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Cross-Sectional Dispersion and Expected Returns

Thanos Verousisa and Nikolaos Voukelatosb∗

a Newcastle University Business School, Newcastle University

b Kent Business School, University of Kent

Abstract

This study investigates whether the cross-sectional dispersion of stock re-
turns, which reflects the aggregate level of idiosyncratic risk in the market,
represents a priced state variable. We find that stocks with high sensitivities
to dispersion offer low expected returns. Furthermore, a zero-cost spread
portfolio that is long (short) in stocks with low (high) dispersion betas pro-
duces a statistically and economically significant return, after accounting for
its exposure to other systematic risk factors. Dispersion is associated with a
significantly negative risk premium in the cross-section (-1.32% per annum)
which is distinct from premia commanded by a set of alternative system-
atic factors. These results are robust to a wide set of stock characteristics,
market conditions, and industry groupings.

JEL Classifications: G11; G12

Keywords: Cross-sectional dispersion; cross-section of stock returns; pricing factor

1 Introduction

The cross-sectional dispersion (CSD) of stock returns captures the extent to which
individual stocks offer returns that cluster around (or diverge from) the return of
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5th FEBS Conference, Hull Business School, Strathclyde Business School, University of Dundee,
Newcastle University Business School, East China University of Science and Technology, Univer-
sity of Leicester, Durham University, and Loughborough University for valuable comments and
suggestions.
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the market, thus providing a natural measure of stock heterogeneity at the aggre-
gate level. Moreover, given that the distance of a stock’s return from the mar-
ket return is driven by idiosyncratic shocks, cross-sectional dispersion essentially
reflects the aggregate level of idiosyncratic risk in the market. In this paper, we
provide evidence that dispersion constitutes a priced state variable associated with
a negative risk premium in the cross-section of individual stock returns.

The recent literature has been paying increasing attention to stock return dis-
persion in various contexts, such as forecasting market returns (Garcia et al., 2014;
Goyal and Santa-Clara, 2003; Maio, 2015) and economic conditions (Angelidis et
al., 2015; Chen et al., 2011). Our paper contributes to the literature on the rela-
tionship between dispersion and returns by examining the role that dispersion plays
in determining the returns of individual stocks. Furthermore, we contribute to the
literature by providing evidence of dispersion being priced in the cross-section of
stock returns.

The forecasting power of aggregate idiosyncratic risk over market returns is
still a debated topic. On the one hand, Goyal and Santa-Clara (2003) were among
the first to report that the mean stock variance can be used to forecast market
returns, while the market variance itself does not have a similar forecasting power.
Furthermore, they find that this predictive relationship stems primarily from the
idiosyncratic component of the average stock variance, which can be measured
by the cross-sectional dispersion of stock returns. On the other hand, Bali et
al. (2005) suggest that the positive relationship between aggregate idiosyncratic
risk and subsequent market returns that is reported by Goyal and Santa-Clara
(2003) is driven by small stocks and partly reflects a liquidity premium, with the
forecasting power also disappearing when the sample period is extended. Wei
and Zhang (2005) further support the claim that the strong positive relationship
between aggregate idiosyncratic risk and market returns is sample-specific rather
than a robust finding.

However, some more recent studies have provided additional evidence in sup-
port of aggregate idiosyncratic risk constituting a significant predictor of market
returns. Pollet and Wilson (2010) report that the mean variance of individual stock
returns is negatively related to the future returns of the aggregate market. Garcia
et al. (2014) argue that the cross-sectional dispersion of stock returns has the ad-
vantage of being a model-free, consistent and asymptotically efficient estimator of
aggregate idiosyncratic risk. Moreover, they find that dispersion has a significant
predictive ability over future market returns when examined at the monthly and
daily frequency. Maio (2015) provides an even more comprehensive examination
of the dispersion-returns relationship by focusing on forecastability over multiple
horizons. Using the returns of portfolios rather than stocks to compute the cross-
sectional dispersion, Maio (2015) finds that dispersion and the market variance
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are both related to future market returns. Dispersion, in particular, is strongly
negatively associated with excess market returns, and this relationship is found
to be robust across multiple forecasting horizons (see Guo and Savickas, 2008, for
evidence on the G7 countries). Other studies provide supporting evidence of a sig-
nificant relationship between dispersion and the returns of value and momentum
premia (Angelidis et al., 2015; Bhootra, 2011; Connolly and Stivers, 2003; Stivers
and Sun, 2010).

