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Abstract: We attempt to prove the existence of Reeh-Schlieder states on curved space-
times in the framework of locally covariant quantum field theory using the idea of
spacetime deformation and assuming the existence of a Reeh-Schlieder state on a diffe-
omorphic (but not isometric) spacetime. We find that physically interesting states with
a weak form of the Reeh-Schlieder property always exist and indicate their usefulness.
Algebraic states satisfying the full Reeh-Schlieder property also exist, but are not guar-
anteed to be of physical interest.

1. Introduction

The Reeh-Schlieder theorem ([17]) is a result in axiomatic quantum field theory which
states that for a scalar Wightman field in Minkowski spacetime any state in the Hilbert
space can be approximated arbitrarily well by acting on the vacuum with operations
performed in any prescribed open region. The physical meaning of this is that the vac-
uum state has very many non-local correlations and an experimenter in any given region
can exploit the vacuum fluctuations by performing a suitable measurement in order to
produce any desired state up to arbitrary accuracy.

The original proof uses analytic continuation arguments, an approach which was
extended to analytic spacetimes in [20] by replacing the spectrum condition of the
Wightman axioms by an analytic microlocal spectrum condition. For spacetimes which
are not analytic, a result by Strohmaier [19], extending an earlier result by Verch [21],
shows that in a stationary spacetime all ground and thermal (KMS-)states of several
types of free fields (including the Klein-Gordon, Dirac and Proca field) also have the
Reeh-Schlieder property. To prove the existence of such states directly one may need
to make further assumptions, depending on the type of field (see [19]). Furthermore,
the condition of [20] can be weakened to a smoothly covariant condition that implies
the Reeh-Schlieder property as well as physical relevance (i.e. the microlocal spectrum
condition), but this condition does not seem to be a suitable tool to find such states (see
[18] Sect. 5.4).
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In this paper we will investigate whether we can find states of a quantum field sys-
tem in a general (globally hyperbolic) curved spacetime which have the Reeh-Schlieder
property. We do this using the technique of spacetime deformation, as pioneered in [9]
and as applied successfully to prove a spin-statistics theorem in curved spacetime in
[23]. This means that we assume the existence of a Reeh-Schlieder state (i.e. a state with
the Reeh-Schlieder property) in one spacetime and try to derive the existence of another
state in a diffeomorphic (but not isometric) spacetime which also has the Reeh-Schlie-
der property. We will prove that for every given region there is a state in the physical
state space that has the Reeh-Schlieder property for that particular region (but maybe
not for all regions). Algebraic states with the full Reeh-Schlieder property also exist,
i.e. states which have the Reeh-Schlieder property for all open regions simultaneously.
However, their existence follows from an abstract existence principle and, consequently,
such states are not guaranteed to be of any physical interest.

To keep the discussion as general as possible we will work in the axiomatic language
known as locally covariant quantum field theory as introduced in [5] (see also [23], where
some of these ideas already appeared, and [6] for a recent application). We outline this
formulation in Sect. 2 and our most important assumption there will be the time-slice
axiom, which expresses the existence of a causal dynamical law. In Sect. 3 we will prove
the geometric results on spacetime deformation that we need and we will see what they
mean for a locally covariant quantum field theory. Section 4 contains our main results on
deforming one Reeh-Schlieder state into another one and it notes some immediate con-
sequences regarding the type of local algebras and Tomita-Takesaki modular theory. As
an example we discuss the free scalar field in Sect. 5 and we end with a few conclusions.

2. Locally Covariant Quantum Field Theory

In this section we briefly describe the main ideas of locally covariant quantum field
theory as introduced in [5]. It will also serve to fix our notation for the subsequent
sections.

In the following any quantum physical system will be described by a C∗-algebra A
with a unit I , whose self-adjoint elements are the observables of the system. It will be
advantageous to consider a whole class of possible systems rather than just one.

Definition 2.1. The category Alg has as its objects all unital C∗-algebras A and as its
morphisms all injective ∗-homomorphisms α such that α(I ) = I . The product of mor-
phisms is given by the composition of maps and the identity map idA on a given object
serves as an identity morphism.

A morphism α :A1 →A2 expresses the fact that the system described by A1 is a sub-
system of that described by A2, which is called a super-system. The injectivity of the
morphisms means that, as a matter of principle, any observable of a sub-system can
always be measured, regardless of any practical restrictions that a super-system may
impose.

A state of a system is represented by a normalised positive linear functional ω, i.e.
ω(A∗ A) ≥ 0 for all A ∈ A and ω(I ) = 1. The set of all states on A will be denoted by
A∗+

1 . Not all of these states are of physical interest, so it will be convenient to have the
following notion at our disposal.

Definition 2.2. The category States has as its objects all subsets S ⊂ A∗+
1 , for all

unital C∗-algebras A in Alg and as its morphisms all maps α∗ : S1 → S2 for which
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Si ⊂ (Ai )
∗+
1 , i = 1, 2, and α∗ is the restriction of the dual of a morphism α :A2 →A1

in Alg, i.e. α∗(ω) = ω ◦ α for all ω ∈ S1. Again the product of morphisms is given by
the composition of maps and the identity map idS on a given object serves as an identity
morphism.

After these operational aspects we now turn to the physical ones. The systems we
will consider are intended to model quantum fields living in a (region of) spacetime
which is endowed with a fixed Lorentzian metric (a background gravitational field). The
relation between sub-systems will come about naturally by considering sub-regions of
spacetime. More precisely we consider the following:

Definition 2.3. By the term globally hyperbolic spacetime we will mean a connected,
Hausdorff, paracompact, C∞ Lorentzian manifold M = (M, g) of dimension d = 4,
which is oriented, time-oriented and admits a Cauchy surface.

A subset O ⊂ M of a globally hyperbolic spacetime M is called causally convex
iff for all x, y ∈ O all causal curves from x to y lie entirely in O. A non-empty open set
which is connected and causally convex is called a causally convex region or cc-region.
A cc-region whose closure is compact is called a bounded cc-region.

