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Abstract

In individual mammalian cells the expression of some genes such as prolactin is highly variable over time and has been
suggested to occur in stochastic pulses. To investigate the origins of this behavior and to understand its functional
relevance, we quantitatively analyzed this variability using new mathematical tools that allowed us to reconstruct dynamic
transcription rates of different reporter genes controlled by identical promoters in the same living cell. Quantitative
microscopic analysis of two reporter genes, firefly luciferase and destabilized EGFP, was used to analyze the dynamics of
prolactin promoter-directed gene expression in living individual clonal and primary pituitary cells over periods of up to 25 h.
We quantified the time-dependence and cyclicity of the transcription pulses and estimated the length and variation of
active and inactive transcription phases. We showed an average cycle period of approximately 11 h and demonstrated that
while the measured time distribution of active phases agreed with commonly accepted models of transcription, the inactive
phases were differently distributed and showed strong memory, with a refractory period of transcriptional inactivation close
to 3 h. Cycles in transcription occurred at two distinct prolactin-promoter controlled reporter genes in the same individual
clonal or primary cells. However, the timing of the cycles was independent and out-of-phase. For the first time, we have
analyzed transcription dynamics from two equivalent loci in real-time in single cells. In unstimulated conditions, cells
showed independent transcription dynamics at each locus. A key result from these analyses was the evidence for a
minimum refractory period in the inactive-phase of transcription. The response to acute signals and the result of
manipulation of histone acetylation was consistent with the hypothesis that this refractory period corresponded to a phase
of chromatin remodeling which significantly increased the cyclicity. Stochastically timed bursts of transcription in an
apparently random subset of cells in a tissue may thus produce an overall coordinated but heterogeneous phenotype
capable of acute responses to stimuli.
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Introduction

Gene expression in living cells is dynamic and unstable, and

fluctuations in transcription may be subject to stochastic regulation

of processes including transcription factor and polymerase

recruitment, and chromatin remodeling [1–5]. Cell-to-cell varia-

tion in the amount of protein a gene encodes is generally thought

to arise from the typically small number of molecules (e.g. gene

copies), which are involved in gene expression. The factors leading

to this variation have been defined by studies in prokaryotes and

lower eukaryotes as either extrinsic (deriving from variations in

global, cellular factors, such as varying amounts of transcriptional

activators) or intrinsic (i.e. inherently random molecular events,

such as the transcription of mRNA or translation of proteins)

[4,6,7]. Previous studies addressing the characterization of

intrinsic and extrinsic noise have mainly focused on bacteria and

yeast models, often using pairs of reporter genes to assess

heterogeneity in protein levels as an indirect readout of expression

level at a fixed time-point [4,6]. One study has reported a similar

fixed time-point analysis in single human cells using dual

fluorescent protein read-out [7]. Short-term transcriptional pulses

(bursts) have been observed in both prokaryotes [2,3,8] and

eukaryotes [5,6,9,10]. Chromatin remodeling has been suggested

as one possible intrinsic source of variation that may lead to the
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intense stochastic transcriptional bursts that have been shown to

occur in eukaryotic gene expression [5,6,10].

In mammalian cells, the variation in transcription between cells

has been most quantitatively studied by using fluorescent in situ

hybridization analysis [10–12]. However, these studies do not

provide long-term time-course analysis in single cells. One approach

to provide real-time semi-quantitative analysis of transcription is the

imaging of reporter gene expression—for example, using firefly

luciferase [13–15]. Such studies support the view that gene

expression is very dynamic over long time periods and occurs in

transcriptional bursts of varying duration that are not coordinated

between different cells. To date, the key aim of understanding real-

time dynamics by directly quantifying transcription rates of multiple

genes over time in single cells has not been achieved.

One gene that displays dynamic transcription and marked

heterogeneity between cells is prolactin (PRL) [14,16–18].

Prolactin is a hormone secreted by pituitary lactotrophic cells

that is important for reproductive function, lactation, and control

of fertility. Pituitary tumors secreting prolactin are common in

man, and the hormonal regulation of prolactin secretion and gene

expression has therefore been extensively studied [19–22]. In the

present study, we used single cell reporter gene imaging to explore

the pulsatile and cyclical nature of the transcription of PRL. Using

measurements of mRNA and protein stability, we were able to

quantify transcription rates from separately integrated reporter

genes within the same cells and compare the kinetics of

transcription over time. Analysis of the response to acute signals

and the manipulation of histone acetylation suggested that

dynamic chromatin changes control cycle timing.

Results

Cycles in Prolactin Transcription in Single Pituitary Cells
Human PRL (hPRL) promoter-directed transcription was

heterogeneous and dynamic in rat pituitary GH3 cells using

luciferase reporter genes. Transcriptional pulses were observed in

GH3 cell lines stably expressing a 5 kb hPRL-Luciferase (hPRL-Luc)

reporter gene [14] or a larger 160 kb hPRL genomic locus

reporter, a hPRL-Luc Bacterial Artificial Chromosome (BAC, [16];

Figure 1A, B, and C; Figure S1). Similar patterns were observed in

primary cultures of pituitary cells (taken from transgenic rats [16]),

where the hPRL-Luc BAC was integrated either into an autosomal

(Figure 1D and E) or an X-chromosome locus (Figure 1F). In all

four model systems distinct transcriptional cycles were discerned

(e.g. Figure 1G) showing that these responses were not affected by

promoter length or integration site.

Uncorrelated Transcription Cycles from Two Identical
Promoters in a Single Cell

Pulses in gene expression in individual cells could arise from the

transcription process itself or from signaling events reflecting the

cellular environment. To discriminate between these possibilities,

a dual-transgene cell line was constructed expressing separate

luciferase and d2EGFP (destabilized enhanced Green Fluorescent

Protein) reporter genes under the control of identical 5 kb hPRL

promoters, integrated as independent gene copies (GH3-DP1 cell

line; Figure 2A; one or at most two copies; Figure S2, Figure S3).

The luciferase and d2EGFP reporter genes were selected due to

their reported short protein half-lives. The use of these very

different reporter genes (which have different chemistries for

formation of the signal) was considered an advantage because we

could measure them entirely independently.