Despite the substantial empirical evidence on the forecasting power of disper-
sion over market returns, the relationship between dispersion and individual stock
returns has not been explored thus far. Garcia et al. (2014) represent a potential
exception since, even though their focus is on market returns, they briefly examine
whether dispersion can price the 25 and 100 size/book-to-market portfolios after
controlling for the standard three Fama and French (1993) factors. In this paper,
we examine if dispersion is a priced factor in the cross-section of stock returns in
a comprehensive way. Throughout the paper, our emphasis is on whether stocks’
expected returns are driven by their sensitivity to dispersion, after accounting for
a large set of other systematic factors and stocks’ idiosyncratic characteristics.

Our research question is distinct from the literature on the relationship between
the expected returns of individual stocks and their own level of idiosyncratic risk.
For instance, Ang et al. (2006) find that expected returns are negatively related
to their idiosyncratic volatility, as computed relative to the Fama and French
(1993) model, and this relationship cannot be explained by the stocks’ exposure
to aggregate volatility risk (proxied by the market’s implied volatility index VIX).
On the other hand, Fu (2009) computes time-varying conditional expectations
of idiosyncratic volatilities based on the exponential GARCH model and finds
that they are in fact positively related to stocks’ expected returns. Chen and
Petkova (2012) report that, when stock portfolios are sorted according to their
idiosyncratic volatilities, a negative risk premium is found in the cross-section as
compensation for exposure to the mean stock variance but not with respect to the
mean correlation.

Our interest in returns’ cross-sectional dispersion as a potential state variable
is motivated primarily by the fact that it has been shown to act as a useful mea-
sure of aggregate idiosyncratic risk. Dispersion’s potential role as a systematic
factor can be further supported by recent empirical evidence on its ability to fore-
cast economic conditions such as unemployment (Chen et al., 2011), consumption
volatility (Garcia et al., 2014) and the business cycle (Angelidis et al., 2015).

The empirical results support the theoretical prediction of dispersion being
priced in the cross-section of stock returns. We find evidence of a significant
negative premium for exposure to dispersion risk, where expected returns vary
according to the stocks’ sensitivities to the aggregate dispersion factor. Stocks with
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higher sensitivities to dispersion are found to offer lower returns. Furthermore, a
zero-cost spread portfolio that goes long in stocks with low “dispersion” betas
and short in stocks with high betas offers a monthly return of 0.94% (around
11.3% on an annual basis). Based on the Fama-French-Carhart alpha, the risk-
adjusted return of this portfolio is 0.55% per month (around 6.6% per annum) and
it suggests that the high return offered by the portfolio is not simply compensation
for exposure to well-known systematic risk factors.

We perform a set of robustness tests to ensure that these results are not driven
by stocks’ idiosyncratic characteristics. We run two-pass regressions of individual
stock returns against a set of stock-specific characteristics and we compute the
returns of double-sorted spread portfolios. Our results confirm that stocks with
different exposures to dispersion risk earn markedly different returns, even after
accounting for a large set of idiosyncratic characteristics, with these differences
being statistically and economically significant. The stock-specific characteristics
that we control for include size, momentum, standard deviation, skewness and
kurtosis of historical returns, the dispersion of analysts’ forecasts about the firm’s
future earnings, liquidity, co-skewness with the market, idiosyncratic volatility,
and the percentage of returns’ variation that can be explained by systematic risk.

