We investigate the structure of the profit landscape obtained from the most
basic, fluctuation based, trading strategy applied for the daily stock price
data. The strategy is parameterized by only two variables, p and q. Stocks are
sold and bought if the log return is bigger than p and less than -q,
respectively. Repetition of this simple strategy for a long time gives the
profit defined in the underlying two-dimensional parameter space of p and q. It
is revealed that the local maxima in the profit landscape are spread in the
form of a fractal structure. The fractal structure implies that successful
strategies are not localized to any region of the profit landscape and are
neither spaced evenly throughout the profit landscape, which makes the
optimization notoriously hard and hypersensitive for partial or limited
information. The concrete implication of this property is demonstrated by
showing that optimization of one stock for future values or other stocks
renders worse profit than a strategy that ignores fluctuations, i.e., a
long-term buy-and-hold strategy.Comment: 12 pages, 4 figure