Signal was detected from both reporter genes, but the intensity

of the expression of the reporter genes within single cells failed to

correlate when measured at a single time-point (Figure 2A, Figure

S4). To measure the profiles of expression from each reporter

gene, fluorescence and luminescence intensities were captured

from the same field of single cells over several hours (Figure S5).

Due to the different mRNA and protein half-lives of these two

reporter genes (Figure S2, Figure S10, Table S1, Text S1 Section

3) direct comparison between the timing of expression could not

be made. Therefore, in order to make quantitative comparisons

between the timing of expression of these two different reporter

genes within the same single cell, a mathematical model was

developed (Figure 2B, [23]) which used statistical analysis to

reconstruct estimates of the time-dependent transcription rate

from the reporter imaging data (Figure S11, Figure S14, Text S1

Section 3).

Autocorrelation analysis was performed on the reconstructed

transcription rates from the hPRL-Luc and the hPRL-d2EGFP

reporter genes in the dual-reporter GH3-DP1 cell line. This

showed that transcription cycles were occurring at each gene with

a dominant period of 11.363.3 h (Figure 3A and Figure S9). This

value was measured from the dual reporter experiments and

possibly provided an underestimate due to the limited timeframe

of the experiments. Cycles of hPRL transcription were also

observed from both luciferase and d2EGFP reporter genes in

individual clonal pituitary cells from dual BAC-reporter transgenic

rats grown in primary culture (see Materials and Methods, [16]),

with a slightly longer period (15.264.8 h; Figures 3B, S1, and S8).

The ability to obtain quantitative data for the time-dependent

transcription rates from the two reporter genes enabled us to ask

whether the transcription cycles observed at individual loci were

temporally coordinated or were out-of-phase within a single cell

(Figure 4A, Figure S6). We analyzed the rank correlation

coefficient C(T) between the transcription time-series for the two

reporter genes over a time window of length T for increasing

values of T (see Text S1 Section 3.3). In unstimulated conditions

there was no significant correlation (p,.05) in the timing of

Author Summary

Timing of biological processes such as gene transcription is
crucial to ensure that cells and tissues respond appropriately
to their environment. Until recently it was assumed that
most cells in a tissue responded in a similar way, and that
changes in cellular activity were relatively stable. However,
studies of messenger RNA and protein levels in single cells
have shown the presence of considerable heterogeneity.
This suggested that transcription in single cells may be
highly dynamic over time. Using a combined experimental
and theoretical approach, with time-lapse imaging of
reporter gene expression over 25 h periods, we measured
the rate of prolactin gene transcription in single pituitary
cells and detected clear cycles of transcriptional activity.
Mathematical analysis, using a binary model that assumed
transcription was on or off, showed that these cycles were
characterized by a minimum refractory period that involved
chromatin remodeling. The timing of transcription from two
different reporter constructs driven by identical promoters in
the same cell was out-of-phase, suggesting that the pulses
of gene expression are due to processes intrinsic to
expression of a particular gene and not to environmental
effects. We further show that the pulses of transcription are
independent chromatin cycles at each gene locus. Therefore,
heterogeneous patterns of gene expression may facilitate
flexible transcriptional responses in cells within intact tissue,
while maintaining a well-regulated average level of gene
expression in the resting state.

Transcription Cycles in Single Living Cells
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transcription cycles between the dual reporters in the same single

cell (Figure 4A and B). In order to show that this was not an

artifact of the genomic integration site we investigated indepen-

dently derived cell lines: no significant correlation between the two

promoters was detected in two different clones of the stably

transfected cell lines or in dual-reporter transgenic primary cells

(Figure 4B, Figure S12). These data demonstrate that cycles of

hPRL-promoter activity did not depend on promoter length or on

transgene integration site. Most importantly, the lack of correla-

tion between the timing of hPRL transcription from promoters

within the same cell in time-lapse imaging experiments showed

that the expression cycles from distinct loci in a single cell were not

synchronized or temporally coordinated. The fact that the cycles

at individual loci in unstimulated single cells were uncorrelated

(and that this phenomenon occurred in both cell lines and post-

mitotic primary pituitary cells) suggested that the pulses in PRL

gene expression were independent of cell cycle stage. This is in

agreement with our previous study that suggested that variation in

Figure 1. Heterogeneous transcription cycles in single living cells. Luminescence signal from (A and B) the rat pituitary GH3 cell line stably
transfected with a luciferase reporter gene under the control of the hPRL 5,000 bp exon 1b promoter (GH3-DP1 cells), (C) GH3 cells stably expressing
luciferase under the control of a 160 kb hPRL genomic fragment (hPRL-Luc BAC), (D–F) primary cultures of pituitary cells from transgenic rats
expressing luciferase under the control of the hPRL-Luc BAC with (D and E) autosomal, and (F) X-linked transgene insertion sites. The colored lines
represent data from single cells, and the average population response is shown in each graph by a thick black line (B, n = 15 cells; C, n = 18 cells; E,
n = 22 cells; F, n = 20 cells). (G) Traces from individual transgenic primary cells over extended time periods. Numbers in each image series represent
time in hours. Bars in image series represent 50 mm. Different regions of the promoter-reporter genes are represented in the schematic diagram by
59- or 39-flanking regions (grey), luciferase reporter sequence (red), and hPRL exons 1a and 2–5 (yellow, not to scale).
doi:10.1371/journal.pbio.1000607.g001

Transcription Cycles in Single Living Cells
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hPRL-luciferase reporter expression was independent of cell cycle

in the GH3 cells (which have a cell cycle timing of approximately

40 h) [18]. Overall, these data therefore suggest that the

transcriptional pulses were not a reflection of the cellular status,

environment, or autocrine cell signaling but rather were due to an

intrinsic property of the transcription process itself.