We employ the standard Fama-MacBeth (1973) two-pass methodology and es-
timate that the price of aggregate dispersion risk in the cross-section is statistically
significant at -0.11% per month (-1.32% per annum). More importantly, we show
that this negative dispersion premium is distinct from other risk premia that have
been identified by earlier studies and that relate to either uncertainty or hetero-
geneity of beliefs. In particular, our standard Fama-MacBeth (1973) specification
accounts for stocks’ sensitivities to a set of commonly used factors, namely the
market, the Fama and French (1993) size and value factors, the Carhart (1997)
momentum factor and the Pastor and Stambaugh (2003) liquidity factor. We also
augment the specification to account for stocks’ loadings on market volatility (Ang
et al., 2006), the aggregate dispersion of analysts’ earnings forecasts (Diether et
al., 2002), the mean stock variance (Goyal and Santa-Clara, 2003), an index of
macroeconomic uncertainty (Bali et al., 2015), and the mean stock idiosyncratic
volatility. We find that the negative dispersion risk premium remains statistically
significant and at the same level in several versions of the extended specification,
suggesting that the risk premium associated with aggregate dispersion is distinct
from premia commanded by other systematic factors that might be considered
alternative.

The remaining of the paper is organized as follows. Section 2 discusses the
rationale for using dispersion as a state variable and presents the data used. Section
3 discusses the returns offered by portfolios formed across dispersion betas. Section
4 presents the results of a battery of robustness checks. Section 5 discusses the
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price of aggregate dispersion risk in the cross-section. Finally, Section 6 concludes.

2 Dispersion Measure

2.1 CSD as a State Variable

We compute our main variable of interest, namely the cross-sectional dispersion
of stock returns, as the equally-weighted cross-sectional absolute deviation of the
returns of individual stocks around the market return

CSDt =

∑N

i=1
|ri,t − rmkt,t|

N − 1
(1)

where ri,t is the return of stock i at time t and rmkt,t is the market return at t.
As a robustness check, we also construct alternative CSD measures by computing
(i) squared rather than absolute deviations, (ii) value-weighted (based on market
capitalization) rather than equally-weighted deviations, and (iii) deviations around
the (equally- or value-weighted) mean stock return rather than the return of the
market index. The empirical results are largely the same irrespective of the partic-
ular version of the dispersion measure, thus we only report results based on CSD

as computed from (1).
Intuitively, cross-sectional dispersion is a measure of the extent to which the

returns of individual stocks at a particular point in time tend to cluster around
or diverge from the consensus represented by the market return. In other words,
CSD is an aggregate measure of the heterogeneity of stock returns and, therefore,
is directly linked to the aggregate level of idiosyncratic risk.

The relationship between CSD and aggregate idiosyncratic risk has been high-
lighted by Goyal and Santa-Clara (2003) and Garcia et al. (2014) who find that the
cross-sectional dispersion of stock returns is positively and significantly correlated
with subsequent market returns in the US. These results lead Goyal and Santa-
Clara (2003) and Garcia et al. (2014) to argue that cross-sectional dispersion can
serve as a proxy for aggregate idiosyncratic risk that can be readily computed at
any frequency without the need to assume any particular asset pricing model.

We propose that, as a proxy for aggregate idiosyncratic risk, cross-sectional
dispersion represents a state variable that should be priced in the cross-section of
stock returns. Furthermore, we expect this state variable to be negatively corre-
lated with the consumption and investment opportunity set, therefore implying a
negative risk premium for stocks’ exposure to dispersion risk. Starting with the
traditional Capital Asset Pricing Model (CAPM), many asset pricing models sug-
gest that idiosyncratic risk does not affect asset returns and that only systematic

5



risk is priced. This premise is typically based on the assumption of a representa-
tive agent who has the incentive and ability to fully diversify by investing in the
market portfolio. However, the assumption of full diversification is particularly
restrictive and highly unlikely to describe the way in which investors actually con-
struct portfolios, since in reality different investors clearly hold equity portfolios
that are different from the market portfolio and from one another. To this end,
several studies have proposed modified versions of the CAPM where investors hold
portfolios that are not fully diversified (Bessembinder, 1992; Levy, 1978; Malkiel
and Xu, 1997; Malkiel and Xu, 2005; Merton, 1987). In this type of models, the
absence of full diversification comes as a result of transaction costs, taxes, investors
pursuing distinct investment strategies because of private information or superior
skills etc. Irrespective of the specific exogenous reason for holding undiversified
portfolios, the main implication of these “partial diversification” models is that
assets’ expected returns are theoretically determined by their exposure to market
risk (as in the standard CAPM) and their exposure to a measure of idiosyncratic
risk.

