524 research outputs found

    Huber's theorem for hyperbolic orbisurfaces

    Get PDF
    We show that for compact orientable hyperbolic orbisurfaces, the Laplace spectrum determines the length spectrum as well as the number of singular points of a given order. The converse also holds, giving a full generalization of Huber's theorem to the setting of compact orientable hyperbolic orbisurfaces

    Lifetime of double occupancies in the Fermi-Hubbard model

    Get PDF
    We investigate the decay of artificially created double occupancies in a repulsive Fermi-Hubbard system in the strongly interacting limit using diagrammatic many-body theory and experiments with ultracold fermions on optical lattices. The lifetime of the doublons is found to scale exponentially with the ratio of the on-site repulsion to the bandwidth. We show that the dominant decay process in presence of background holes is the excitation of a large number of particle hole pairs to absorb the energy of the doublon. We also show that the strongly interacting nature of the background state is crucial in obtaining the correct estimate of the doublon lifetime in these systems. The theoretical estimates and the experimental data are in fair quantitative agreement

    Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice

    Get PDF
    Strong correlations can dramatically modify the thermodynamics of a quantum many-particle system. Especially intriguing behaviour can appear when the system adiabatically enters a strongly correlated regime, for the interplay between entropy and strong interactions can lead to counterintuitive effects. A well known example is the so-called Pomeranchuk effect, occurring when liquid 3He is adiabatically compressed towards its crystalline phase. Here, we report on a novel anomalous, isentropic effect in a spin mixture of attractively interacting fermionic atoms in an optical lattice. As we adiabatically increase the attraction between the atoms we observe that the gas, instead of contracting, anomalously expands. This expansion results from the combination of two effects induced by pair formation in a lattice potential: the suppression of quantum fluctuations as the attraction increases, which leads to a dominant role of entropy, and the progressive loss of the spin degree of freedom, which forces the gas to excite additional orbital degrees of freedom and expand to outer regions of the trap in order to maintain the entropy. The unexpected thermodynamics we observe reveal fundamentally distinctive features of pairing in the fermionic Hubbard model.Comment: 6 pages (plus appendix), 6 figure

    Estimating the nuclear level density with the Monte Carlo shell model

    Get PDF
    A method for making realistic estimates of the density of levels in even-even nuclei is presented making use of the Monte Carlo shell model (MCSM). The procedure follows three basic steps: (1) computation of the thermal energy with the MCSM, (2) evaluation of the partition function by integrating the thermal energy, and (3) evaluating the level density by performing the inverse Laplace transform of the partition function using Maximum Entropy reconstruction techniques. It is found that results obtained with schematic interactions, which do not have a sign problem in the MCSM, compare well with realistic shell-model interactions provided an important isospin dependence is accounted for.Comment: 14 pages, 3 postscript figures. Latex with RevTex. Submitted as a rapid communication to Phys. Rev.

    On the Reeh-Schlieder Property in Curved Spacetime

    Get PDF
    We attempt to prove the existence of Reeh-Schlieder states on curved spacetimes in the framework of locally covariant quantum field theory using the idea of spacetime deformation and assuming the existence of a Reeh-Schlieder state on a diffeomorphic (but not isometric) spacetime. We find that physically interesting states with a weak form of the Reeh-Schlieder property always exist and indicate their usefulness. Algebraic states satisfying the full Reeh-Schlieder property also exist, but are not guaranteed to be of physical interest.Comment: 13 pages, 2 figure

    Local covariant quantum field theory over spectral geometries

    Full text link
    A framework which combines ideas from Connes' noncommutative geometry, or spectral geometry, with recent ideas on generally covariant quantum field theory, is proposed in the present work. A certain type of spectral geometries modelling (possibly noncommutative) globally hyperbolic spacetimes is introduced in terms of so-called globally hyperbolic spectral triples. The concept is further generalized to a category of globally hyperbolic spectral geometries whose morphisms describe the generalization of isometric embeddings. Then a local generally covariant quantum field theory is introduced as a covariant functor between such a category of globally hyperbolic spectral geometries and the category of involutive algebras (or *-algebras). Thus, a local covariant quantum field theory over spectral geometries assigns quantum fields not just to a single noncommutative geometry (or noncommutative spacetime), but simultaneously to ``all'' spectral geometries, while respecting the covariance principle demanding that quantum field theories over isomorphic spectral geometries should also be isomorphic. It is suggested that in a quantum theory of gravity a particular class of globally hyperbolic spectral geometries is selected through a dynamical coupling of geometry and matter compatible with the covariance principle.Comment: 21 pages, 2 figure

    Thermometry with spin-dependent lattices

    Full text link
    We propose a method for measuring the temperature of strongly correlated phases of ultracold atom gases confined in spin-dependent optical lattices. In this technique, a small number of "impurity" atoms--trapped in a state that does not experience the lattice potential--are in thermal contact with atoms bound to the lattice. The impurity serves as a thermometer for the system because its temperature can be straightforwardly measured using time-of-flight expansion velocity. This technique may be useful for resolving many open questions regarding thermalization in these isolated systems. We discuss the theory behind this method and demonstrate proof-of-principle experiments, including the first realization of a 3D spin-dependent lattice in the strongly correlated regime.Comment: 22 pages, 8 figures v2: Several references added; Section on heating rates updated to include dipole fluctuation terms; Section added on the limitations of the proposed method. To appear in New Journal of Physic

    Dirac field on Moyal-Minkowski spacetime and non-commutative potential scattering

    Full text link
    The quantized free Dirac field is considered on Minkowski spacetime (of general dimension). The Dirac field is coupled to an external scalar potential whose support is finite in time and which acts by a Moyal-deformed multiplication with respect to the spatial variables. The Moyal-deformed multiplication corresponds to the product of the algebra of a Moyal plane described in the setting of spectral geometry. It will be explained how this leads to an interpretation of the Dirac field as a quantum field theory on Moyal-deformed Minkowski spacetime (with commutative time) in a setting of Lorentzian spectral geometries of which some basic aspects will be sketched. The scattering transformation will be shown to be unitarily implementable in the canonical vacuum representation of the Dirac field. Furthermore, it will be indicated how the functional derivatives of the ensuing unitary scattering operators with respect to the strength of the non-commutative potential induce, in the spirit of Bogoliubov's formula, quantum field operators (corresponding to observables) depending on the elements of the non-commutative algebra of Moyal-Minkowski spacetime.Comment: 60 pages, 1 figur

    A geometrical origin for the covariant entropy bound

    Full text link
    Causal diamond-shaped subsets of space-time are naturally associated with operator algebras in quantum field theory, and they are also related to the Bousso covariant entropy bound. In this work we argue that the net of these causal sets to which are assigned the local operator algebras of quantum theories should be taken to be non orthomodular if there is some lowest scale for the description of space-time as a manifold. This geometry can be related to a reduction in the degrees of freedom of the holographic type under certain natural conditions for the local algebras. A non orthomodular net of causal sets that implements the cutoff in a covariant manner is constructed. It gives an explanation, in a simple example, of the non positive expansion condition for light-sheet selection in the covariant entropy bound. It also suggests a different covariant formulation of entropy bound.Comment: 20 pages, 8 figures, final versio
    • …
    corecore