Evidence of a Refractory Phase between Transcription
Cycles

In order to further understand and quantify the dynamics of

transcriptional switching between ‘‘on-’’ and ‘‘off-’’phases, we

developed a stochastic binary switch model of transcriptional

timing and used statistical algorithms to assess the distribution of

times of transcriptional switching between the on and off states

(Figure 5A, Text S1 Section 3). Transcription of the mRNA and

translation and activation of the corresponding protein were

modeled using a stochastic differential equation with binary on-off

transcription and were fitted to time-series imaging data using a

Markov Chain Monte Carlo (MCMC) algorithm (Figure 5A). This

produced relatively tight distributions on the levels and the timing

of transcription in the on and off periods (Text S1 Section 3.4,

example in Figures S15–S17). This model was used to estimate the

average and distribution of the times of luciferase transcriptional

switching in the GH3-DP1 stable cell line and gave a dominant

overall cycle period of 11.063.3 h (Figure 5B), which was in close

agreement with the independent autocorrelation analysis de-

scribed above (11.3 h; Figure 3B). Furthermore, we estimated that

there was an average on-phase duration of 4.061 h (which was

slightly longer than the timing previously described for transcrip-

tional bursts in mammalian cells [24]). The average off-phase

duration was 6.562 h per transcription cycle. No relationship was

detected between the duration of the transcription on-phase and

the preceding or subsequent off-phase (Figure 5C and D).

There was strong evidence for a refractory period of approxi-

mately 3 h, in which cells cannot respond to a stimulus with a

further transcriptional pulse. For each cell studied, the mean length

of the off periods never fell below 3 h (Figure 5C and D). Thus, two

distinct types of mathematical analyses indicated a similar duration

for transcriptional cycles, and the stochastic binary switch model

further suggested that the transcriptional on- and off-phases were

independent, with each having defined average and minimum

durations that may account for the kinetics of these cycles.

The Role of Signaling and Chromatin in the
Transcriptional Cycles

The regulation of the transcriptional cycles from the hPRL

promoter was then investigated by exposing GH3-DP1 cells to (1)

combined forskolin and BayK-8644 (FBK) to activate both cAMP

and Ca2+ signaling (Figure S7, [25]), (2) Trichostatin A (TSA, a

histone deacetylase inhibitor), or (3) both treatments combined

(TSA+FBK) (Table S2). All three experimental treatments resulted

in an initial synchronization between the transcription profiles of the

Figure 2. Measurement of transcription from two reporter genes driven by identical promoters in the same single cell. (A)
Luminescence and fluorescence measurements from GH3 cells stably expressing both the hPRL-Luc and hPRL-d2EGFP reporter genes. Intensity of the
luminescence and fluorescence signal from single cells fails to correlate (data from 96 cells, four experiments are shown, depicted by different
symbols, r2 = 0.09). (B) A schematic diagram showing the conversion of transcription rate from hPRL-Luc and hPRL-d2EGFP reporter gene data. Images
from each reporter gene at a single time-point are shown, as are the model parameters required to convert luciferase and d2EGFP reporter protein
data into transcription rate.
doi:10.1371/journal.pbio.1000607.g002

Figure 3. Cycles of prolactin transcription from separate
reporter genes within a single cell. (A and B) Autocorrelation
analysis of the reconstructed transcription rate dynamics from the hPRL-
Luc and hPRL-d2EGFP reporter genes within the same single cells. (A)
GH3-DP1 cells (n = 20 cells) and (B) primary transgenic cells (n = 16 cells)
expressing the hPRL-Luc and hPRL-d2EGFP BAC genes.
doi:10.1371/journal.pbio.1000607.g003

Transcription Cycles in Single Living Cells
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two independent hPRL promoter-reporter transgenes: correlation

between the profiles of the dual reporters was initially very high

(close to 1), both between the two transgenes within individual cells

(Figure 6) and between different cells (Figure S13). This period of

high correlation lasted longer following TSA treatment (Figure 6C),

when compared to the very transient synchronizing effect of FBK

(Figure 6B), and was most prolonged with combined TSA+FBK

exposure (Figure 6D and Figure S13). Chromatin immunoprecip-

itation assays showed an increase in acetylated histone H3 DNA

binding at the hPRL promoter following all treatments, with the

highest level induced by TSA (Figure 7).

Analysis of gene expression kinetics from the hPRL-Luc reporter

gene in GH3-DP1 cells showed that the transcriptional cycles

persisted following FBK treatment. However, they were only seen

in less than 20% of cells treated with TSA (Figure 8A and B).

Analysis with the binary switch model showed that when the cells

were treated with FBK, the median time to activation was longer

and more variable than with TSA or TSA+FBK (Figure 8C). This

supports the hypothesis of a refractory period of transcription

inactivation in which chromatin remodeling may play an

important role. Treatment with TSA increased the duration of

the on-phase and the initial rate of transcription (Figure 8D and

E). Combined TSA+FBK treatment increased the transcription

rate during the on-phase following activation (Figure 8E), resulting

in a pronounced increase in maximum reporter gene expression

(Figure 8A). The response of cells to treatments that included TSA

was more rapid and coordinated, suggesting that histone

acetylation has a key role in the coordination of the temporal

kinetics of transcription. Transcription of the hPRL gene might

therefore require a long period of chromatin remodeling that is the

source of the observed refractory phase.

Cycles of Prolactin Transcription Are Enhanced by a Non-
Random Refractory Period in the Off-Phase

The rate at which mRNA is transcribed can be affected by

different molecular mechanisms, including binding and dissocia-

tion of transcription factors, spatial reorganization, and/or

chromatin remodeling. Previous studies [5,10,26] have considered

Figure 4. Uncorrelated cycles of gene expression from dual reporter genes in single cells. (A) Comparison of the dynamics of hPRL-Luc and
hPRL-d2EGFP in four representative single cells. Top panels show luminescence and fluorescence images for each cell, and graphs show the dynamics of
the two reporter genes from the same single cell over time (left-hand graphs, reporter-gene profiles; right-hand graphs, reconstructed transcription
rates). (B) Lack of correlation over time between the transcription rates for two identical hPRL promoters in unstimulated conditions in two independent
single cell clones (GH3-DP1, n = 83 cells; GH3-DP2, n = 36 cells) and primary transgenic pituitary cells (primary, n = 22 cells). The sequence of boxplots
against time (T, x-axis) shows the distribution of the correlation coefficients between the timing of transcription from the two reporter genes over the
cells within each pooled group (over rising increments from 1.5 h to 8 h). The red lines indicate median and the dotted blue lines show the 95%
confidence interval for the median. If the zero line occurs within dotted lines, then the median is not significantly different from zero.
doi:10.1371/journal.pbio.1000607.g004