In a more recent paper, Maio (2016) derives an extension of the CAPM where
cross-sectional dispersion is priced as a risk factor in addition to the market return.
In this two-factor asset pricing model, Maio (2016) assumes a set of heterogeneous
investors who hold undiversified equity portfolios by investing in different seg-
ments of the stock market. While each of these investors could be considered as
representative of a particular group of homogeneous investors, there is no global
representative agent as in the standard CAPM.

Assuming a power utility function for each investor and using a second-order
Taylor approximation for investors’ growth rate in wealth, Maio (2016) shows that
the average stochastic discount factor (SDF) in the economy can be written as

Mt+1 = δWG
−γ
t+1 +

1

2
δγ(γ + 1)WG

−γ−2

t+1 VW t+1 (2)

where δ is a time-subjective discount factor, WG is the cross-sectional average
gross growth rate in wealth across all investors, and VW is the cross-sectional
variance of wealth growth.

Given an intertemporal budget constraint and that the fact that the sum of
all undiversified portfolios corresponds to the market portfolio, the cross-sectional
variance of wealth growth can be rewritten as the dispersion of stock returns

VWt+1 =
1

L

L
∑

l=1

(rlp,t+1 − rmkt,t+1)
2 (3)

where rlp,t+1 is the gross return on investor l ’s reference portfolio between t and
t+1. Overall, the SDF can be rewritten as
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Mt+1 = δr
−γ
mkt,t+1

+
1

2
δγ(γ + 1)r−γ−2

mkt,t+1
CSDt+1 (4)

The SDF decreases with the market return and increases with the level of dis-
persion CSD. Furthermore, the expected return-covariance equation can be written
as

Et[ri,t+1]− rf,t+1 = λmktβi,mkt + λCSDβi,CSD (5)

where βi,mkt and βi,CSD refer to the betas of asset i with respect to market risk
and dispersion risk, respectively, while the terms λmkt and λCSD denote the corre-
sponding prices of risk.1

A higher level of dispersion means larger idiosyncratic shocks to individual
stock returns and a higher level of aggregate idiosyncratic risk. In this state, a stock
(or portfolio of stocks) that an investor holds is more likely to be characterized by a
higher level of idiosyncratic risk compared to a state where dispersion (aggregate
idiosyncratic risk) is lower. Naturally, this relationship will not hold for every
conceivable stock portfolio, but it is expected to hold on average. Importantly,
this higher idiosyncratic risk for a given asset is not diversified away. Overall, an
increase in the cross-sectional dispersion of stock returns has a negative impact on
investors’ total welfare, representing a “bad” state of the economy.

The above relationship between dispersion and the investment opportunity set
is suggestive of a negative premium for exposure to dispersion risk. For instance,
a higher level of dispersion means that idiosyncratic risk among stocks is on av-
erage higher. In these circumstances, investors who are, for whatever exogenous
reason, not fully diversified would prefer to hold assets that covary positively with
dispersion, since they would offer their highest returns during periods of higher id-
iosyncratic (and undiversified) risk at the aggregate level. Consequently, investors
would bid up the prices of these assets that act as hedges, and we would expect
them to offer lower returns. At the other end of the spectrum, assets that covary
negatively with dispersion will tend to offer their highest returns when dispersion
is low (“good” state) and perform poorly when dispersion is high (“bad” state).
Investors would consider these assets to be less desirable to hold compared to those
with positive exposure to dispersion, leading to lower prices and higher expected
returns. Overall, we predict a negative dispersion risk premium in the cross-section
where, as a stock’s sensitivity to dispersion increases, that stock becomes more at-
tractive (less risky) and its expected return decreases.

Finally, the expected impact of dispersion on the consumption and investment
opportunity set can be further motivated by the recent empirical evidence on the
relationship between dispersion and certain macroeconomic indicators. Chen et al.

