50,094 research outputs found

    Spin coating of an evaporating polymer solution

    Get PDF
    We consider a mathematical model of spin coating of a single polymer blended in a solvent. The model describes the one-dimensional development of the thin layer of the mixture as the layer thins due to flow created by a balance of viscous forces and centrifugal forces and due to evaporation of the solvent. In the model both the diffusivity of the solvent in the polymer and the viscosity of the mixture are very rapidly varying functions of the solvent volume fraction. Guided by numerical solutions an asymptotic analysis reveals a number of different possible behaviours of the thinning layer dependent on the nondimensional parameters describing the system.\ud \ud The main practical interest is in controlling the appearance and development of a ``skin'' on the polymer where the solvent concentration reduces rapidly on the outer surface leaving the bulk of the layer still with high concentrations of solvent. The critical parameters controlling this behaviour are found to be ϵ\epsilon the ratio of the diffusion to advection time scales, δ\delta the ratio of the evaporation to advection time scales and exp(γ)\exp(\gamma), the ratio of the diffusivity of the initial mixture and the pure polymer. In particular, our analysis shows that for very small evaporation with δ<<exp(3/(4γ))ϵ3/4\delta << \exp(-3/(4\gamma)) \epsilon^{3/4} skin formation can be prevented

    Detection of SUSY Signals in Stau Neutralino Co-annihilation Region at the LHC

    Get PDF
    We study the prospects of detecting the signal in the stau neutralino co-annihilation region at the LHC using tau leptons. The co-annihilation signal is characterized by the stau and neutralino mass difference (dM) to be 5-15 GeV to be consistent with the WMAP measurement of the cold dark matter relic density as well as all other experimental bounds within the minimal supergravity model. Focusing on tau's from neutralino_2 --> tau stau --> tau tau neutralino_1 decays in gluino and squark production, we consider inclusive MET+jet+3tau production, with two tau's above a high E_T threshold and a third tau above a lower threshold. Two observables, the number of opposite-signed tau pairs minus the number of like-signed tau pairs and the peak position of the di-tau invariant mass distribution, allow for the simultaneous determination of dM and M_gluino. For dM = 9 GeV and M_gluino = 850 GeV with 30 fb^-1 of data, we can measure dM to 15% and M_gluino to 6%.Comment: 4 pages LaTex, 3 figures. To appear in Proceedings of SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 2006. A typo in a reference is correcte

    Thermodynamics of (2+1)-flavor QCD: Confronting Models with Lattice Studies

    Full text link
    The Polyakov-quark-meson (PQM) model, which combines chiral as well as deconfinement aspects of strongly interacting matter is introduced for three light quark flavors. An analysis of the chiral and deconfinement phase transition of the model and its thermodynamics at finite temperatures is given. Three different forms of the effective Polyakov loop potential are considered. The findings of the (2+1)-flavor model investigations are confronted to corresponding recent QCD lattice simulations of the RBC-Bielefeld, HotQCD and Wuppertal-Budapest collaborations. The influence of the heavier quark masses, which are used in the lattice calculations, is taken into account. In the transition region the bulk thermodynamics of the PQM model agrees well with the lattice data.Comment: 13 pages, 7 figures, 3 tables; minor changes, final version to appear in Phys. Rev.

    Comment on ''the controlled charge ordering and evidence of the metallic state in Pr0.65_{0.65}Ca0.35_{0.35}MnO3_{3} films''

    Full text link
    In a recent paper (2000 \QTR{it}{J. Phys.: Condens. Matter} \QTR{bf}{12} L133) Lee \QTR{it}{et al.} have studied the transport properties of Pr0.65_{0.65}Ca0.35_{0.35}MnO3_{3} thin films. They claimed that they are able to controlled the charge-ordered (CO) state by the lattice strains. We propose herein another alternative since another indexation of the orientation of the film can be found leading to almost no distortion of the cell, as compared to the bulk compound.Comment: 2 page

    About the determination of critical exponents related to possible phase transitions in nuclear fragmentation

    Get PDF
    We introduce a method based on the finite size scaling assumption which allows to determine numerically the critical point and critical exponents related to observables in an infinite system starting from the knowledge of the observables in finite systems. We apply the method to bond percolation in 2 dimensions and compare the results obtained when the bond probability p or the fragment multiplicity m are chosen as the relevant parameter.Comment: 12 pages, TeX, 4 figure

    Disorder-induced melting of the charge order in thin films of Pr0.5Ca0.5MnO3

    Full text link
    We have studied the magnetic-field-induced melting of the charge order in thin films of Pr0.5Ca0.5MnO3 (PCMO) films on SrTiO3 (STO) by X-ray diffraction, magnetization and transport measurement. At small thickness (25 nm) the films are under tensile strain and the low-temperature melting fields are of the order of 20 T or more, comparable to the bulk value. With increasing film thickness the strain relaxes, which leads to a strong decrease of the melting fields. For a film of 150 nm, with in-plane and out-of-plane lattice parameters closer to the bulk value, the melting field has reduced to 4 T at 50 K, with a strong increase in the hysteretic behavior and also an increasing fraction of ferromagnetic material. Strain relaxation by growth on a template of YBa2Cu3O(7-delta) or by post-annealing yields similar results with an even stronger reduction of the melting field. Apparently, strained films behave bulk-like. Relaxation leads to increasing suppression of the CO state, presumably due to atomic scale disorder produced by the relaxation process.Comment: 7 pages, 4 fig

    Time-dependent Fr\"ohlich transformation approach for two-atom entanglement generated by successive passage through a cavity

    Full text link
    Time-dependent Fr\"ohlich transformations can be used to derive an effective Hamiltonian for a class of quantum systems with time-dependent perturbations. We use such a transformation for a system with time-dependent atom-photon coupling induced by the classical motion of two atoms in an inhomogeneous electromagnetic field. We calculate the entanglement between the two atoms resulting from their motion through a cavity as a function of their initial position difference and velocity.Comment: 7 pages, 3 figure

    Two-lane traffic rules for cellular automata: A systematic approach

    Full text link
    Microscopic modeling of multi-lane traffic is usually done by applying heuristic lane changing rules, and often with unsatisfying results. Recently, a cellular automaton model for two-lane traffic was able to overcome some of these problems and to produce a correct density inversion at densities somewhat below the maximum flow density. In this paper, we summarize different approaches to lane changing and their results, and propose a general scheme, according to which realistic lane changing rules can be developed. We test this scheme by applying it to several different lane changing rules, which, in spite of their differences, generate similar and realistic results. We thus conclude that, for producing realistic results, the logical structure of the lane changing rules, as proposed here, is at least as important as the microscopic details of the rules

    Bromination of Graphene and Graphite

    Get PDF
    We present a density functional theory study of low density bromination of graphene and graphite, finding significantly different behaviour in these two materials. On graphene we find a new Br2 form where the molecule sits perpendicular to the graphene sheet with an extremely strong molecular dipole. The resultant Br+-Br- has an empty pz-orbital located in the graphene electronic pi-cloud. Bromination opens a small (86meV) band gap and strongly dopes the graphene. In contrast, in graphite we find Br2 is most stable parallel to the carbon layers with a slightly weaker associated charge transfer and no molecular dipole. We identify a minimum stable Br2 concentration in graphite, finding low density bromination to be endothermic. Graphene may be a useful substrate for stabilising normally unstable transient molecular states
    corecore