866 research outputs found

    Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin

    Get PDF
    Multi-dimensional quantum walks usually require large coin spaces. Here we show that the non-localized case of the spatial density probability of the two-dimensional Grover walk can be obtained using only a two-dimensional coin space and a quantum walk in alternate directions. We present a formal proof of this correspondence and analyze the behavior of the coin-position entanglement as well as the x-y spatial entanglement in our scheme with respect to the Grover one. We show that our experimentally simpler scheme allows to entangle the two orthogonal directions of the walk more efficiently.Comment: 5 pages, 2 figures, RevTeX

    Fractal Markets Hypothesis and the Global Financial Crisis: Scaling, Investment Horizons and Liquidity

    Full text link
    We investigate whether fractal markets hypothesis and its focus on liquidity and invest- ment horizons give reasonable predictions about dynamics of the financial markets during the turbulences such as the Global Financial Crisis of late 2000s. Compared to the mainstream efficient markets hypothesis, fractal markets hypothesis considers financial markets as com- plex systems consisting of many heterogenous agents, which are distinguishable mainly with respect to their investment horizon. In the paper, several novel measures of trading activity at different investment horizons are introduced through scaling of variance of the underlying processes. On the three most liquid US indices - DJI, NASDAQ and S&P500 - we show that predictions of fractal markets hypothesis actually fit the observed behavior quite well.Comment: 11 pages, 3 figure

    Fractal Profit Landscape of the Stock Market

    Get PDF
    We investigate the structure of the profit landscape obtained from the most basic, fluctuation based, trading strategy applied for the daily stock price data. The strategy is parameterized by only two variables, p and q. Stocks are sold and bought if the log return is bigger than p and less than -q, respectively. Repetition of this simple strategy for a long time gives the profit defined in the underlying two-dimensional parameter space of p and q. It is revealed that the local maxima in the profit landscape are spread in the form of a fractal structure. The fractal structure implies that successful strategies are not localized to any region of the profit landscape and are neither spaced evenly throughout the profit landscape, which makes the optimization notoriously hard and hypersensitive for partial or limited information. The concrete implication of this property is demonstrated by showing that optimization of one stock for future values or other stocks renders worse profit than a strategy that ignores fluctuations, i.e., a long-term buy-and-hold strategy.Comment: 12 pages, 4 figure

    Predictability of large future changes in a competitive evolving population

    Full text link
    The dynamical evolution of many economic, sociological, biological and physical systems tends to be dominated by a relatively small number of unexpected, large changes (`extreme events'). We study the large, internal changes produced in a generic multi-agent population competing for a limited resource, and find that the level of predictability actually increases prior to a large change. These large changes hence arise as a predictable consequence of information encoded in the system's global state.Comment: 10 pages, 3 figure

    Evaluating Greek equity funds using data envelopment analysis

    Get PDF
    This study assesses the relative performance of Greek equity funds employing a non-parametric method, specifically Data Envelopment Analysis (DEA). Using an original sample of cost and operational attributes we explore the e¤ect of each variable on funds' operational efficiency for an oligopolistic and bank-dominated fund industry. Our results have significant implications for the investors' fund selection process since we are able to identify potential sources of inefficiencies for the funds. The most striking result is that the percentage of assets under management affects performance negatively, a conclusion which may be related to the structure of the domestic stock market. Furthermore, we provide evidence against the notion of funds' mean-variance efficiency

    New procedures for testing whether stock price processes are martingales

    Full text link
    We propose procedures for testing whether stock price processes are martingales based on limit order type betting strategies. We first show that the null hypothesis of martingale property of a stock price process can be tested based on the capital process of a betting strategy. In particular with high frequency Markov type strategies we find that martingale null hypotheses are rejected for many stock price processes

    Cross-Sectional Dispersion and Expected Returns

    Get PDF
    This study investigates whether the cross-sectional dispersion of stock returns, which reflects the aggregate level of idiosyncratic risk in the market,represents a priced state variable. We find that stocks with high sensitivities to dispersion offer low expected returns. Furthermore, a zero-cost spread portfolio that is long (short) in stocks with low (high) dispersion betas produces a statistically and economically significant return, after accounting for its exposure to other systematic risk factors. Dispersion is associated with a significantly negative risk premium in the cross-section (-1.32% per annum) which is distinct from premia commanded by a set of alternative systematic factors. These results are robust to a wide set of stock characteristics, market conditions, and industry groupings