1See Maio (2016) for a much more detailed discussion of the two-factor asset pricing model.
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(2011) find that increases in the dispersion of stock returns are strongly associated
with subsequent increases in long-term unemployment rates, while Garcia et al.
(2014) report that dispersion is positively related to consumption-growth volatil-
ity. More recently, Angelidis et al. (2015) examine dispersion in the G7 countries
and find that it correlates strongly with the business cycle and economic growth,
with a higher dispersion leading to a higher probability of a recession, an increase
in unemployment and a fall in economic activity in the future. These empirical
findings provide additional support for the hypothesis that the cross-sectional dis-
persion of stock returns constitutes a state variable that correlates negatively with
investment and consumption opportunities.

Overall, we expect a negative dispersion premium in the cross-section of indi-
vidual stock returns. As a stock’s sensitivity to dispersion decreases (i.e. becomes
more negative), that stock becomes riskier and investors would demand a higher
expected return to hold it. In contrast, assets that covary positively with dis-
persion are acting as valuable hedges against undesirable increases in aggregate
idiosyncratic risk and, thus, represent safer assets associated with lower expected
returns.

2.2 Data

We examine the cross-section of equity returns in the US from January 1996 to
December 2012. Our dataset of stock prices is from the Center for Research in
Security Prices (CRSP) database and it contains, among other fields, daily closing
bid and ask quotes and trading volumes of stocks trading in the US market. We
use the CRSP value-weighted index as a proxy for the aggregate market when
computing the cross-sectional dispersion in equation (1).

Figure 1 plots the resulting time-series of CSD at a daily frequency from 1
January 1996 to 31 December 2012. The mean daily CSD is 1.16% with a stan-
dard deviation of 0.44%. As can be easily seen from the Figure, the time-series of
daily CSD is exhibiting a significant degree of serial correlation, with the first-order
autocorrelation, for instance, being equal to 0.91 (serial correlation is similarly pro-
nounced when CSD is computed at a monthly frequency). Therefore, our proposed
risk factor that refers to the aggregate cross-sectional dispersion of stock returns
is measured as the first difference in CSD , denoted as ∆CSD. The time series
of first differences ∆CSD has a mean of effectively zero (around -0.0001%) and a
standard deviation of 0.19%, while the first-order autocorrelation is significantly
lower than the one observed in levels (approximately -0.30).

In Section 5, we explore whether other aggregate factors that relate to either
uncertainty in general or to divergence of expectations in particular subsume the
explanatory power of ∆CSD. More specifically, we show that dispersion risk is
priced in the cross-section after accounting, among other factors, for changes in the
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implied volatility index VIX, changes in the dispersion of analysts’ forecasts, and
changes in an index of macroeconomic uncertainty. The VIX index is computed by
the Chicago Board Options Exchange (CBOE) to reflect the implied volatility of a
synthetic 1-month option written on the S&P100 index and, as such, it constitutes
a forward-looking measure of expected uncertainty at the market level. The time-
series of VIX was obtained from Bloomberg. Data on analysts’ earnings forecasts
were obtained from the Thomson I/B/E/S database. Finally, the time-series of
Fama and French (1993) factors and the Carhart (1997) momentum factor were
obtained from the website of Kenneth French, while the time-series of the index
of macroeconomic uncertainty was obtained from the website of Turan Bali.

3 Empirical Framework

3.1 Portfolio formation

If cross-sectional dispersion is a priced risk factor, then we would expect that
stocks with different sensitivities to changes in cross-sectional dispersion will offer
different returns on average. We measure the sensitivity of each stock to ∆CSD

by estimating the following time-series regression

rit = α + βi
MKTMKTt + βi

∆CSD∆CSDt + ǫit (6)

where rit is the excess return of stock i at time t, MKTt is the excess return of the
market at t, and βi

MKT and βi
∆CSD are the loadings of stock i on market risk and

cross-sectional dispersion risk, respectively. We estimate (6) separately for each
stock and we include only one additional factor, namely the excess market re-
turn, in the pre-formation regressions since our objective is to extract the stocks’
sensitivities to our main factor of interest ∆CSD, rather than determining the
set of all aggregate factors that could potentially have explanatory power for the
cross-section of stock returns. Moreover, as argued by Ang et al. (2006), includ-
ing more than two factors in the pre-formation regressions might add a significant
amount of noise when constructing our portfolios. It should be noted that, al-
though only one additional factor is included at this stage of the methodology, our
post-formation regressions control for a much wider set of cross-sectional factors
in order to evaluate how ∆CSD is priced in stock returns.