Transcription Cycles in Single Living Cells
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a model in which the fluctuations of transcription rates are caused

by overall dynamics that can be described by a ‘‘random telegraph

process,’’ where the gene switches between an active and an

inactive state:

inactive
kz

k{
active:

The mean residence times for the active and inactive states are

tactive = 1/k2 and tinactive = 1/k+ and switch on- and off-times are

drawn from an exponential distribution with means tactive and

tinactive. For the on-times our results fit this hypothesis and the

estimated distribution of on-times is exponential (Figure 9A). Such

a system would be memoryless in that the time already spent

waiting in that state would not affect how much longer one would

have to wait until the switch (Text S1 Section 3.5). The

distribution of off-times in our data strongly contradicted this

and was not distributed exponentially. This is shown in Figure 9B

in which the exponential distribution (black line) is a poor fit of the

data. We found that the system had a definite memory, where the

length of time already spent in the inactive state affected the length

of time remaining in that state (Figure 9C). Thus the dynamics of

these transcription cycles are not compatible with the mathemat-

ical models previously derived from analysis of single cell RNA

counting [10].

An MCMC algorithm was applied which gave a distribution of

estimates for the off-phase durations for single cells. When these

estimates were amalgamated into a population distribution, the

most likely off duration was at 3 h (Figure 9B), which is consistent

with the individual estimates in Figure 5. Thus, the most likely

explanation of the memory effect was the existence of a refractory

period of approximately 3 h (Figure 5C and D). If this refractory

period is enforced, by removing any chance of an off duration of

less than 3 h, then the excess off durations were distributed

approximately exponentially (Figure 9E). This refractory period

means that the system still has a memory (Figure 9F). Removing

the refractory period (Figure 9H) meant that the system became

memoryless (Figure 9I).

One effect of this memory or refractory period is to cause more

cyclicity than would be seen in a telegraph process. In a system

with a 3 h refractory period where the excess off-time is

exponentially distributed (Figure 9E), a higher proportion of the

off-times would be just over 3 h and the system would appear

more cyclic. To quantify the regularity of the transcription cycles,

we simulated 1,000 cells with on and off durations drawn from the

corresponding distributions. We then performed autocorrelation

analysis on this simulated data set and the variance in the timing of

the first peak was taken to be our measure of cyclicity. The

variance in first peak timing was higher when there was no

refractory period (Figure 9D and J) than when a refractory period

was enforced (Figure 9G). This analysis revealed that the presence

of a defined refractory phase increases the regularity of the

transcription cycles.

Discussion

Physiologically important hormones such as PRL may be

subject to both acute short-term regulation and long-term seasonal

control. This could be achieved at the individual cell level by

graded gene expression with feedback control of PRL expression.

Such a model would suggest that each cell would express similar

levels of PRL. Alternatively individual cells could dynamically

switch between on- and off-phases producing a stable population

average level of prolactin expression across the whole tissue.

Figure 5. A binary model of transcription reveals transcription burst dynamics. (A) Transcription ‘‘on’’ and ‘‘off’’ times were estimated using
a stochastic binary (switch) model from hPRL-Luc reporter gene data from GH3-DP1 cells. (B) Estimates of transcription on duration, transcription off
duration, and cycle period (on to on) were calculated for each cell (n = 35 cells) and the results given as boxplots. The red line indicates the median of
the estimates, the blue box contains values lying between the lower quartile (shortest 25%) and upper quartile (longest 25%) of the estimates, and
the black lines show the range of duration estimates up to the adjacent values. Outliers are shown as red crosses. (C) A scatter plot showing the
relationship between the on duration and subsequent off durations within a single cell, and (D) vice versa. The minimum off period is indicated with a
dotted line in (C) and (D), and the median is displayed as a red cross.
doi:10.1371/journal.pbio.1000607.g005

Transcription Cycles in Single Living Cells
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Studies of PRL promoter activity in intact pituitary tissue showed

the whole tissue response was synchronized, although adjacent

cells were not coordinated [27].

We have previously shown that expression from the PRL

promoter is heterogeneous over time in individual cells from cell

lines [14] and more recently in intact pituitary tissue [27]. The

latter study suggested that isolated cells show greater heterogeneity

than cells in tissue but that tissue-level cellular heterogeneity is still

important. In a different study we recently described data that

suggested that cellular heterogeneity may be genetically encoded

by the timing of negative feedback loops in the NF-kB signaling

system and that this may lead to out-of-phase oscillations in NF-kB

signaling between cells [28]. This study raised the hypothesis that

cellular heterogeneity may in fact be advantageous, leading to

more robust tissue-level responses. (Studies in other systems are in

support of the idea that cellular variability is advantageous; e.g.

[29].) The present study quantifies the level of heterogeneity in the

dynamics of PRL gene expression in single cells. This heteroge-

neity may ensure stability in gene expression at the tissue level,

while ensuring the readiness of the tissue as a whole to respond

rapidly to signals.

These data suggest that the overall level of hPRL transcription in

pituitary tissue may be determined by three variables: (1) the

frequency of transcriptional bursts, (2) the duration of the on-phase,

and (3) the rate of transcription during the on-phase. Our studies

suggest that within a population of cells there is a continuous

transition from an activated ‘‘on’’ state to a basal ‘‘off’’ or ‘‘low’’

state, with an overall cycle of around 11 h. This cycle is longer than

previously described transcriptional cycles/pulses [10–12], with a

different structure due to the presence of a defined refractory period

of transcriptional inactivation. Because of the much longer time-

scales involved, the source of the stochasticity would not be expected

to derive directly from that due to random molecular processes

involving small molecule numbers. However, within this cycle, the

average transcriptional on-phase is ,4 h, which is closer to

previously defined transcriptional bursts and cycles [24]. The

majority of the overall cycle time described here is therefore

dominated by the off-phase. This could be due to a repressive

chromatin state or alternatively could be regulated by chromosome

topology with the timing dependent on the movement of the genes

into and out of transcription factories [30–32].

Although the transcription cycle maintains relatively defined

dynamics, the timing of transcription cycles from two independent

promoters within a cell were heterogeneous, indicative of a system

where intrinsic noise generated by local chromatin dynamics

dominates extrinsic noise. Strong correlation between promoters

could only be achieved following disruption of chromatin,

suggesting that the cycles of hPRL transcription might involve

epigenetic cycles of histone acetylation and deacetylation (Figure 10).

