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HUBER’S THEOREM FOR HYPERBOLIC ORBISURFACES

EMILY B. DRYDEN AND ALEXANDER STROHMAIER

Abstract. We show that for compact orientable hyperbolic orbisurfaces, the

Laplace spectrum determines the length spectrum as well as the number of

singular points of a given order. The converse also holds, giving a full gener-
alization of Huber’s theorem to the setting of compact orientable hyperbolic

orbisurfaces.
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1. Introduction and Result

We will be interested in compact hyperbolic orbisurfaces, which are a natural
generalization of compact hyperbolic Riemann surfaces. By “hyperbolic,” we will
mean that the object is endowed with a Riemannian metric of constant curvature
-1. A hyperbolic orbisurface can be viewed as a quotient of the hyperbolic plane by
a discrete group of isometries which is permitted to include elliptic elements. These
elliptic elements give rise to conical singularities in the quotient surface. A local
neighborhood of a conical singularity looks like the quotient of a disc by the group
generated by the rotation through angle 2π

n about the disc’s center. We call such a
singularity a cone point of order n, and say that Zn is the isotropy group associated
to the singularity. For background on orbifolds and the eigenvalue spectrum of the
Laplace operator in the orbifold context, see [1] and the references therein.

Orbifolds which have the same spectrum of the Laplace operator acting on
smooth functions are said to be isospectral. It is known that in general, there can
be at most finitely many isotropy groups (up to isomorphism) in a set of isospectral
Riemannian orbifolds that share a uniform lower bound on Ricci curvature (see
[10]). In fact, N. Shams, E. Stanhope and D. Webb have shown in [9] that there ex-
ist arbitrarily large (but always finite) isospectral sets which satisfy this curvature
condition, where each element in a given set has points of distinct isotropy. On
the other hand, in [2] a spectral invariant is exhibited which, within the class of all
teardrops and footballs, determines the number and order(s) of the cone point(s).
Teardrops and footballs are orbisurfaces which are topologically the standard sphere
S2; the teardrop has one cone point, while the football has a cone point at each of
the north and south poles, possibly of different orders. These results lead us to ask
whether the spectrum determines the orders of the singular points for large classes
of orbifolds; we answer this question for the class of compact orientable hyperbolic
orbisurfaces.

For compact hyperbolic Riemann surfaces, Huber’s theorem says that the Laplace
spectrum determines the length spectrum and vice versa, where the length spectrum
is the sequence of lengths of all oriented closed geodesics in the surface, arranged in
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ascending order. There has been recent interest in extending Huber’s theorem for
Riemann surfaces to more general settings. In [3], J. Elstrodt, F. Grunewald and
J. Mennicke prove a version of Huber’s theorem for discrete cocompact subgroups
of PSL(2,C), while L. Parnovskii [8] states an analog for discrete cocompact sub-
groups of SO+(1, n). In both cases, the subgroups are permitted to contain elliptic
elements, but it is not shown that the spectrum determines these elements explic-
itly. We prove that the Laplace spectrum of a hyperbolic orbisurface determines
its length spectrum as well as the number and orders of the singular points. Our
definition of the length spectrum in this case is as follows: if X is a hyperbolic
orbisurface then there exists a discrete subgroup Γ ⊂ PSL(2,R), such that X is
isometric to Γ\H, where H the Poincare disk. The unit tangent bundle T1X can
be defined as the quotient Γ\PSL(2,R). The geodesic flow on T1X can be defined
as the right action of the one parameter group

at =
(
et/2 0
0 e−t/2

)
.

An oriented periodic geodesics of length l is by definition a curve γ : R → T1X
such that γ(t + l) = γ(t) and such that γ(t0)at = γ(t0 + t). Curves γ1 and γ2 are
identified if there is a t0 ∈ R such that γ1(t) = γ2(t + t0). The image of such an
orbit under the projection T1X → X = Γ ⊂ PSL(2,R)/PSO(2) is a closed curve
in X which is parametrized by arc-length and which is locally length minimizing
away from cone points. They may pass through cone points, however. The “length
spectrum” is the set of lengths of all periodic geodesics in the orbisurface counting
multiplicities.