The category Man has as its objects all globally hyperbolic spacetimes M = (M, g)
and its morphisms � are given by all maps ψ :M1 →M2 which are smooth isometric
embeddings (i.e. ψ : M1 →ψ(M1) is a diffeomorphism and ψ∗g1 = g2|ψ(M1)) such
that the orientation and time-orientation are preserved and ψ(M1) is causally convex.
Again the product of morphisms is given by the composition of maps and the identity
map idM on a given object serves as a unit.

A region O in a globally hyperbolic spacetime is causally convex if and only if O itself
is globally hyperbolic (see [11] Sect. 6.6), so a cc-region is exactly a connected globally
hyperbolic region.

The image of a morphism is by definition a cc-region. Notice that the converse also
holds. If O ⊂ M is a cc-region then (O, g|O) defines a globally hyperbolic spacetime
in its own right. In this case there is a canonical morphism IM,O : O → M given by the
canonical embedding ι : O →M. We will often drop IM,O and ι from the notation and
simply write O ⊂ M .

The importance of causally convex sets is that for any morphism � the causality
structure of M1 coincides with that of �(M1) in M2:

ψ(J±
M1
(x)) = J±

M2
(ψ(x)) ∩ ψ(M1), x ∈ M1. (1)

If this were not the case then the behaviour of a quantum physical system living in
M1 could depend in an essential way on the super-system, which makes it practically
impossible to study the smaller system as a sub-system in its own right. This possibility
is therefore excluded from the mathematical framework.

Equation (1) allows us to drop the subscript in J±
M if we introduce the convention that

J± is always taken in the largest spacetime under consideration. This simplifies the nota-
tion without causing any confusion, even when O ⊂ M1 ⊂ M2 with canonical embed-
dings, because then we just have J±(O) := J±

M2
(O) and J±

M1
(O) = J±(O) ∩ M1.

Similarly we take by convention

D(O) := DM2(O),

O⊥ := O⊥M2 := M2 \ J (O),
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and we deduce from causal convexity that DM1(O) = D(O) ∩ M1 and O⊥M1 =
O⊥ ∩ M1.

The following lemma gives some ways of obtaining causally convex sets in a globally
hyperbolic spacetime.

Lemma 2.4. Let M = (M, g) be a globally hyperbolic spacetime, O ⊂ M an open
subset and A ⊂ M an achronal set. Then:

1. the intersection of two causally convex sets is causally convex,
2. for any subset S ⊂ M the sets I ±(S) are causally convex,
3. O⊥ is causally convex,
4. O is causally convex iff O = J +(O) ∩ J−(O),
5. int(D(A)) and int(D±(A)) are causally convex,
6. if O is a cc-region, then D(O) is a cc-region,
7. if S ⊂ M is an acausal continuous hypersurface, then D(S), D(S) ∩ I +(S) and

D(S) ∩ I −(S) are open and causally convex.

Proof. The first two items follow directly from the definitions. The fourth follows from
J +(O) ∩ J−(O) = ∪p,q∈O(J +(p) ∩ J−(q)), which is contained in O if and only if
O is causally convex. The fifth item follows from the first two and Theorem 14.38 and
Lemma 14.6 in [14].

To prove the third item, assume that γ is a causal curve between points in O⊥ and
p ∈ J (O) lies on γ . By perturbing one of the endpoints of γ in O⊥ we may ensure
that the curve is time-like. Then we may perturb p on γ so that p ∈ int(J (O)) and γ is
still causal. This gives a contradiction, because there then exists a causal curve from O
through p to either x or y.

For the sixth statement we let S ⊂ O be a smooth Cauchy surface for O (see [3])
and note that D(O) is non-empty, connected and D(O) = D(S). The causal convexity
of O implies that S ⊂ M is acausal, which reduces this case to statement seven. The
first part of statement seven is just Lemma 14.43 and Theorem 14.38 in [14]. The rest
of statement seven follows from statement one and two together with the openness of
I ±(S). ��

We now come to the main set of definitions, which combine the notions introduced
above (see [5]).

Definition 2.5. A locally covariant quantum field theory is a covariant functor A :
Man→Alg, written as M → AM , � → α� .

A state space for a locally covariant quantum field theory A is a contravariant func-
tor S :Man→States, such that for all objects M we have M → SM ⊂ (AM )

∗+
1 and

for all morphisms � : M1 → M2 we have � → α∗
� |SM2

. The set SM is called the state
space for M.

When it is clear that� = IM,O for a canonical embedding ι : O → M of a cc-region
O in a globally hyperbolic spacetime M, i.e. when O ⊂ M , we will often simply write
AO ⊂ AM instead of using αIM,O . For a morphism � : M → M ′ which restricts to a
morphism �|O : O → O ′ ⊂ M ′ we then have

α�|O = α� |AO (2)

rather than αIM ′,O′ ◦ α�|O = α� ◦ αIM,O , as one can see from a commutative diagram.
The framework of locally covariant quantum field theory is a generalisation of alge-

braic quantum field theory (see [5,10]). We now proceed to discuss several physically
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desirable properties that such a locally covariant quantum field theory and its state space
may have (cf. [5], but note that our time-slice axiom is stronger, placing a restriction on
the state spaces as well as the algebras).

Definition 2.6. A locally covariant quantum field theory A is called causal iff for every
pair of morphisms �i : Mi → M, i = 1, 2 such that ψ1(M1) ⊂ (ψ2(M2))

⊥ in M we
have that

[
α�1(AM1), α�2(AM2)

] = {0} in AM .
A locally covariant quantum field theory A with state space S satisfies the time-slice

axiom iff for all morphisms � : M1 → M2 such that ψ(M1) contains a Cauchy surface
for M2 we have α�(AM1) = AM2 and α∗

�(SM2) = SM1 .
A state space S for a locally covariant quantum field theory A is called locally quasi-

equivalent iff for every morphism� : M1 → M2 such thatψ(M1) ⊂ M2 is bounded and
for every pair of states ω,ω′ ∈ SM2 the GNS-representations πω, πω′ of AM2 are quasi-
equivalent on α�(AM1). The local von Neumann algebras Rω

M1
:= πω(α�(AM1))

′′ are
then *-isomorphic for all ω ∈ SM2 .