Thus, an independent chromatin-regulated cycle of gene activity

may occur at each locus. Cycles in the binding of transcription

factors and polymerase at certain genes in the nucleus have been

Figure 6. The effect of stimulation on the correlation of
prolactin transcription cycles from different reporter genes.
The correlation between transcription rate profiles from the two
identical hPRL promoters in (A) unstimulated GH3-DP1 cells or following
stimulus with (B) FBK, (C) TSA, or (D) combined TSA+FBK. The sequence
of boxplots against time is shown (as in Figure 4B; unstimulated, n = 119
cells; FBK, n = 87 cells; TSA, n = 74 cells; TSA+FBK, n = 41 cells). Greater
correlation is observed between reporter genes following stimulation
with TSA+FBK.
doi:10.1371/journal.pbio.1000607.g006

Figure 7. Evidence of chromatin modification in the regulation
of prolactin transcription cycles. (A) Chromatin immunoprecipita-
tion analysis of acetylated histone H3 DNA binding at the hPRL
promoter in unstimulated conditions and following 2 h treatment with
FBK, TSA, or TSA+FBK. (B) Densitometric analysis from two independent
experiments with intensity normalized to unstimulated conditions
(mean6SD).
doi:10.1371/journal.pbio.1000607.g007
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observed following oestrogen stimulation [24,33,34]. In that system,

a refractory period also seems to occur [24,34], as well as cycles of

epigenetic chromatin modification [33].

The current study illustrates the importance of new integrated

experimental and mathematical approaches for dynamic single cell

analyses. Providing high-frequency time-lapse imaging data of the

same cells over long time periods enabled the identification of

dynamic transcription processes, phenomena which are invisible to

the single cell RNA counting snapshots used for previous analyses

of transcriptional bursting [35,36]. Biologically meaningful model

parameters can be directly measured from the imaging data

without requiring prior assumptions about the nature of the

timings inherent in the system. As such, models fitted to these data

accurately represent the underlying processes that lead to the time-

course data.

The data described in this study and by others [37] suggest that

transcription cycles might emerge de novo from the intrinsic

kinetics of the processes of transcription initiation, elongation, and

termination. In our study we find that a transcriptional refractory

period can have a dominant effect that leads to increased

regularity in the timing of transcriptional cycles. This is in marked

contrast with other cellular oscillatory systems such as NF-kB

[38,39], p53 [40], Erk2 [41], and the circadian clock [42] where

negative feedback loops are believed to lead to the oscillatory

dynamics with varying frequencies [43]. In particular in the NF-

kB system, where a transcriptional delay (refractory period) of

45 min in IkBe activation following TNFa stimulation leads to

cell-to-cell heterogeneity through the precise timing of this

feedback loop [38]. This transcriptional delay is precisely timed

to maximize the effect of IkBe transcriptional noise on ensuring

out-of-phase oscillations [28].

A key question is whether the signals that activate hPRL in vivo

are themselves graded or pulsatile. hPRL is itself under the control

of NF-kB [44], which responds dynamically to pulsatile cytokine

stimulation [38]. Recently, glucocorticoid receptor, which also

regulates hPRL expression [44], has also been shown to cycle in

response to pulsatile stimulation [45]. Although the secreted

hormone PRL is stored in secretory granules and displays both

pulsatile and circadian patterns, is it not yet clear how

transcription relates to secretory events in individual cells.

This system may be a new paradigm for understanding gene

expression dynamics in vivo and may be important for

understanding natural cell-to-cell variation in protein levels

[46,47]. We have previously shown that gene promoter activity

in lactotroph cells within pituitary tissue is non-uniform, with

varying expression levels from adjacent cells [27]. However, these

stochastic patterns together provide tissue-wide long-term coor-

dinated behavior. If we include the new information gained in

this present article we can start to build up a picture of a mosaic

tissue structure, where, at any one time, a subset of cells are

expressing PRL, a subset are in an inactive and refractory state,

and a further subset are in an activatable state, ready to respond

to a stimulus. A transient hormonal stimulus to the tissue would

recruit this last subset of cells immediately, whereas sustained

stimulus would progressively recruit additional cells exiting the

refractory phase, resulting in a more sustained increase in PRL

Figure 8. Kinetics of prolactin transcription bursts. (A) The colored lines show luminescence data from the hPRL-Luc reporter gene in single
representative GH3-DP1 cells in unstimulated, FBK, TSA, or TSA+FBK conditions. The thick black line in each graph shows the average from one
experiment (unstimulated, n = 15 cells; FBK, n = 40 cells; TSA, n = 21 cells; TSA+FBK, n = 27 cells). (B) The effect of the treatments in (A) on the
persistence of oscillations within a 30 h period. The binary model was used to quantify (C) the time to first on-phase, (D) duration of active on-phase,
and (E) initial rate of transcription following the first activation after FBK, TSA, or TSA+FBK treatments.
doi:10.1371/journal.pbio.1000607.g008
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expression. If these stochastic and cyclical patterns of gene

expression occur normally in intact tissue, such a mechanism

would facilitate highly flexible transcriptional responses, allowing

tissues to mount either acute or chronic responses to environ-

mental cues, while maintaining a controlled average level of gene

expression in the resting state.

Figure 9. Non-random timing of off-phases increases the cyclicity of transcriptional cycles. Histograms showing the distribution of (A)
on-times, (B) off-times, (E) off-times greater than 3 h with the refractory period, and (H) off-times greater than 3 h without the refractory period,
estimated from the Markov Chain Monte Carlo algorithm (Text S1 Section 3.4). The superimposed black lines show the fit of an exponential
distribution with the same mean value as the data. (C, F, and I) The off-phases in the system are not memoryless. The probability of having to wait for
t hours in the off state given that the off-time has already lasted for s hours is plotted for a range of values of t for the distributions in (B, E, and H),
respectively. The dashed lines represent the exponential probabilities, and the solid lines are the sample probability estimates. The uppermost lines
are calculated when t = 0, the lines beneath that are calculated for t = 0.5, and so on in increments of 0.5. In a memoryless system such as that
described by the telegraph process this is independent of s (hence s is constant for a given value of t), but for our system this probability decreases
significantly with s during the refractory period (F). The decrease of this probability for higher values of s is due to the finite length of our time-series.
(D, G, and J) Autocorrelation functions for a number of mRNA time-series simulated using on and off durations selected at random from the
distributions above (B, E, and H, respectively). The variance of the time of the first peak (which estimates period) is given in each plot. In (E) the
refractory period is indicated by RF.
doi:10.1371/journal.pbio.1000607.g009
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Materials and Methods

Materials
All animals were handled in strict accordance with U.K. Home

Office License regulations and subject to local ethical committee

review.