Theorem 1.1. Let O be a compact orientable hyperbolic orbisurface. The Laplace
spectrum of O determines its length spectrum and the number of cone points of each
possible order. Knowledge of the length spectrum and the number of cone points of
each order determines the Laplace spectrum.

Shortly after preparing this manuscript, we learned that P. Doyle and J. P. Rossetti
had proven this result independently.

This work began at the conference “Recent developments in spectral geometry”
in Blossin, Germany, in November 2004, and we would like to thank the organizers
for their invitation and Andreas Juhl for interesting discussions.

2. The Proof

The second statement can be proved as for Riemann surfaces (see [1]). Our proof
of the first statement is based on the Selberg trace formula for the wave kernel, that

is, the distribution Tr cos(t
√

∆− 1
4 ), where ∆ is the Laplace operator on O. Let

{λ2
n} be the sequence of eigenvalues of ∆ and denote as usual r2n := λ2

n − 1
4 . Then
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Selberg’s trace formula for orbisurfaces (see [6], [7]) reads

∞∑
n=0

h(rn) =
µ(F )
4π

∫ ∞

−∞
rh(r) tanh(πr)dr

+
∑
{P}

hyperbolic

lnN(Pc)
N(P )1/2 −N(P )−1/2

g[lnN(P )] (1)

+
∑
{R}

elliptic

1
2m(R) sin θ(R)

∫ ∞

−∞

e−2θ(R)r

1 + e−2πr
h(r)dr,

where h is any entire function of uniform exponential type and h(r) = h(−r). The
sums are over the conjugacy classes of hyperbolic and elliptic elements in Γ. The
norm of the hyperbolic conjugacy class P does not depend on the representative
chosen, and is denoted by N(P ). We let Pc denote the unique primitive hyperbolic
conjugacy class such that P = P l

c with l ∈ N. The function g is the Fourier
transform of h and thus is a compactly supported smooth function. If R is an elliptic
conjugacy class, there exists a unique primitive elliptic conjugacy class Rc such
that R = Rl

c. The integer m(R) denotes the order of Rc and θ(R) = πl
m(R) where

1 ≤ l ≤ m(R)− 1. We may identify the set of primitive elliptic conjugacy classes R
in Γ with the set of cone points in O of order m(R). The set of hyperbolic conjugacy
classes P may be identified with the set of closed periodic geodesics in O of length
lnN(P ). Since in the literature this is usually proved for groups without elliptic
elements we include the argument here. Let γ(t) = Xat be a periodic geodesic with
period T , where X is in Γ\PSL(2,R). Choose a representative x ∈ PSL(2,R), i.e.
X = [x]. Since γ is periodic with period T there exists a unique element γ ∈ Γ
such that xaT = γx. Since this element is conjugate to aT in PSL(2,R) it is
hyperbolic. It is now easy to see that another representative x′ ∈ PSL(2,R) gives
rise to a conjugate element γ′ with norm el. Hence, we have a well defined map
from periodic geodesics to conjugacy classes of hyperbolic elements. Conversely, if
γ ∈ Γ is a hyperbolic element, then there is an element x in PSL(2,R) such that
x−1γx = aln N(P ). Hence, γ(t) = [x]at is a periodic geodesic with period lnN(P ).
It is easy to see that this geodesic does not depend on the choice of x and on the
representative of γ in a conjugacy class. This defines thus a map from conjugacy
classes of hyperbolic elements in Γ to periodic geodesics. This map is clearly the
inverse of the above map.

The Selberg trace formula in the form (1) allows us to give a meaning to the

wave trace Φ(t) = Tr cos(t
√

∆− 1
4 ) in the distributional sense. We may define the

functional Φ on C∞0 (R) by

Φ(f) :=
1
2

∞∑
n=0

(f̂(rn) + f̂(−rn)),

where f̂ denotes the Fourier transform of f ; f̂ is known to be entire and of uniform
exponential type. This defines a distribution in D′(R). Using (1) and the above
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identifications we obtain

Tr cos(t

√
∆− 1

4
) = −µ(F )

8π
cosh(t/2)
sinh2(t/2)

+
∞∑

k=1

∑
c∈P

lc
4 sinh(klc/2)

(δ(|t| − klc))

+
∑
x∈C

Ψm(x)(t). (2)

Here the first term has to be understood as the distributional derivative of the
distribution µ(F )

4π
1

sinh(t/2) defined as a principal value (see [5]).
The second term is obtained as follows. P is the set of oriented primitive closed

periodic geodesics; if we took P to be the set of unoriented primitive closed periodic
geodesics, then we would need to sum over k ∈ Z \ 0. So we we changed from a
sum over hyperbolic conjugacy classes to a sum over all the iterates of the oriented
primitive closed geodesics. We let lc denote the length of c ∈ P, and we use the
fact that

1

sinh
(

ln N(P )
2

) =
2

N(P )1/2 −N(P )−1/2
.