A locally covariant quantum field theory A with a state space functor S is called
nowhere classical iff for every morphism� : M1 → M2 and for every state ω ∈ SM2 the
local von Neumann algebra Rω

M1
is not commutative.

Note that the condition ψ1(M1) ⊂ (ψ2(M2))
⊥ is symmetric in i = 1, 2. The causal-

ity condition formulates how the quantum physical system interplays with the classical
gravitational background field, whereas the time-slice axiom expresses the existence
of a causal dynamical law. The condition of a locally quasi-equivalent state space is
more technical in nature and means that all states of a system can be described in the
same Hilbert space representation as long as we only consider operations in a small (i.e.
bounded) cc-region of the spacetime.

The condition that ψ(M1) contains a Cauchy surface for M2 is equivalent to
D(ψ(M1)) = M2, because a Cauchy surface S ⊂ M1 maps to a Cauchy surface
ψ(S) for D(ψ(M1)). On the algebraic level this yields:

Lemma 2.7. For a locally covariant quantum field theory A with a state space S sat-
isfying the time-slice axiom, an object (M, g) ∈ Man and a cc-region O ⊂ M we
have AO = AD(O) and SO = SD(O). If O contains a Cauchy surface of M we have
AO = AM and SO = SM .

Proof. Note that both (O, g|O) and (D(O), g|D(O)) are objects of Man (by Lemma
2.4) and that a Cauchy surface S for O is also a Cauchy surface for D(O). (The causal
convexity of O in M prevents multiple intersections of S.) The first statement then
reduces to the second. Leaving the canonical embedding implicit in the notation, the
result immediately follows from the time-slice axiom. ��

Finally we define the Reeh-Schlieder property, which we will study in more detail in
the subsequent sections.

Definition 2.8. Consider a locally covariant quantum field theory A with a state space
S. A state ω ∈ SM has the Reeh-Schlieder property for a cc-region O ⊂ M iff

πω(AO)�ω = Hω,

where (πω,�ω,Hω) is the GNS-representation of AM in the state ω. We then say that
ω is a Reeh-Schlieder state for O. We say that ω is a (full) Reeh-Schlieder state iff it
is a Reeh-Schlieder state for all cc-regions in M.
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3. Spacetime Deformation

The existence of Hadamard states of the free scalar field in certain curved spacetimes
was proved in [9] by deforming Minkowski spacetime into another globally hyperbolic
spacetime. Using a similar but slightly more technical spacetime deformation argument
[23] proved a spin-statistics theorem for locally covariant quantum field theories with
a spin structure, given that such a theorem holds in Minkowski spacetime. In the next
section we will assume the existence of a Reeh-Schlieder state in one spacetime and
try to deduce along similar lines the existence of such states on a deformed spacetime.
As a geometric prerequisite we will state and prove in the present section a spacetime
deformation result employing similar methods as the references mentioned above.

First we recall the spacetime deformation result due to [9]:

Proposition 3.1. Consider two globally hyperbolic spacetimes Mi , i = 1, 2, with space-
like Cauchy surfaces Ci both diffeomorphic to C. Then there exists a globally hyperbolic
spacetime M ′ = (R × C, g′) with spacelike Cauchy surfaces C ′

i , i = 1, 2, such that C ′
i

is isometrically diffeomorphic to Ci and an open neighbourhood of C ′
i is isometrically

diffeomorphic to an open neighbourhood of Ci .

The proof is omitted, because the stronger result Proposition 3.3 will be proved later on.
Note, however, the following interesting corollary (cf. [5] Sect. 4):

Corollary 3.2. Two globally hyperbolic spacetimes Mi with diffeomorphic Cauchy sur-
faces are mapped to isomorphic C∗-algebras AMi by any locally covariant quantum
field theory A satisfying the time-slice axiom (with some state space S).

Proof. Consider two diffeomorphic globally hyperbolic spacetimes Mi , i = 1, 2, let M ′
be the deforming spacetime of Proposition 3.1 and let Wi ⊂ Mi be open neighbour-
hoods of the Cauchy surfaces Ci ⊂ Mi which are isometrically diffeomorphic under
ψi to the open neighbourhoods W ′

i ⊂ M′ of the Cauchy surfaces C ′
i ⊂ M′. We may

take the Wi and W ′
i to be cc-regions (as will be shown in Proposition 3.3), so that the

�i (determined by ψi ) are isomorphisms in Man. It then follows from Lemma 2.7 that

AM1 = AW1 = A
ψ−1

1 (W ′
1)

= α−1
�1
(AW ′

1
) = α−1

�1
(AM ′)

= α−1
�1

◦ α�2(AM2),

where the α�i are ∗-isomorphisms. This proves the assertion. ��
At this point a warning seems in place. Whenever g1, g2 are two Lorentzian metrics

on a manifold M such that both Mi := (M, gi ) are objects in Man, Corollary 3.2 gives
a ∗-isomorphism α between the algebras AMi . If O ⊂ M is a cc-region for g1 then α is a
∗-isomorphism from A(O,g1) into AM2 . However, the image cannot always be identified
with A(O,g2), because O need not be causally convex for g2, in which case the object is
not defined.

We now formulate and prove our deformation result. The geometric situation is sche-
matically depicted in Fig. 1.

