39 research outputs found
Neural circuits controlling behavior and autonomic functions in medicinal leeches
In the study of the neural circuits underlying behavior and autonomic functions, the stereotyped and accessible nervous system of medicinal leeches, Hirudo sp., has been particularly informative. These leeches express well-defined behaviors and autonomic movements which are amenable to investigation at the circuit and neuronal levels. In this review, we discuss some of the best understood of these movements and the circuits which underlie them, focusing on swimming, crawling and heartbeat. We also discuss the rudiments of decision-making: the selection between generally mutually exclusive behaviors at the neuronal level
The perceptions of social responsibility for community resilience to flooding: the impact of past experience, age, gender and ethnicity
Community resilience to flooding depends, to a large extent, on the participation of community members to take more responsibility for enhancing their own resilience. The perception of social responsibility (SR) which is argued to be one of the antecedents influencing individual’s willingness to undertake resilient behaviours can significantly contribute to community resilience through individual and collective actions. Understanding of factors influencing the perceptions of SR of individuals within community might help with developing strategies to increase the perceptions of SR. This research explores perceptions of SR in relation to flooding for householders and local businesses and establishes their relationships with experience of flooding and demographic factors of age, gender and ethnicity. The data were obtained via a questionnaire survey of three communities in Birmingham and one community in South East London, UK, three with experience of flooding and one without. A total of 414 responses were received and used in the multiple regression analysis. The analysis identified ‘experience of flooding’, ‘age’ and ‘South Asian’ ethnic group as significant variables, suggesting that older individuals from South Asian ethnic groups with previous experience of flooding are likely to be more socially responsible than others without these attributes
The Caenorhabditis elegans Eph Receptor Activates NCK and N-WASP, and Inhibits Ena/VASP to Regulate Growth Cone Dynamics during Axon Guidance
The Eph receptor tyrosine kinases (RTKs) are regulators of cell migration and axon guidance. However, our understanding of the molecular mechanisms by which Eph RTKs regulate these processes is still incomplete. To understand how Eph receptors regulate axon guidance in Caenorhabditis elegans, we screened for suppressors of axon guidance defects caused by a hyperactive VAB-1/Eph RTK. We identified NCK-1 and WSP-1/N-WASP as downstream effectors of VAB-1. Furthermore, VAB-1, NCK-1, and WSP-1 can form a complex in vitro. We also report that NCK-1 can physically bind UNC-34/Enabled (Ena), and suggest that VAB-1 inhibits the NCK-1/UNC-34 complex and negatively regulates UNC-34. Our results provide a model of the molecular events that allow the VAB-1 RTK to regulate actin dynamics for axon guidance. We suggest that VAB-1/Eph RTK can stop axonal outgrowth by inhibiting filopodia formation at the growth cone by activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex and by inhibiting UNC-34/Ena activity
Nodal-Dependent Mesendoderm Specification Requires the Combinatorial Activities of FoxH1 and Eomesodermin
Vertebrate mesendoderm specification requires the Nodal signaling pathway and its transcriptional effector FoxH1. However, loss of FoxH1 in several species does not reliably cause the full range of loss-of-Nodal phenotypes, indicating that Nodal signals through additional transcription factors during early development. We investigated the FoxH1-dependent and -independent roles of Nodal signaling during mesendoderm patterning using a novel recessive zebrafish FoxH1 mutation called midway, which produces a C-terminally truncated FoxH1 protein lacking the Smad-interaction domain but retaining DNA–binding capability. Using a combination of gel shift assays, Nodal overexpression experiments, and genetic epistasis analyses, we demonstrate that midway more accurately represents a complete loss of FoxH1-dependent Nodal signaling than the existing zebrafish FoxH1 mutant schmalspur. Maternal-zygotic midway mutants lack notochords, in agreement with FoxH1 loss in other organisms, but retain near wild-type expression of markers of endoderm and various nonaxial mesoderm fates, including paraxial and intermediate mesoderm and blood precursors. We found that the activity of the T-box transcription factor Eomesodermin accounts for specification of these tissues in midway embryos. Inhibition of Eomesodermin in midway mutants severely reduces the specification of these tissues and effectively phenocopies the defects seen upon complete loss of Nodal signaling. Our results indicate that the specific combinations of transcription factors available for signal transduction play critical and separable roles in determining Nodal pathway output during mesendoderm patterning. Our findings also offer novel insights into the co-evolution of the Nodal signaling pathway, the notochord specification program, and the chordate branch of the deuterostome family of animals
Determinantes individuales y sociales del estado de salud subjetivo y bienestar de la población de la tercera edad de Portugal
