36 research outputs found

    Dissolution on Saturn's Moon Titan: A 3D Karst Landscape Evolution Model

    Get PDF
    Titan is an Earth-like world possessing a nitrogen-rich atmosphere covering a surface showing signs of lacustrine (lakes and depressions), fluvial (channels, valleys), aeolian (longitudinal dunes) activity. The chemistry implied in the geological processes is, however, strikingly different from that on Earth. Titan’s extremely cold environment (T ~ -180°C) only allows water to exist under the form of an icy “bedrock”. The presence of methane as the second major constituent in the atmosphere, as well as an active nitrogen-methane photochemistry, allows methane and ethane to drive a hydrocarbon cycle similar to the terrestrial hydrological cycle. A plethora of organic solids, more or less soluble in liquid hydrocarbons, is also produced in the atmosphere and can lead, by atmospheric sedimentation over geological timescales, to formation of some kind of organic geological sedimentary layer. [figure_sikun2other] Based on comparisons between Titan’s landscapes seen in the Cassini spacecraft data and terrestrial analogues, karstic-like dissolution and evaporitic crystallization have been suggested in various instances to take part in the landscape development on Titan. Dissolution has been invoked, for instance, for the development of the so-called “labyrinthic terrain”, located at high latitudes and resembling terrestrial cockpit or polygonal karst terrain. In this work, we aim at testing this hypothesis by comparing the natural landscapes visible in the Cassini/RADAR images of Titan’s surface, with those inferred from the use of a 3D Landscape Evolution Model (LEM) based on the Channel-Hillslope Integrated Landscape Development (CHILD), modified to include karstic dissolution as the major geological process. Digital Elevation Models (DEMs) are generated from an initial quasi-planar surface for a set of dissolution rates, diffusion coefficients (solute transport), and sink densities of the mesh. The landscape evolves over millions of years. Synthetic SAR images are generated from these DEMs in order to compare with Titan’s landforms seen in the actual SAR images and infer the possible thickness and degree of maturation of the Titan kars

    Development of labyrinths on Titan: A numerical model based on surface dissolution

    Get PDF
    Titan is an Earth-like world with active erosion processes based on the interaction of liquid methane with solid organics and ices at the surface, which shapes the landscapes over geological timescales. The Cassini mission allowed to discover the so-called “labyrinthic terrain”, heavily dissected regions on Titan located at high latitudes and resembling terrestrial cockpit or polygonal karst terrain developed by rock dissolution, thanks to repeated Cassini/RADAR observations. In this work, we make use of a 3D Landscape Evolution Model (LEM) that includes karstic dissolution as the major geological process, coupled to a radar backscattering model able to generate te associated SAR images of the numerical lansdcapes, in order to infer the possible thickness and degree of maturation of the Titan karst

    Titan: Earth-like on the outside, ocean world on the inside

    Get PDF
    Thanks to the Cassini-Huygens mission, Titan, the pale orange dot of Pioneer and Voyager encounters, has been revealed to be a dynamic, hydrologically shaped, organic-rich ocean world offering unparalleled opportunities to explore prebiotic chemistry. And while Cassini-Huygens revolutionized our understanding of each of the three "layers" of Titan-the atmosphere, the surface, and the interior-we are only beginning to hypothesize how these realms interact. In this paper, we summarize the current state of Titan knowledge and discuss how future exploration of Titan would address some of the next decade's most compelling planetary science questions. We also demonstrate why exploring Titan, both with and beyond the Dragonfly New Frontiers mission, is a necessary and complementary component of an Ocean Worlds Program that seeks to understand whether habitable environments exist elsewhere in our solar system

    NAD-Independent L-Lactate Dehydrogenase Is Required for L-Lactate Utilization in Pseudomonas stutzeri SDM

    Get PDF
    BACKGROUND: Various Pseudomonas strains can use L-lactate as their sole carbon source for growth. However, the L-lactate-utilizing enzymes in Pseudomonas have never been identified and further studied. METHODOLOGY/PRINCIPAL FINDINGS: An NAD-independent L-lactate dehydrogenase (L-iLDH) was purified from the membrane fraction of Pseudomonas stutzeri SDM. The enzyme catalyzes the oxidation of L-lactate to pyruvate by using FMN as cofactor. After cloning its encoding gene (lldD), L-iLDH was successfully expressed, purified from a recombinant Escherichia coli strain, and characterized. An lldD mutant of P. stutzeri SDM was constructed by gene knockout technology. This mutant was unable to grow on L-lactate, but retained the ability to grow on pyruvate. CONCLUSIONS/SIGNIFICANCE: It is proposed that L-iLDH plays an indispensable function in Pseudomonas L-lactate utilization by catalyzing the conversion of L-lactate into pyruvate