Proposition 3.3. Consider two globally hyperbolic spacetimes Mi , i = 1, 2, with diffe-
omorphic Cauchy surfaces and a bounded cc-region O2 ⊂ M2 with non-empty causal
complement, O⊥

2 �= ∅. Then there are a globally hyperbolic spacetime M ′ = (M′, g′),
spacelike Cauchy surfaces Ci ⊂ Mi and C ′

1,C ′
2 ∈ M′ and bounded cc-regions

U2, V2 ⊂ M2 and U1, V1 ⊂ M1 such that the following hold:
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Fig. 1. Sketch of the geometry of Proposition 3.3

• There are isometric diffeomorphisms ψi : Wi → W ′
i , where W1 := I −(C1),

W ′
1 := I −(C ′

1), W2 := I +(C2) and W ′
2 := I +(C ′

2),• U2, V2 ⊂ W2, U2 ⊂ D(O2), O2 ⊂ D(V2),
• U1, V1 ⊂ W1, U1 �= ∅, V ⊥

1 �= ∅, ψ1(U1) ⊂ D(ψ2(U2)) and ψ2(V2) ⊂ D(ψ1(V1)).

Proof. First we recall the result of [3] that for any globally hyperbolic spacetime (M, g)
there is a diffeomorphism F :M→R×C for some smooth three dimensional manifold
C in such a way that for each t ∈ R the surface F−1({t} × C) is a spacelike Cauchy
surface. The pushed-forward metric g′ := F∗g makes (R× C, g′) a globally hyperbolic
manifold, where g′ is given by

g′
µν = βdtµdtν − hµν. (3)

Here dt is the differential of the canonical projection on the first coordinate t :R×C →R,
which is a smooth time function; β is a strictly positive smooth function and hµν is a
(space and time dependent) Riemannian metric on C . The orientation and time orienta-
tion of M induce an orientation and time orientation on R × C via F . (If necessary we
may compose F with the time-reversal diffeomorphism (t, x) → (−t, x) of R × C to
ensure that the function t increases in the positive time direction.) Applying the above to
the Mi gives us two diffeomorphisms Fi :Mi →M′, where M′ = R×C as a manifold.
Note that we can take the same C for both i = 1, 2 by the assumption of diffeomorphic
Cauchy surfaces.

Define O ′
2 := F2(O2) and let tmin and tmax be the minimum and maximum value that

the function t attains on the compact set O ′
2. We now prove that F−1

2 ((tmin, tmax)×C)∩
O⊥

2 �= ∅. Indeed, if this were empty, then we see that J (O2) contains F−1
2 ([tmin, tmax]×

C) and hence also Cmax := F−1
2 ({tmax} × C) and Cmin := F−1

2 ({tmin} × C). In fact,
Cmin ⊂ J−(O2). Indeed, if p := F−1

2 (tmin, x) is in J +(O2) then we can consider a basis
of neighbourhoods of p of the form I −(F−1

2 (tmin + 1/n, x)) ∩ I +(F−1
2 ({tmin − 1/n} ×

C)). If qn ∈ J +(O2) is in such a basic neighbourhood, then the same neighbourhood
also contains a point pn ∈ O2. Hence, given a sequence qn in J +(O2) converging to p
we find a sequence pn in O2 converging to p and we conclude that p ∈ O2 ⊂ J−(O2).
Similarly we can show that Cmax ⊂ J +(O2). It then follows that I +(Cmax) ⊂ J +(O2)

and I −(Cmin) ⊂ J−(O2), so that J (O2) = M and O⊥ = ∅. This contradicts our
assumption on O2, so we must have F−1

2 ((tmin, tmax) × C) ∩ O⊥
2 �= ∅. Then we may

choose t2 ∈ (tmin, tmax) such that C2 := F−1
2 ({t2} × C) satisfies C2 ∩ O2 �= ∅ and

C2 ∩ O⊥
2 �= ∅. We define C ′

2 := F2(C2), W2 := I +(C2) and W ′
2 := (t2,∞)× C .
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Note that C2∩J (O2) is compact by [1] Corollary A.5.4. It follows that we can find rel-
atively compact open sets K , N ⊂ C such that K ′

2 := {t2}× K , K2 := F−1
2 (K ′

2), N ′
2 :=

{t2}× N and N2 := F−1
2 (N ′

2) satisfy K �= ∅, N �= C , K2 ⊂ O2 and C2 ∩ J (O2) ⊂ N2.
We let Cmax := F−1

2 ({tmax} × C) and define U2 := D(K2) ∩ I +(K2) ∩ I −(Cmax) and
V2 := D(N2)∩ I +(N2)∩ I −(Cmax). It follows from Lemma 2.4 that U2, V2 are bounded
cc-regions in M2. Clearly U2, V2 ⊂ W2, U2 ⊂ D(O2), O2 ⊂ D(V2) and V ⊥

2 �= ∅.
Next we choose t1 ∈ (tmin, t2) and define C ′

1 := {t1} × C , C1 := F−1
1 (C ′

1), W1 :=
I −(C1) and W ′

1 := (−∞, t1) × C . Let N ′, K ′ ⊂ C be relatively compact connected
open sets such that K ′ �= ∅, N ′ �= C , K ′ ⊂ K and N ⊂ N ′. We define N ′

1 := {t1}× N ′,
K ′

1 := {t1} × K ′, N1 := F−1
1 (N ′

1), K1 := F−1
1 (K ′

1) and Cmin := F−1
1 ({tmin} × C). Let

U1 := D(K1)∩ I −(K1)∩ I +(Cmin) and V1 := D(N1)∩ I −(N1)∩ I +(Cmin). Again by
Lemma 2.4 these are bounded cc-regions in M1. Note that U1, V1 ⊂ W1 and V ⊥

1 �= ∅.
The metric g′ of M′ is now chosen to be of the form

g′
µν := βdtµdtν − f · (h1)µν − (1 − f ) · (h2)µν,

where we have written ((Fi )∗gi )µν = βi dtµdtν − (hi )µν , f is a smooth function on M′
which is identically 1 on W ′

1, identically 0 on W ′
2 and 0 < f < 1 on the intermediate

region (t1, t2)× C and β is a positive smooth function which is identically βi on W ′
i . It

is then clear that the maps Fi restrict to isometric diffeomorphisms ψi :Wi →W ′
i .