Fetal calf serum (FCS) was from Harlan Sera-Lab, Crawley

Down, U.K. Luciferin was from Bio-Synth, Switzerland. For-

skolin, BayK-8644, and Trichostatin A were all from Sigma, U.K.

Production of Stable Cell Lines and Cell Culture
The GH3-DP stable cell lines were generated by incorporating

a 5 kb hPRL-d2EGFP reporter gene into the previously described

GH3/hPRL-Luc cell line [14]. This was co-transfected with a

hygromycin-selectable plasmid to enable antibiotic clonal selec-

tion. Generation of stable BAC-transfected rat pituitary GH3 cells

containing the 160 kb hPRL-Luc gene was described previously

[16]. GH3-DP1 cells, GH3-BAC cells, and collagenase type I

dispersed primary pituitary cells were cultured in DMEM

containing 10% FCS and maintained at 37uC 5% CO2.

Generation of Dual Reporter Transgenic Primary Rat
Pituitary Cells

Generation of BAC-transgenic rats expressing luciferase and

d2EGFP under the control of identical hPRL 160 kb genomic

fragments was described previously [16]. Transgenic line 37 was a

luciferase-BAC transgenic rat line which was found to have two

single reporter insertion sites. Further breeding of this line was

undertaken to create two separate transgenic lines each with single

integration sites. Line 37A had a single autosomal integration site,

Figure 10. Generation of transcription cycles. The schematic diagram proposes a mechanistic model whereby chromatin remodeling processes
generate the binary on and off stochastic cycles of transcription. x and y denote phases of variable duration.
doi:10.1371/journal.pbio.1000607.g010
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and line 37B an X-chromosomal integration site. (These lines were

the source of the pituitary cells used in Figure 1.) Independently, a

destabilized EGFP reporter transgenic rat line was constructed,

termed line 455, which also had a single insertion site. The copy

number of the luciferase-BAC transgene in line 37A was measured

as #2 and that of the d2EGFP line 455 was #5. In order to

generate the dual reporter rat cell line (previously referred to as

PRL-Luc/d2eGFP in [16]), line 37A was crossed with line 455.

Luminescence Imaging
GH3-DP1 cells were seeded in 35 mm glass coverslip-based

dishes (IWAKI, Japan) 20 h prior to imaging. Luciferin (1 mM)

was added at least 10 h before the start of the experiment, and the

cells were transferred to the stage of a Zeiss Axiovert 200 equipped

with an XL incubator (maintained at 37uC, 5% CO2, in humid

conditions, carefully monitored to ensure equivalent conditions to

a standard cell incubator) maintained within a dark room.

Luminescence images were obtained using a Fluar 620, 0.75

NA (Zeiss) air objective and captured using a photon-counting

charge coupled device camera (Orca II ER, Hamamatsu

Photonics, U.K.). Bright field images were taken before and after

luminescence imaging to allow localization of cells. Sequential

images, integrated over 30 min, were taken using 4 by 4 binning

and acquired using Kinetic Imaging software AQM6 (Andor,

Belfast, U.K.). In the relevant experiments, 5 mM forskolin and

0.5 mM BayK-8644 (FBK), 30 ng/ml TSA, or both stimuli were

added directly to the dish at the indicated times.

Fluorescence Imaging
Cells were prepared and imaged using the conditions and

microscope described above. Excitation of d2EGFP was per-

formed using an argon ion laser at 488 nm. Emitted light was

captured through a 505–550 nm bandpass filter from a 545 nm

dichroic mirror. Data were captured and analyzed using LSM510

software with consecutive autofocus.

Alternate Longitudinal Imaging of Fluorescence and
Luminescence

Cells were prepared and visualized using confocal microscopy as

described above. A single field of cells was selected and five

sequential fluorescence images were captured using autofocus.

After a 10 min delay, the microscope and surrounding light-

emitting devices were turned off or covered and a single

luminescence image was captured using a cooled CCD camera

(30 min integration). The equipment was then restarted (taking

5 min), and after a 10 min delay (to ensure laser stability),

fluorescence images were taken. This hourly cycle was repeated for

up to 21 h.

ChIP Assays and RT-PCR
GH3/hPRL-luc (D44) cells (36106) were plated in 10 cm2

dishes and left for 40 h. Dishes were treated for 2 h (unstimulated,

FBK, TSA, TSA+FBK) and then ChIP assays were performed as

described previously [38] based on the protocol by Upstate

Biotechnology.

Immunoprecipitation was carried out using 5 mg of either Anti-

Acetylated H3 or Anti-IgG antibodies (Upstate Biotechnology).

DNA was extracted and amplified by PCR as described previously

[38]. The following primer sequences were used: hPRL Promoter1

left GCAATCTTGAGGAAGAAACTTGA, right AGGCAT-

TCGTTTCCCTTTTC amplifying 347 bp of DNA. PCR

products were resolved using agarose gel electrophoresis and were

analyzed by AQM Advance 6.0 software (Kinetic Imaging, U.K.).

Analysis of Imaging Data
Analysis was carried out using Kinetic Imaging AQM6 software

(Andor). Regions of interest were drawn around each single cell,

and mean intensity data were collected. Data were collected from

every single cell within the field. The average instrument dark

count (corrected for the number of pixels being used) was

subtracted from the luminescence signal. In dual reporter

experiments, cells dividing within the experiment were eliminated

from the analysis. For single reporter experiments, analysis ceased

at the point of cell division. For the GH3 cell line, the cell cycle

time is approximately 40 h [14,18].