    The Effects of Twitter Sentiment on Stock Price Returns

    Get PDF
    Social media are increasingly reflecting and influencing behavior of other complex systems. In this paper we investigate the relations between a well-know micro-blogging platform Twitter and financial markets. In particular, we consider, in a period of 15 months, the Twitter volume and sentiment about the 30 stock companies that form the Dow Jones Industrial Average (DJIA) index. We find a relatively low Pearson correlation and Granger causality between the corresponding time series over the entire time period. However, we find a significant dependence between the Twitter sentiment and abnormal returns during the peaks of Twitter volume. This is valid not only for the expected Twitter volume peaks (e.g., quarterly announcements), but also for peaks corresponding to less obvious events. We formalize the procedure by adapting the well-known "event study" from economics and finance to the analysis of Twitter data. The procedure allows to automatically identify events as Twitter volume peaks, to compute the prevailing sentiment (positive or negative) expressed in tweets at these peaks, and finally to apply the "event study" methodology to relate them to stock returns. We show that sentiment polarity of Twitter peaks implies the direction of cumulative abnormal returns. The amount of cumulative abnormal returns is relatively low (about 1-2%), but the dependence is statistically significant for several days after the events

    Strategies used as spectroscopy of financial markets reveal new stylized facts

    Get PDF
    We propose a new set of stylized facts quantifying the structure of financial markets. The key idea is to study the combined structure of both investment strategies and prices in order to open a qualitatively new level of understanding of financial and economic markets. We study the detailed order flow on the Shenzhen Stock Exchange of China for the whole year of 2003. This enormous dataset allows us to compare (i) a closed national market (A-shares) with an international market (B-shares), (ii) individuals and institutions and (iii) real investors to random strategies with respect to timing that share otherwise all other characteristics. We find that more trading results in smaller net return due to trading frictions. We unveiled quantitative power laws with non-trivial exponents, that quantify the deterioration of performance with frequency and with holding period of the strategies used by investors. Random strategies are found to perform much better than real ones, both for winners and losers. Surprising large arbitrage opportunities exist, especially when using zero-intelligence strategies. This is a diagnostic of possible inefficiencies of these financial markets.Comment: 13 pages including 5 figures and 1 tabl

    Improving trading saystems using the RSI financial indicator and neural networks.

    Get PDF
    Proceedings of: 11th International Workshop on Knowledge Management and Acquisition for Smart Systems and Services (PKAW 2010), 20 August-3 September 2010, Daegu (Korea)Trading and Stock Behavioral Analysis Systems require efficient Artificial Intelligence techniques for analyzing Large Financial Datasets (LFD) and have become in the current economic landscape a significant challenge for multi-disciplinary research. Particularly, Trading-oriented Decision Support Systems based on the Chartist or Technical Analysis Relative Strength Indicator (RSI) have been published and used worldwide. However, its combination with Neural Networks as a branch of computational intelligence which can outperform previous results remain a relevant approach which has not deserved enough attention. In this paper, we present the Chartist Analysis Platform for Trading (CAST, in short) platform, a proof-of-concept architecture and implementation of a Trading Decision Support System based on the RSI and Feed-Forward Neural Networks (FFNN). CAST provides a set of relatively more accurate financial decisions yielded by the combination of Artificial Intelligence techniques to the RSI calculation and a more precise and improved upshot obtained from feed-forward algorithms application to stock value datasets.This work is supported by the Spanish Ministry of Industry, Tourism, and Commerce under the EUREKA project SITIO (TSI-020400-2009-148), SONAR2 (TSI-020100-2008-665 and GO2 (TSI-020400-2009-127). Furthermore, this work is supported by the General Council of Superior Technological Education of Mexico (DGEST). Additionally, this work is sponsored by the National Council of Science and Technology (CONACYT) and the Public Education Secretary (SEP) through PROMEP.Publicad
    corecore