The functionβmay be chosen small enough on the region (t1, t2)×C to make (M, g′)
globally hyperbolic. (As pointed out in [9] in their proof of Proposition 3.1, choosing β
small “closes up” the light cones and prevents causal curves from “running off to spatial
infinity” in the intermediate region.) Furthermore, using the compactness of (t1, t2)× N ′
and the continuity of (hi )µν we see that we may choose β small enough on this set to

ensure that any causal curve through K ′
1 must also intersect K ′

2 and any causal curve

through N ′
2 must also intersect N ′

1. This means that K ′
1 ⊂ D(K ′

2) and N ′
2 ⊂ D(N ′

1) and
hence ψ1(U1) ⊂ D(ψ2(U2)) and ψ2(V2) ⊂ D(ψ1(V1)). This completes the proof. ��

The analogue of Corollary 3.2 for the situation of Proposition 3.3 is:

Proposition 3.4. Consider a locally covariant quantum field theory A with a state space
S satisfying the time-slice axiom and two globally hyperbolic spacetimes Mi , i = 1, 2
with diffeomorphic Cauchy surfaces. For any bounded cc-region O2 ⊂ M2 with non-
empty causal complement there are bounded cc-regions U1, V1 ⊂ M1 and a ∗-isomor-
phism α :AM2 →AM1 such that V ⊥

1 �= ∅ and

AU1 ⊂ α(AO2) ⊂ AV1 . (4)

Moreover, if the spacelike Cauchy surfaces of the Mi are non-compact and
P2 ⊂ M2 is any bounded cc-region, then there are bounded cc-regions Q2 ⊂ M2 and
P1, Q1 ⊂ M1 such that Qi ⊂ P⊥

i for i = 1, 2 and

α(AP2) ⊂ AP1, AQ1 ⊂ α(AQ2), (5)

where α is the same ∗-isomorphism as in the first part of this proposition.

Proof. We apply Proposition 3.3 to obtain sets Ui , Vi and isomorphisms�i : Wi → W ′
i

associated to the isometric diffeomorphisms ψi . As in the proof of Corollary 3.2 the �i
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Fig. 2. Sketch of the proof of the second part of Proposition 3.4

give rise to ∗-isomorphisms α�i and α := α−1
�1

◦ α�2 is a ∗-isomorphism from AM2 to
AM1 . Using the properties of Ui , Vi stated in Proposition 3.3 we deduce:

AU1 = α−1
�1
(AU ′

1
) ⊂ α−1

�1
(AD(U ′

2)
) = α−1

�1
(AU ′

2
) = α(AU2) ⊂ α(AO2)

⊂ α(AV2) = α−1
ψ1
(AV ′

2
) ⊂ α−1

ψ1
(AD(V ′

1)
) = α−1

ψ1
(AV ′

1
) = AV1 .

Here we repeatedly used Eq. (2) and Lemma 2.7 (the time-slice axiom). This proves the
first part of the proposition.

Now suppose that the Cauchy-surfaces are non-compact and let P2 be any bounded
cc-region. We refer to Fig. 2 for a depiction of this part of the proof.

First choose Cauchy surfaces T2, T+ ⊂ W2 such that T+ ⊂ I +(T2). Note that J (P2)∩
T2 is compact, so it has a relatively compact connected open neighbourhood N2 ⊂ T2.
Choosing T+ appropriately we see that R := D(N2) ∩ I +(N2) ∩ I −(T+) is a bounded
cc-region in M2 by Lemma 2.4 and as usual we set R′ := ψ2(R).

Now let T ′−, T ′
1 ⊂ W ′

1 be Cauchy surfaces such that T ′− ⊂ I −(T ′
1) and note that

J (R′)∩ T ′
1 is again compact, so we can find a relatively compact connected open neigh-

bourhood N ′
1 ⊂ T ′

1 and use Lemma 2.4 to define the bounded cc-region P ′
1 := D(N ′

1)∩
I −(N ′

1) ∩ I +(T ′−) and P1 := ψ−1
1 (P ′

1).
Now let L ′

1 ⊂ T ′
1 be a connected relatively compact set such that L ′

1 ∩ N ′
1 = ∅. Such

an L ′
1 exists because T ′

1 is non-compact. Define Q′
1 := D(L ′

1) ∩ I −(L ′
1) ∩ I +(T ′−) and

Q1 := ψ−1
1 (Q′

1). We see that Q1 ⊂ P⊥
1 is a bounded cc-region and Q′

1 ⊂ D(ψ2(L2))

where L2 ⊂ T2 \ N2 is a relatively compact open set. In fact, we can choose L2 to be
connected because Q′

1 lies in a connected component C of D(ψ2(T2 \ N2)). We now
define the bounded cc-region Q2 := D(L2)∩ I +(L2)∩ I −(T+) and Q′

2 := ψ2(Q2), so
that Q2 ⊂ P⊥

2 and Q′
1 ⊂ D(Q′

2).
This concludes the geometrical part of the proof. Now note that AP2 ⊂ AR by Lemma

2.7 on D(N2) and that AR′ = α�2(AR). Applying Lemma 2.7 in D(N ′
1) we see that

AR′ ⊂ AP ′
1

and we have AP1 = α−1
�1
(AP ′

1
). Putting this together yields the inclusion:

α(AP2) ⊂ α(AR) = α−1
�1
(AR′) ⊂ α−1

�1
(AP ′

1
) = AP1 .