Inference of Transcription Models
We use the following ordinary differential equations model for

the reconstruction of transcription profiles from protein data (see

also [23], Text S1 Section 3.2).

dM=dt~t(t){dMM(t),

dP=dt~aM(t){dPP(t),

where M and P denote concentration of reporter mRNA and

protein, respectively. The first equation describes the dynamics of

mRNA molecules with transcription function t(t) and degradation

rate dM. Protein is synthesized at a rate proportional to the

abundance of mRNA and is degraded at rate dP. The various

parameters will be different for the d2EGFP and Luc reporters.

The transcription profile can be reconstructed via

a t tð Þ~a dM(t)=dtzdMaM tð Þ,

where the unobserved mRNA profile is expressed as a function of

the observed solution path of P(t), i.e. aM(t) = dP/dt+dPP(t). Since

M is not observed, prior knowledge of the rates dM and dP is

necessary for the identification of the transcription profiles. We

estimated these from two separate experiments where translation

of reporter protein was inhibited by adding cycloheximide and

transcription was inhibited by adding Actinomycin D (see Text S1

Sections 1 and 3.2.2). The rates estimated for dM and dP associated

with d2EGFP and Luc are treated as known parameters. For

inference on the transcription profile, the solution path P(t) is

approximated by a flexible continuous function, here a spline

representation, fitted to the observed protein data (Text S1 Section

3.2.3). The transcription profile is then reconstructed using the

discrete Euler approximation to the differential equations for a

small time interval, replacing P(t) by the fitted continuous function.

In order to study the correlation in transcription of the dual

reporter constructs within a cell, we compute the rank correlation

coefficient between the two reconstructed transcription profiles of

the two reporters d2EGFP and Luc within a cell (Text S1 Section

3.3). As this may vary over time (in particular for stimulated

experiments), all correlations are computed as a function of the

length of time since a stimulus (TSA, FBK) was added starting

from 1.5 h (to allow for a reasonable minimal length over which

any correlation is computed) to 8 h. For unstimulated experiments

we computed correlations after 2 h into the experiment to avoid

any initial bias. The question of estimating and including protein

maturation times is addressed in [48]. In calculating the

correlations, the relevant quantity is the difference in maturation

times between the two reporters. We have therefore included this

process with a constant difference of up to 1 h. We have verified

that such delays do not change our correlation results. It is clear
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from this that if we instead assumed an exponentially distributed

delay with a similar difference in means, then this would not affect

the correlation results.

Supporting Information

Figure S1 Prolactin promoter activity is pulsatile. Prolactin

promoter activity was assessed in pituitary GH3 cells stably

transfected with 5 kbp PRL promoter-luciferase reporter protein

(GH3-DP1 cells; A, B) and GH3 cells containing a 160 kbp PRL

BAC-luc construct (C). Each line represents a single cell where the

first peak of each cell is aligned to time zero. Peak frequency (cycle

length) and signal intensity are compared between the two cell

lines and primary cell cultures from PRL-BAC-luc transgenic rats

(D). Bars show standard deviation from at least 42 cells in three

experiments per cell type. Colored regions on schematic promoter-

reporter constructs represent 59- or 39-flanking regions (grey),

luciferase reporter sequence (red), and hPRL exons 1a and 2–5

(yellow, not to scale).

Found at: doi:10.1371/journal.pbio.1000607.s001 (0.24 MB PDF)

Figure S2 Transgene copy number in a dual reporter stable cell

line. (A) Stable GH3 cell line expressing luciferase and d2EGFP

reporters both under the control of the 5 kbp human prolactin

promoter (GH3-DP). The copy number of each reporter was

quantified using absolute quantification real-time PCR. Standard

curves of known plasmid concentrations were generated for 5 kb

PRL-luc (B) and 5 kb PRL-d2EGFP (C). Sequences of luciferase

and d2EGFP were amplified from genomic DNA extracted from a

known quantity of GH3-DP cells and copy number was

determined by comparison to plasmid standards (dotted lines on

graphs represent ct value from 5,000 cells).

Found at: doi:10.1371/journal.pbio.1000607.s002 (0.13 MB PDF)

Figure S3 Detection of single cell gene expression in GH3-DP1

cells, using the PRL-d2EGFP reporter construct. Possible hypo-

thetical models of binary or graded transcriptional response are

shown in green (upper panels), and experimental data are shown

in the bottom panel. Flow cytometry indicated that the combined

stimulus of FBK (5 mM forskolin and 0.5 mM BayK-8644)

significantly increased the expression of PRL-d2EGFP. A biphasic

population was detected under control conditions. Stimulation

induced a significant increase in EGFP transcription, with

increasing proportions of cells displaying high signal, and the bi-

modality of the population persisted over at least 12 h.

Found at: doi:10.1371/journal.pbio.1000607.s003 (0.09 MB PDF)

Figure S4 Two fields of cells from separate experiments showing

transmitted light images (left panels), fluorescence images (middle

panels), and luminescence images (right panels) from GH3-DP1

cells. Regions of interest show single cells used for analysis. No

correlation was detected between the signal intensity of the two

reporters in single cells, as indicated by scatter plots where each

dot represents a single cell.

Found at: doi:10.1371/journal.pbio.1000607.s004 (0.66 MB PDF)

Figure S5 Time line outlining the process of capturing

sequential fluorescence and luminescence images from the same

single cells. Numbers represent time in minutes.

Found at: doi:10.1371/journal.pbio.1000607.s005 (0.07 MB PDF)

Figure S6 Example plots from 17 single cells showing fluores-

cence (green) and luminescence (red) hPRL promoter-driven

reporter construct data in unstimulated conditions over 21 h.

Bottom right-hand graph shows the average fluorescence and

luminescence traces from a field of cells.

Found at: doi:10.1371/journal.pbio.1000607.s006 (0.20 MB PDF)

Figure S7 The effect of various stimuli and combinations of

stimuli on expression of PRL were assessed using luminometry. (A,

B) 10 ng/ml TNFa, 5 mM forskolin (FSK), and 0.5 mM BayK-

8644 (BayK) were used. (C) The effect of TSA (30 ng/ml) and

TSA in combination with 5 mM FSK and 0.5 mM BayK (FBK).

Found at: doi:10.1371/journal.pbio.1000607.s007 (0.16 MB PDF)

Figure S8 Sample ACFs of protein time series from Luc reporter

constructs. Time series as in Figure 1 (B,C,E,F) of the main text.