Finally, the delta function appears when we calculate g[lnN(P )]. In fact, a direct
calculation of g yields

g[lnN(P )] =
1
2
[δ(lnN(P )− t) + δ(lnN(P ) + t)],

but it is not hard to see that δ(|t| − lnN(P )) contains the same information as the
sum of the two delta functions above.

In the third summand, the set C is the set of cone points (which correspond to
primitive elliptic conjugacy classes), and m(x) denotes the order of x ∈ C. The
functions Ψm(t) are defined as the Fourier transforms of the functions

ψm(r) :=
m−1∑
l=1

1
4m sin(πl/m)

(
e−2πrl/m

1 + e−2πr
+
e2πrl/m

1 + e2πr

)
.

Since ψm(r) is exponentially decaying, the functions Ψm(t) are real analytic
and therefore do not contribute singularities to the wave trace. Knowing the wave
trace we can read off the lengths of all primitive closed geodesics from its singular
support. This can be done as follows. The first term in the wave trace formula is
completely determined by the singularity at t = 0 (which reflects the fact that the
volume is spectrally determined). We subtract it from the right-hand side of (2).
Now take the minimal distance, d, from 0 to the singular support of the remaining
function; d is the length of a primitive closed geodesic, which is contributing to
the singularity at t = d. From the corresponding wave trace invariant we get
the number of primitive closed geodesics contributing to this singularity. Subtract
the contribution of those primitive closed geodesics from (2), and again take the
minimal distance from 0 to the singular support of the remaining function. Proceed
in this way to find all lengths and multiplicities of primitive closed geodesics.

We now know that the spectrum determines the finite sum∑
x∈C

Ψm(x)(t). (3)

The functions ψm(r) behave asymptotically like (2m sin π
m )−1e−

2πr
m as r →∞; from

this, we conclude that the ψm(r) are linearly independent for different values of m.
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This in turn implies that the terms contributing to the sum (3) by cone points of
different orders are linearly independent. Thus we can read off the orders of the
cone points in O; the multiplicity of a summand corresponding to a particular order
tells us the number of cone points of that order.

3. Consequences

Theorem 1.1 has implications for the topology of isospectral hyperbolic orbisur-
faces. To describe these consequences, we first need to define the Euler characteristic
and state a Gauss-Bonnet theorem for orbisurfaces (see [11]).

Definition 3.1. Let O be an orbisurface with s cone points of orders m1, . . . ,ms.
Then we define the (orbifold) Euler characteristic of O to be

χ(O) = χ(XO)−
s∑

j=1

(1− 1
mj

),

where χ(XO) is the Euler characteristic of the underlying topological space of O.

A Riemannian orbisurface is an orbisurface which is endowed with a Riemannian
metric. The Gauss-Bonnet theorem gives the usual relationship between topology
and geometry for these objects:

Theorem 3.2. Let O be a Riemannian orbisurface. Then∫
O

KdA = 2πχ(O),

where K is the curvature and χ(O) is the orbifold Euler characteristic of O.

Since the volume of a Riemannian orbisurface is spectrally determined via Weyl’s
asymptotic formula (see [4]), we see that for a Riemannian orbisurface with given
curvature, the spectrum determines the orbifold Euler characteristic. However,
since the orbifold Euler characteristic involves both the genus of the underlying
surface and the orders of the cone points in the orbisurface, it is not immediately
clear that the spectrum determines the genus. In the case of compact orientable
hyperbolic orbisurfaces, Theorem 1.1 says that the spectrum determines the orders
of the cone points, and thus the genus. This observation proves

Proposition 3.3. Isospectral compact orientable hyperbolic orbisurfaces have the
same underlying topological space.
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