Similarly we have AQ1 = α−1
�1
(AQ′

1
), AQ′

2
= α�2(AQ2) and AQ′

1
⊂ AQ′

2
by Lemma

2.7. This yields the inclusion:

α(AQ2) = α−1
�1
(AQ′

2
) ⊃ α−1

�1
(AQ′

1
) = AQ1 . ��
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4. The Reeh-Schlieder Property in Curved Spacetime

The spacetime deformation argument of the previous section will have some conse-
quences for the Reeh-Schlieder property that we describe in the current section. Unfor-
tunately it is not clear that we can deform a Reeh-Schlieder state into another (full)
Reeh-Schlieder state, but we do have the following more limited result:

Theorem 4.1. Consider a locally covariant quantum field theory A with state space
S which satisfies the time-slice axiom. Let Mi be two globally hyperbolic spacetimes
with diffeomorphic Cauchy surfaces and suppose that ω1 ∈ SM1 is a Reeh-Schlieder
state. Then given any bounded cc-region O2 ⊂ M2 with non-empty causal complement,
O⊥

2 �= ∅, there is a ∗-isomorphism α : AM2 → AM1 such that ω2 := α∗(ω1) has the
Reeh-Schlieder property for O2.

Moreover, if the Cauchy surfaces of the Mi are non-compact and P2 ⊂ M2 is a
bounded cc-region, then there is a bounded cc-region Q2 ⊂ P⊥

2 for which ω2 has the
Reeh-Schlieder property. (Here ω2 = α∗(ω1) is still defined by the same α as in the first
statement of the theorem.)

Proof. For the first statement let α and U1 be as in the first part of Proposition 3.4
and note that α gives rise to a unitary map Uα : Hω2 → Hω1 . This map is the expres-
sion of the essential uniqueness of the GNS-representation, so that Uα�ω2 = �ω1 and
Uαπω2U

∗
α = πω1 ◦ α. The Reeh-Schlieder property for O2 then follows from the obser-

vation that Uαπω2(AO2)U
∗
α ⊃ πω1(AU1):

πω2(AO2)�ω2 ⊃ U∗
απω1(AU1)�ω1 = U∗

αHω1 = Hω2 .

Similarly for the second statement, given a bounded cc-region P2 and choosing
Q1, Q2 as in the second statement of Proposition 3.4 we see that Uαπω2(AQ2)U

∗
α ⊃

πω1(AQ1). ��
The second part of Theorem 4.1 means that ω2 is a Reeh-Schlieder state for all cc-
regions that are big enough. Indeed, if V2 is a sufficiently small cc-region then V ⊥

2 is
connected (recall that we work with four-dimensional spacetimes) and therefore ω2 has
the Reeh-Schlieder property for some cc-region in V ⊥

2 and hence also for V ⊥
2 itself.

A useful consequence of Theorem 4.1 is the following:

Corollary 4.2. In the situation of Theorem 4.1 if A is causal then �ω2 is a cyclic and
separating vector for Rω2

O2
. If the Cauchy surfaces are non-compact�ω2 is a separating

vector for all Rω2
P2

, where P2 is a bounded cc-region.

Proof. Recall that a vector is a separating vector for a von Neumann algebra R iff it is a
cyclic vector for the commutant R′ (see [12] Proposition 5.5.11.). Choosing V1 as in the
first part of Proposition 3.4 we have Uαπω2(AO2)U

∗
α ⊂ πω1(AV1) by the inclusion (4).

Therefore the commutant of UαRω2
O2
U∗
α contains (Rω1

V1
)′. As V ⊥

1 �= ∅ this commutant
contains the local algebra of some cc-region for which �ω1 is cyclic. Hence �ω1 is a
separating vector for Rω1

V1
and �ω2 for Rω2

O2
.

If the Cauchy surfaces are non-compact, P2 is a bounded region and Q2 is as in
Theorem 4.1, then (Rω2

P2
)′ contains πω2(AQ2), for which �ω2 is cyclic. It follows that

�ω2 is separating for Rω2
P2

. ��
If the theory is nowhere classical there exist non-local correlations between O2 and any
cc-region V2 spacelike to it, just as in the Minkowski spacetime case (see e.g. [16]). Also,



On the Reeh-Schlieder Property in Curved Spacetime 281

if the Cauchy surfaces are non-compact, any localised non-trivial positive observable
has a positive expectation value.

If the state space is locally quasi-equivalent and large enough it is possible to show
the existence of full Reeh-Schlieder states. The proof uses abstract existence arguments,
as opposed to the proof of Theorem 4.1 which is constructive, at least in principle.

Theorem 4.3. Consider a locally covariant quantum field theory A with a locally quasi-
equivalent state space S which is causal and satisfies the time-slice axiom. Assume that S
is maximal in the sense that for any stateω on some AM which is locally quasi-equivalent
to a state in SM we have ω ∈ SM .

Let Mi , i = 1, 2, be two globally hyperbolic spacetimes with diffeomorphic non-
compact Cauchy surfaces and assume that ω1 is a Reeh-Schlieder state on M1. Then
SM2 contains a (full) Reeh-Schlieder state.

Proof. Let {On}n∈N be a countable basis for the topology of M2 consisting of bounded
cc-regions with non-empty causal complement. We then apply Theorem 4.1 to each On
to obtain a sequence of states ωn

2 ∈ SM2 which have the Reeh-Schlieder property for
On . We write ω := ω1

2 and let (π,�,H) denote its GNS-representation.
For all n ≥ 2 we now find a bounded cc-region Vn ⊂ M2 such that Vn ⊃ O1∪On . For

this purpose we first choose a Cauchy surface C ⊂ M2 and note that Kn := C ∩ J (On)

is compact. Letting Ln ⊂ C be a compact connected set containing K1 ∪ Kn in its
interior it suffices to choose Vn := int(D(Ln))∩ I −(C+)∩ I +(C−) for Cauchy surfaces
C± to the future resp. past of O1, On and C . Note that � and �ωn

2
are cyclic and sep-

arating vectors for Rω
Vn

and Rωn
2

Vn
respectively by O1 ∪ On ⊂ Vn and by Corollary 4.2.

Because ω and ωn
2 are locally quasi-equivalent there is a ∗-isomorphism φ :Rωn

2
Vn

→Rω
Vn

.
In the presence of the cyclic and separating vectors φ is implemented by a unitary map
Un :Hωn

2
→H (see [12] Theorem 7.2.9). We claim that ψn := Un�ωn

2
is cyclic for Rω

On
.