The x-axis gives the delay $s$ in hours. Each single sample ACF

corresponds to the time profile observed for a single cell. Top left:

Sample ACFs of time series displayed in Figure 1B of the main text

(DP1, results for 15 cells, 25 hourly observations). Top right:

Sample ACFs of time series displayed in Figure 1C of the main

text (BAC, results for 17 cells, 95 half-hourly observations). Bottom

left: Sample ACFs of time series displayed in Figure 1E of the main

text (37 B, results for 24 cells, 185 half-hourly observations).

Bottom right: Sample ACFs of time series displayed in Figure 1F of

the main text (37 A, results for 20 cells, 95 half-hourly

observations). The two bottom experiments have many cells

showing longer oscillations around 25–35 h. In the experiment

displayed in the bottom left graph one can see that 3 out of the 24

cells behave like a white noise process.

Found at: doi:10.1371/journal.pbio.1000607.s008 (2.38 MB PDF)

Figure S9 Sample ACFs of reconstructed transcription profiles

from Luc (left) and d2EGFP (right) reporter constructs. The

reconstruction profiles were computed using a spline approach

(described below) on a fine grid of 0.1 h using the estimated

posterior mean of the spline coefficients. (a) Dual experiment C1-

unstim2 (21 cells, 14 h). (b) Dual experiment C1-unstim1 (29 cells,

15 h). (c) Dual experiment C2-unstim1 (21 cells, 15 h). (d) Dual

experiment C2-unstim2 (15 cells, 14 h). (e) Dual experiment C1-

unstim4 (20 cells, 21 h). See Table S2 for a list of dual

experiments.

Found at: doi:10.1371/journal.pbio.1000607.s009 (4.19 MB PDF)

Figure S10 This figure shows the fit of the differential equations

to the degradation data for Luc (left) and d2EGFP (right). The

bottom panel shows the fit of Equation 5 to average protein data

from experiments (A). The top panel shows average reconstructed

mRNA profiles from protein data experiments (B) and the fit of

equation (5) to the reconstructed mRNA profiles.

Found at: doi:10.1371/journal.pbio.1000607.s010 (0.21 MB PDF)

Figure S11 Reconstruction of transcription profile from protein

data (green, d2EGFP; red, Luc) for four randomly selected cells.

The y-axis is in arbitrary units. The results for each cell are shown

in a panel of three plots. Left, reconstructed transcription profile;

middle, reconstructed mRNA profile; right, observed protein data

(dots) together with the spline fit to the protein data.

Found at: doi:10.1371/journal.pbio.1000607.s011 (0.30 MB PDF)

Figure S12 Correlation plot for pooled groups: DP1 (83 cells, 3

top left panels), DP2 (36 cells, 3 top right panels), and primary (22

cells, 3 bottom panels). Each set of three panels as follows. Top

panel, correlation (a) between reconstructed transcription of Luc

and d2EGFP reporter; middle panel, correlation of reconstructed

transcription of Luc reporter between cells within the same

experiment (b); bottom panel, correlation of reconstructed

transcription of d2EGFP reporter between cells within the same

experiment (c). x-axis, time length over which correlation is

computed; y-axis, (rank) correlation coefficient. For given time

length each boxplot summarizes the distribution of the estimated

correlation over the population of cells in the group by the

estimated 0.025, 0.25, 0.5, 0.75, and 0.975 quantiles. The solid

line gives the estimated median of each boxplot, and the dashed
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lines give the 95% interval for the median (points are only

connected between boxplots for purpose of illustrating the trend).

All top panels giving the correlation between reporter constructs

are presented in the main text (confidence intervals differ slightly

as they are estimated from another set of B = 4,000 bootstrap

samples).

Found at: doi:10.1371/journal.pbio.1000607.s012 (0.09 MB PDF)

Figure S13 Correlation plot for pooled groups: unstim (119

cells, three top left panels), FBK (87 cells, three top right panels),

TSA (74 cells, three bottom left panels), and TSA+FBK (41 cells,

three bottom right panels). All other explanations as in Figure S12.

Found at: doi:10.1371/journal.pbio.1000607.s013 (0.11 MB PDF)

Figure S14 Correlation analysis for time-shifted GFP to allow

for the difference d in maturation time between GFP and

Luciferase. Left, d = 0.5 h. Right, d = 1 h. Row 1, TSA+FBK.

Row 2, TSA. Row 3, FBK. Row 4, Unstimulated. All other

explanations as in Figure S12.

Found at: doi:10.1371/journal.pbio.1000607.s014 (0.05 MB PDF)

Figure S15 The distribution of off-times without weak switches

removed.

Found at: doi:10.1371/journal.pbio.1000607.s015 (0.03 MB PDF)

Figure S16 Estimated distributions of the switch times (in hours).

In this case, the cell in question was determined to have three

switches, and each color corresponds to the estimates for an

individual switch time.

Found at: doi:10.1371/journal.pbio.1000607.s016 (0.04 MB PDF)

Figure S17 The estimated distributions of t1, t0, and sP.

Found at: doi:10.1371/journal.pbio.1000607.s017 (0.84 MB PDF)

Table S1 Results of degradation rate estimation. Estimated dP

and dM (posterior standard errors in brackets) for Luc (left) and

d2EGFP (right). All rates are per hour. If data were used for more

than one experiment, the average estimate is used (stated in bold)

for the subsequent reconstruction of transcription and for fitting

the switch model.

Found at: doi:10.1371/journal.pbio.1000607.s018 (0.06 MB PDF)

Table S2 List of dual reporter experiments. For the correlation

analysis, data from unstimulated experiments were pooled

according to cell type into DP1, DP2, and primary. Data were

also pooled according to stimulus into unstim, FBK, TSA, and

TSA+FBK. Column 4 gives time of stimulation for stimulated

experiments. Column 5 gives number of cells per experiment used

for analysis after discarding cells with very low amplitude (number

before discarding in brackets). The final column gives number of

data points measured at hourly intervals. Data for the two

reporters are not taken at identical time points, but this is

corrected for in the analysis.

Found at: doi:10.1371/journal.pbio.1000607.s019 (0.03 MB PDF)

Text S1 Description of experimental and theoretical methodology.

Found at: doi:10.1371/journal.pbio.1000607.s020 (0.25 MB PDF)
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