A framework which combines ideas from Connes' noncommutative geometry, or
spectral geometry, with recent ideas on generally covariant quantum field
theory, is proposed in the present work. A certain type of spectral geometries
modelling (possibly noncommutative) globally hyperbolic spacetimes is
introduced in terms of so-called globally hyperbolic spectral triples. The
concept is further generalized to a category of globally hyperbolic spectral
geometries whose morphisms describe the generalization of isometric embeddings.
Then a local generally covariant quantum field theory is introduced as a
covariant functor between such a category of globally hyperbolic spectral
geometries and the category of involutive algebras (or *-algebras). Thus, a
local covariant quantum field theory over spectral geometries assigns quantum
fields not just to a single noncommutative geometry (or noncommutative
spacetime), but simultaneously to ``all'' spectral geometries, while respecting
the covariance principle demanding that quantum field theories over isomorphic
spectral geometries should also be isomorphic. It is suggested that in a
quantum theory of gravity a particular class of globally hyperbolic spectral
geometries is selected through a dynamical coupling of geometry and matter
compatible with the covariance principle.Comment: 21 pages, 2 figure