Indeed, by the definition of quasi-equivalence we have φ ◦ πωn
2

= πω on AVn , so

πω(AOn )ψn = Unπωn
2
(AOn )�ωn

2
= UnHωn

2
= Hω.

We now apply the results of [8] to conclude that H contains a dense set of vectors
ψ which are cyclic and separating for all Rω

On
simultaneously. Because each cc–region

O ⊂ M2 contains some On we see that ωψ : A → 〈ψ,πω(A)ψ〉
‖ψ‖2 defines a full Reeh-

Schlieder state. Finally, because the GNS-representation of ωψ is just (π,ψ,H) we see
that it is locally quasi-equivalent to ω and hence ωψ ∈ SM2 . ��

One reason to assume the maximality condition of Theorem 4.3 is that it guarantees
that the state spaces are closed under operations, i.e. if ω ∈ SM and A ∈ AM such
that ω(A∗ A) = 1, then SM automatically contains the state ωA defined by ωA(B) :=
ω(A∗ B A). However, such a large state space may contain many singular states, as we
will see in the example of the free scalar field in Sect. 5. In situations of physical interest
it therefore remains to be seen whether the state space is big enough to contain full Reeh-
Schlieder states. Nevertheless, Theorem 4.1 is already enough for some applications,
such as the following conclusion concerning the type of local von Neumann algebras.

Corollary 4.4. Consider a nowhere classical causal locally covariant quantum field
theory A with a locally quasi-equivalent state space S which satisfy the time-slice axiom.
Let Mi be two globally hyperbolic spacetimes with diffeomorphic Cauchy surfaces and
let ω1 ∈ SM1 be a Reeh-Schlieder state. Then for any state ω ∈ SMi and any cc-region
O ⊂ Mi the local von Neumann algebra Rω

O is not finite.
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Proof. We will use Proposition 5.5.3 in [2], which says that Rω
O is not finite if the GNS-

vector� is a cyclic and separating vector for Rω
O and for a proper sub-algebra Rω

V . Note
that we can drop the superscript ω if O and V are bounded, by local quasi-equivalence.

First we consider M1. For any bounded cc-region O1 ⊂ M1 such that O⊥
1 �= ∅ we

can find bounded cc-regions O ′ ⊂ O⊥
1 and U, V ⊂ O1 such that U ⊂ V ⊥. By the

Reeh-Schlieder property the GNS-vector �ω1 is cyclic for RV and hence also for RO1 .
Moreover it is cyclic for R′

O1
⊃ RO ′ and therefore it is separating for RO1 and RV .

Now suppose that RO1 = RV . Then, by causality:

πω(AU ) ⊂ πω(AV )
′ = πω(AO1)

′ ⊂ πω(AU )
′.

It follows that RU ⊂ R′
U , which contradicts the nowhere classicality. Therefore, the

inclusion RV ⊂ RO1 must be proper and the cited theorem applies. Of course, if
O ⊂ M1 is a cc-region that is not bounded, then it contains a bounded sub-cc-region
O1 as above and Rω

O ⊃ Rω
O1

� RO1 isn’t finite either for any ω ∈ SM1 . (If V is a partial
isometry in the smaller algebra such that I = V ∗V and E := V V ∗ < I then the same
V shows that I is not finite in the larger algebra.)

Next we consider M2 and let O ⊂ M2 be any cc-region. It contains a cc-region O2
with O⊥

2 �= ∅, so we can apply Theorem 4.1. Using the unitary map Uα : Hω2 → Hω1

we see that RO2 � Rω2
O2

contains α−1(Rω1
O1
), which is not finite by the first paragraph.

Hence RO2 is not finite and the statement for O then follows again by inclusion. ��
Instead of the nowhere classicality we could have assumed that the local von Neumann
algebras in M1 are infinite, which allows us to derive the same conclusion for M2. Unfor-
tunately it is in general impossible to completely derive the type of the local algebras
using this kind of argument. Even if we know the types of the algebras AU1 and AV1 in
the inclusions (4), we can’t deduce the type of AO2 .

Another important consequence of Proposition 4.1 is that Corollary 4.2 enables us to
apply the Tomita-Takesaki modular theory to Rω2

O2
(or to the von Neumann algebra of

any bounded cc-region V2 which contains O2, if the Cauchy surfaces are non-compact).
More precisely, let O2 ⊂ M2 be given and let U1, V1 ⊂ M1 be the bounded cc-regions
andα :M2 →M1 the ∗-isomorphism of Proposition 3.4, so that AO1 ⊂ α(AO2) ⊂ AV1 .
We can then define R := UαRω2

O2
U∗
α and obtain Rω1

U1
⊂ R ⊂ Rω1

V1
. It is then clear that

the respective Tomita-operators are extensions of each other, SU1 ⊂ SR ⊂ SV1 (see e.g.
[12]).

5. The Free Scalar Field

As an example we will consider the free scalar field, which can be quantised using the
Weyl algebra (see [7]). For a globally hyperbolic spacetime M the algebra AM is defined
as follows. We let E := E− − E+ denote the difference of the advanced and retarded
fundamental solution of the Klein-Gordon operator ∇a∇a + m2 for a given mass m ≥ 0.
The linear space H := E(C∞

0 (M)) has a non-degenerate symplectic form defined by
σ(E f, Eg) := ∫

M f Eg, where we integrate with respect to the volume element deter-
mined by the metric. To every E f ∈ H we can then associate an element W (E f ) subject
to the relations

W (E f )∗ = W (−E f ), W (E f )W (Eg) = e− i
2 σ(E f,Eg)W (E( f + g)).

These elements form a ∗-algebra that can be given a norm and completed to a C∗-algebra
AM . It is shown in [5] Theorem 2.2 that the free scalar field is an example of a locally



On the Reeh-Schlieder Property in Curved Spacetime 283

covariant quantum field theory which is causal. It satisfies part of the time-slice axiom,
namely if O ⊂ M contains a Cauchy surface then AO = AM .