    Serological Evaluation of Mycobacterium ulcerans Antigens Identified by Comparative Genomics

    Get PDF
    A specific and sensitive serodiagnostic test for Mycobacterium ulcerans infection would greatly assist the diagnosis of Buruli ulcer and would also facilitate seroepidemiological surveys. By comparative genomics, we identified 45 potential M. ulcerans specific proteins, of which we were able to express and purify 33 in E. coli. Sera from 30 confirmed Buruli ulcer patients, 24 healthy controls from the same endemic region and 30 healthy controls from a non-endemic region in Benin were screened for antibody responses to these specific proteins by ELISA. Serum IgG responses of Buruli ulcer patients were highly variable, however, seven proteins (MUP045, MUP057, MUL_0513, Hsp65, and the polyketide synthase domains ER, AT propionate, and KR A) showed a significant difference between patient and non-endemic control antibody responses. However, when sera from the healthy control subjects living in the same Buruli ulcer endemic area as the patients were examined, none of the proteins were able to discriminate between these two groups. Nevertheless, six of the seven proteins showed an ability to distinguish people living in an endemic area from those in a non-endemic area with an average sensitivity of 69% and specificity of 88%, suggesting exposure to M. ulcerans. Further validation of these six proteins is now underway to assess their suitability for use in Buruli ulcer seroepidemiological studies. Such studies are urgently needed to assist efforts to uncover environmental reservoirs and understand transmission pathways of the M. ulcerans

    The 3 . 4 ÎŒ m absorption in Titan’s stratosphere: Contribution of ethane, propane, butane and complex hydrogenated organics

    No full text
    International audienceThe complex organic chemistry harbored by the atmosphere of Titan has been investigated in depth by Cassini observations. Among them, a series of solar occultations performed by the VIMS instrument throughout the 13 years of Cassini revealed a strong absorption centered at . Several molecules present in Titan’s atmosphere generate spectral features in that wavelength region, but their individual contributions are difficult to disentangle. In this work, we quantify the contribution of the various molecular species to the band using a radiative transfer model. Ethane and propane are significant components of the band but they are insufficient to reproduce perfectly its shape. Polycyclic Aromatic Hydrocarbons (PAHs) and more complex polyaromatic hydrocarbons like Hydrogenated Amorphous Carbons (HACs) are the most plausible candidates because they are rich in C-H bonds. PAHs signature have already been detected above km, and they are recognized as precursors of aerosol particles. High similarities between individual spectra impede the derivation of abundances

    Corrigendum to "Photometrically-corrected global infrared mosaics of Enceladus: New implications for its spectral diversity and geological activity" [Icarus 349 (2020) 113848]

    No full text
    International audienceThe authors regret that the longitude grid in Figures. 9 and 11 was wrongly shifted by 180° in the original manuscript. We provide below the correct versions of Figures. 9 and 11

    Photometrically-corrected global infrared mosaics of Enceladus: New implications for its spectral diversity and geological activity

    No full text
    International audienceBetween 2004 and 2017, spectral observations have been gathered by the Visual and Infrared Mapping Spectrometer (VIMS) on-board Cassini (Brown et al., 2004) during 23 Enceladus close encounters, in addition to more distant surveys. The objective of the present study is to produce a global hyperspectral mosaic of the complete VIMS data set of Enceladus in order to highlight spectral variations among the different geological units. This requires the selection of the best observations in terms of spatial resolution and illumination conditions. We have carried out a detailed investigation of the photometric behavior at several key wavelengths (1.35,1.5, 1.65, 1.8, 2.0, 2.25, 2.55 and 3.6 ”m), characteristics of the infrared spectra of water ice. We propose a new photometric function, based on the model of Shkuratov et al. (2011) When combined, corrected mosaics at different wavelengths reveal heterogeneous areas, in particular in the terrains surrounding the Tiger Stripes on the South Pole and in the northern hemisphere around 30 ‱ N, 90 ‱ W. Those areas appear mainly correlated to tectonized units, indicating an endogenous origin, potentially driven by seafloor hotspots
    corecore