchfork
at µ = 0.3263. This bifurcation loop is reminiscent of that reported previously for two-component solitons in local
1D and 2D models with competing self-focusing cubic and self-defocusing quintic nonlinearities [37]. For higher µ,



10

another asymmetric branch arises from the symmetric one through a subcritical pitchfork at µ = 0.3465; it is especially
important to highlight that this pitchfork, which destabilizes the symmetric branch, is a subcritical one, hence the
asymmetric state is unstable too. It is observed that, after its emergence, the norm of the asymmetric branch decreases
as µ decreases (dN/dµ > 0), before starting to rise at the fold point at µ = 0.2768, featuring dN/dµ < 0 after that.
The stability of the state changes at the turning point, which is in agreement with the well-known Vakhitov-Kolokolov
(VK) criterion [38], according to which the slope of the branch determines its stability. In Fig. 9, a blowup provides
a clearer view of these bifurcations.
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0.2 0.25 0.3 0.35
−4

−2

0

2

4

µ

m
ea

n
FIG. 9: (Color online) The left panel: a segment of the top right panel in Fig. 8, for g = −0.35, clarifies details of the

bifurcation picture. The right panel: the asymmetry-measuring intergal characteristic,
∫

+∞

−∞
x|ψ|2dx, for the antisymmetric

solution and the asymmetric one arising from it, as a function of µ, in the same case as in the left panel. The loop illustrating
the asymmetric solution emerging from (through the symmetry-breaking supercritical pitchfork) and merging back (through
the symmetry-restoring subcritical pitchfork) into the antisymmetric branch. The notation is the same as in Fig. 3.

The symmetric and the antisymmetric branches continue to increase their norms with the growth of µ, each of them
featuring its own turning point, at µ = 0.391 and µ = 0.3853 respectively, and change their monotonicity thereafter.
However, this change on the antisymmetric branch is not accompanied by a stability change. To demonstrate that
this is not an exception to the VK criterion, we define the linearization operators,

L+ = L1 + L2 + 3g|ψ|2,
L− = L1 − L2 + g|ψ|2,

(24)

using notation L1,2 defined in Eq. (22). It is known from Ref. [39] that the instability arises, when the slope condition
of the VK criterion is violated, if |n(L+) − n(L−)| = 1, n standing for the number of negative eigenvalues of each
operator. The state under consideration is generically unstable if |n(L+)−n(L−)| > 1. In our case, the antisymmetric
branch has n(L−) ≡ 1 (due to its single-zero-crossing configuration profile, which is a zero mode of L−). Meanwhile,
n(L+) = 1 is true before the branch turns to the left, and consequently |n(L+) − n(L−)| = 0. Hence, even though
the slope condition is violated (dN/dµ > 0), the relevant theorem suggests that the VK criterion does not actually
apply here (and no stability change occurs). After the turning point, the stability is expected since n(L+) = 2, and
the slope condition is satisfied, which is in accordance with our observations.
Next, as the local interactions continue to grow stronger, another regime is explored, as shown in the bottom left

panel of Fig. 8, with g = −0.35 as an example. In this case, the phenomenology of the symmetric branch is similar
to that in the previous situation; however, the two sequential bifurcations taking place on the antisymmetric branch
no longer arise. Hence, the entire antisymmetric branch remains dynamically stable. The asymmetric branch still
emerges from the symmetric one through a subcritical pitchfork, and later becomes stable past the fold point due to
the change of slope, in accordance with the VK criterion.
The above regime persists until g = −0.38. After that, the pitchfork bifurcation occurring on the symmetric branch

switches from subcritical to supercritical, leading to the emergence of a stable asymmetric branch, as shown in the last
panel of Fig. 8. This shape of the bifurcation diagram, consisting of the three branches, persists as far as g decreases
to −1. Note that during this process, the turning points of the symmetric and antisymmetric branches keep getting
lower (with respect to N), finally leading to a situation where the turning points do not exist, and the two branches
immediately go left starting from their linear limits, i.e., the symmetric and the antisymmetric solutions only exist
for µ < ω0, ω1 when g < −0.69, −0.6, respectively.
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V. CONCLUSIONS AND FUTURE CHALLENGES

In this work, we have presented a systematic study of the interplay between the long-range nonlinear interactions (of
either sign, repulsive or attractive) and linear double-well potential (DWP) in the 1D setting. The two-mode approx-
imation has been developed, that accounts for the nonlocality but retains the structure similar to that established
before in the case of the contact interaction. This conclusion demonstrates that the fundamental phenomenology
of the spontaneous symmetry breaking (SSB) in the DWP persists in the presence of the longer-range interactions,
although the critical properties themselves (e.g., the critical values of the chemical potential and norm), at which
the SSB bifurcation occurs, giving rise to the asymmetric steady states, are sensitive to the precise interaction range.
In particular, our analysis has revealed a monotonous increase of the critical values as a function of the interaction
range, in the case of the self-repulsion. A considerably more elaborate phenomenology was revealed by the analysis in
the context of competing long- and short-range interactions. In that case, a delicate interplay between the strengths
of the nonlocal repulsion and local attraction gives rise, in addition to predominantly attractive and predominantly
repulsive regimes, to mixed ones with complex bifurcation phenomena. On the one hand, symmetry-breaking effects
were shown to arise from each of the relevant solution branches; in some cases, they are accompanied by reverse
bifurcations, to form closed loops. On the other hand, some of the previously studied supercritical bifurcations, such
as the one occurring on the symmetric branch, could become subcritical, being subsequently coupled to additional
fold bifurcations. All of these effects are absent, to our knowledge, in models with a single cubic nonlinear term, being
consequences of the competition.
These results may be a motivation for studies in a number of future directions. In particular, it would be relevant to

consider the generalizations of the DWP setting to higher dimensions, such as, the four-well configuration, which was
recently demonstrated to yield a much richer phenomenology in the case of the contact interactions [40]. In the same
connection, it is relevant to note that the few-mode approach, used in this work for the consideration of the existence
and stability of the symmetric, antisymmetric, and asymmetric states, as functions of the interaction strength, may
be applied to other structures, such as multi-dimensional bright [25], dark [41] and vortex [31] solitons, especially in
cases where such structures are stabilized by nonlocal nonlinearities. A natural objective of such an analysis may be
to unravel effects of the interaction range on structural stability of nonlinear waveforms. Such studies are presently
in progress and will be reported elsewhere.
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