A stateω on AM is called regular if the group of unitary operators λ → πω(W (λE f ))
is strongly continuous for each f . It then has a self-adjoint (unbounded) generator�ω( f )
and we can define the Hilbert-space valued distribution φω( f ) := �ω( f )�ω. A regular
state is quasi-free iff the two-point function

w2( f, h) := 〈φω( f̄ ), φω(h)〉, f, h ∈ C∞
0 (M)

determines the state by ω(W (E f )) = e−w2( f, f ). A quasi-free state is Hadamard iff
W F∞(φω(.)) ⊂ V +, where V + ⊂ T ∗M denotes the cone of future directed causal co-
vectors of the spacetime (see [20] Proposition 6.1). Quasi-free Hadamard states exist on
all globally hyperbolic spacetimes (see [9]) and they are believed to be the most suitable
states to play a role similar to the vacuum in Minkowski spacetime. For this reason we
will want to choose a state space SM which contains all quasi-free Hadamard states. If
we choose these states only it can be shown that we get a locally quasi-equivalent state
space (see [22] Theorem 3.6) and the time-slice axiom is satisfied (see [15] Theorem
5.1 and the subsequent discussion).

We may now apply the results of Sect. 4:

Proposition 5.1. Let M be a globally hyperbolic spacetime, let O ⊂ M a bounded cc-
region with non-empty causal complement and assume that the mass m > 0 is strictly
positive. Then there is a Hadamard state ω on AM which has the Reeh-Schlieder prop-
erty for O. The vector �ω is cyclic and separating for RO. For all bounded cc-regions
V ⊂ M the local von Neumann algebra RV is not finite. Moreover, if the Cauchy
surfaces of M are non-compact then �ω is a separating vector for all RV .

Proof. The theory is causal, satisfies the time-slice axiom and the state space is locally
quasi-equivalent. Moreover, the theory is nowhere classical. To see this we note that the
local C∗-algebras are non-commutative and simple, so the representations πω are faith-
ful. Now we can find an ultrastatic (and hence stationary) spacetime M ′ diffeomorphic
to M . Because m > 0 we may apply the results of [13], which imply the existence of
a regular quasi-free ground state ω′ on M ′. This state has the Reeh-Schlieder property
(see [19]) and is Hadamard because it satisfies the microlocal spectrum condition (see
[15,20]). The conclusions now follow immediately from Theorem 4.1 and Corollaries
4.2 and 4.4. Note that stronger results on the type of the local algebras are known, [22].

��
If we would enlarge our state space, following [5], and allow any state that is locally

quasi-equivalent to a quasi-free Hadamard state, then it follows from Theorem 4.3 that
it also contains full Reeh-Schlieder states. In fact, if ω is a suitable quasi-free Hadamard
state on AM then the proof of Theorem 4.3 shows that Hω contains a dense Gδ of vectors
which define Reeh-Schlieder states. An important question is how many states are both
Hadamard and Reeh-Schlieder states. As a partial answer we wish to note that most
vectors in the given Gδ of Reeh-Schlieder vector states are not Hadamard. Indeed, if a
vectorψ ∈ Hω defines a Hadamard state then it must be in the domain of the unbounded
self-adjoint operator T := �ω( f )∗∗�ω( f )∗ for every test function f (see [12] Theorem
2.7.8v). We then apply

 Note that this is what [5] calls the time-slice axiom. In our definition, however, we also need to choose a
suitable state space functor so that we get isomorphisms of the sets of states too.
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Proposition 5.2. The domain of an unbounded self-adjoint operator T on a Hilbert
space H is a meagre Fσ , (i.e. the complement of a dense Gδ).

Proof. For each n ∈ N we define Vn := {ψ ∈ H|‖Tψ‖ ≤ n} and note that dom(T ) =
∪n Vn . The sets Vn are nowhere dense because T is unbounded. They are also closed
because for a Cauchy sequence ψi → ψ with ψi ∈ Vn we have ‖T E[−r,r ]ψ‖ ≤
‖T E[−r,r ](ψ − ψi )‖ + ‖T E[−r,r ]ψi‖ ≤ r‖ψ − ψi‖ + n, where E[−r,r ] is the spectral
projection of T on the interval [−r, r ]. Taking i → ∞ shows that ‖T E[−r,r ]ψ‖ ≤ n for
all r and hence ‖Tψ‖ ≤ n, i.e. ψ ∈ Vn . This completes the proof. ��
It then follows that most Reeh-Schlieder vector states in Hω are not Hadamard. The
converse question, how many Hadamard states are Reeh-Schlieder states, remains open.
The basic difficulty for that question seems to be that the Hilbert space topology on Hω

is not fine enough to deal with the meagre set of Hadamard states.

6. Conclusions

If one accepts locally covariant quantum field theory as a suitable axiomatic framework
to describe quantum field theories in curved spacetime then one only needs to assume
the very natural time-slice axiom in order to use the general technique of spacetime
deformation. The geometrical ideas behind deformation results like Proposition 3.3 are
insightful, even though the proofs can become a bit involved. It should be noted, however,
that these geometrical results, possibly combined with other assumptions such as cau-
sality, have immediate consequences on the algebraic side which are not hard to prove.
This we have seen in Sect. 4, where most proofs follow easily from the deformation,
with the exception of Theorem 4.3.

Concerning the Reeh-Schlieder property we have shown that a Reeh-Schlieder state
on one spacetime can be deformed in such a way that it gives a state on a diffeomorphic
spacetime which is a Reeh-Schlieder state for a given cc-region. It is even possible to
get full Reeh-Schlieder states, but it is not clear whether these are “physical” enough to
belong to a state space of interest. Nevertheless, our results do allow us to draw conclu-
sions about non-local correlations and the type of local von Neumann algebras and they
open up the way to use Tomita-Takesaki theory in curved spacetime.
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