This article aims to identify the main determinants of self-rated health and well-being in the elderly Portuguese population, using a set of dimensions including demographic and socioeconomic indicators, characteristics of interpersonal networks and social activities, health, sexual activity, representations of aging, and feeling of happiness. Taking socioeconomic, behavioral, and attitudinal predictors into account to analyze the explanatory value of the interrelated dimensions and weights for each factor, the author argues that social capital, activities associated with active aging, and greater optimism towards aging can contribute greatly to better self-rated health and wellbeing among the elderly, partially offsetting the effect of socioeconomic factors and illness associated with age.Neste artigo pretende-se identificar os principais determinantes da autoavaliação do estado de saúde e do bem-estar da população sênior, tendo em conta um conjunto de dimensões que reúnem indicadores demográficos e socioeconômicos, características das redes interpessoais e atividades sociais praticadas, de saúde, atividade sexual, de representações sobre o envelhecimento e sentimento de felicidade. A equação em simultâneo de preditores socioeconômicos e de caráter comportamental e atitudinal dessas várias vertentes, com o intuito de analisar o valor explicativo de cada uma das dimensões inter-relacionadas e o peso de cada um dos fatores, permite concluir que o social capital, a prática de atividades associadas ao envelhecimento ativo e um maior otimismo em relação ao envelhecimento podem contribuir em grande medida para uma melhor autoavaliação do estado de saúde e do bemestar dos mais velhos, compensando, em parte, o efeito de fatores socioeconômicos e de doença associados à idade
A mitochondrial HSP70 (HSPA9B) is linked to miltefosine resistance and stress response in Leishmania donovani
Background: Protozoan parasites of the genus Leishmania are responsible for leishmaniasis, a neglected tropical disease affecting millions worldwide. Visceral leishmaniasis (VL), caused by Leishmania donovani, is the most severe form of leishmaniasis with high rates of mortality if left untreated. Current treatments include pentavalent antimonials and amphotericin B. However, high toxicity and emergence of resistance hinder the success of these options. Miltefosine (HePC) is the first oral treatment available for leishmaniasis. While treatment with HePC has proven effective, higher tolerance to the drug has been observed, and experimental resistance is easily developed in an in vitro environment. Several studies, including ours, have revealed that HePC resistance has a multi-factorial origin and this work aims to shed light on this complex mechanism. Methods: 2D-DIGE quantitative proteomics comparing the soluble proteomes of sensitive and HePC resistant L. donovani lines identified a protein of interest tentatively involved in drug resistance. To test this link, we employed a gain-of-function approach followed by mutagenesis analysis. Functional studies were complemented with flow cytometry to measure HePC incorporation and cell death. Results: We identified a mitochondrial HSP70 (HSPA9B) downregulated in HePC-resistant L. donovani promastigotes. The overexpression of HSPA9B in WT lines confers an increased sensitivity to HePC, regardless of whether the expression is ectopic or integrative. Moreover, the increased sensitivity to HePC is specific to the HSPA9B overexpression since dominant negative mutant lines were able to restore HePC susceptibility to WT values. Interestingly, the augmented susceptibility to HePC did not correlate with an increased HePC uptake. Leishmania donovani promastigotes overexpressing HSPA9B were subjected to different environmental stimuli. Our data suggest that HSPA9B is capable of protecting cells from stressful conditions such as low pH and high temperature. This phenotype was further corroborated in axenic amastigotes overexpressing HSPA9B. Conclusions: The results from this study provide evidence to support the involvement of a mitochondrial HSP70 (HSPA9B) in experimental HePC resistance, a mechanism that is not yet fully understood, and reveal potential fundamental roles of HSPA9B in the biology of Leishmania. Overall, our findings are relevant for current and future antileishmanial chemotherapy strategies.Fil: Vacchina, Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentina. University of Notre Dame; Estados UnidosFil: Norris Mullins B.. University of Notre Dame; Estados UnidosFil: Carlson, E. S.. University of Notre Dame; Estados UnidosFil: Morales, M. A.. University of Notre Dame; Estados Unido
Investigation of Two Prototypes of Novel Noncontact Technologies for Automated Real-Time Capture of Incremental Drug Administration Data From Syringes
Principal components analysis (PCA) of WT vs HSPA9B-mCherry 2D-DIGE. Statistical analysis shows the âgoodâ clustering of the biological replicates for each sample. (PDF 41 kb
Dynamic analysis of stochastic transcription cycles
In individual mammalian cells the expression of some genes such as prolactin is highly variable over time and has been
suggested to occur in stochastic pulses. To investigate the origins of this behavior and to understand its functional
relevance, we quantitatively analyzed this variability using new mathematical tools that allowed us to reconstruct dynamic
transcription rates of different reporter genes controlled by identical promoters in the same living cell. Quantitative
microscopic analysis of two reporter genes, firefly luciferase and destabilized EGFP, was used to analyze the dynamics of
prolactin promoter-directed gene expression in living individual clonal and primary pituitary cells over periods of up to 25 h.
We quantified the time-dependence and cyclicity of the transcription pulses and estimated the length and variation of
active and inactive transcription phases. We showed an average cycle period of approximately 11 h and demonstrated that
while the measured time distribution of active phases agreed with commonly accepted models of transcription, the inactive
phases were differently distributed and showed strong memory, with a refractory period of transcriptional inactivation close
to 3 h. Cycles in transcription occurred at two distinct prolactin-promoter controlled reporter genes in the same individual
clonal or primary cells. However, the timing of the cycles was independent and out-of-phase. For the first time, we have
analyzed transcription dynamics from two equivalent loci in real-time in single cells. In unstimulated conditions, cells
showed independent transcription dynamics at each locus. A key result from these analyses was the evidence for a
minimum refractory period in the inactive-phase of transcription. The response to acute signals and the result of
manipulation of histone acetylation was consistent with the hypothesis that this refractory period corresponded to a phase
of chromatin remodeling which significantly increased the cyclicity. Stochastically timed bursts of transcription in an
apparently random subset of cells in a tissue may thus produce an overall coordinated but heterogeneous phenotype
capable of acute responses to stimuli