At the beginning of every month, we sort all stocks into quintiles according to
their cross-sectional dispersion betas, with the βi

∆CSD of each stock i having been
estimated through the regression in (6) using daily returns for that stock over the
past month. The pre-formation regression is only run when a stock has at least
15 daily observations over the previous month. Using daily data over a 1-month
window in order to compute factor loadings is a commonly adopted compromise
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between accounting for the time-varying nature of loadings and estimating coef-
ficients with some degree of precision (Pastor and Stambaugh, 2003; Ang et al.,
2006). The first quintile includes stocks that have the lowest (most negative) dis-
persion betas while the fifth quintile consists of stocks that have the highest betas.
Inside each quintile we value-weigh the monthly returns of individual stocks in or-
der to compute the average quintile post-formation return over that month. This
approach allows us to construct five time-series that refer to the monthly returns
of stock portfolios that are significantly different in terms of their sensitivity to
cross-sectional dispersion risk. We also construct two portfolios based on the sign
of the stocks’ dispersion betas, denoted by N and P for negative and positive be-
tas, respectively. The returns of the N and P portfolios are also value-weighted
averages of individual stock returns.

3.2 Portfolio returns

Table 1 reports the monthly total returns of the five quintile portfolios (Panel A)
and those of two spread portfolios (Panel B). The first spread portfolio is labelled
“1-5” and it involves a long position in the lowest-beta stocks in the first quintile
and a short position in the highest-beta stocks in the last quintile. The second
spread portfolio is labelled “N-P’ and it involves a long position in stocks with
negative dispersion betas and a short position in stocks with positive betas. The
first two columns of Panel A report the mean and standard deviation of each
quintile portfolio’s returns. The third column reports the average pre-formation
beta. The fourth column reports the average post-formation beta of the portfolio,
which is obtained by estimating equation (6) using daily returns during the same
month as when the portfolio’s monthly return is computed. The fifth column
reports the average market value of each portfolio as a percentage of the total
market value across all five portfolios. Panel B reports the mean monthly returns
and the associated t-statistics (in brackets) of the two spread portfolios.

The results are suggestive of a negative price for aggregate dispersion risk.
Stocks in the first quintile, which have the lowest pre-formation betas (-6.85 on
average), offer a mean monthly return of 1.37% with a standard deviation of 7.39%.
At the other end, the highest-beta stocks in the fifth quintile (average beta is 6.71)
offer the lowest mean return of 0.43% per month. More importantly, mean returns
decrease monotonically with the level of past dispersion betas as we move from
the first to the fifth quintile portfolio.

Furthermore, the simple strategy of going long in the lowest-betas stocks and
short in the highest-beta ones is found to offer a mean return of 0.94% per month,
which is statistically significant at the 1% level, with a standard deviation of 4.77%.
Investing in the N-P portfolio offers a lower mean return (0.49% per month) which
is, nevertheless, statistically significant. In order to put the returns of these two
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spread portfolios into perspective, it should be noted that they represent zero-cost
positions and that the aggregate market return during the same period was 0.52%
per month (with a standard deviation of 4.62%).

For the moment, these results are not conclusive that dispersion risk is priced
in the cross-section of stock returns, since the reported negative monotonic re-
lationship refers to mean returns and past loadings. Some preliminary evidence
that returns co-vary negatively with concurrently estimated betas is provided by
the finding that post-formation dispersion betas increase as we move from the
first to the fifth quintile. The post-formation betas are much less dispersed than
the pre-formation ones, ranging from a minimum of -0.03 for the first quintile to
a maximum of 0.22 for the fifth one. This finding is similar to the relationship
between pre- and post-formation loadings of aggregate volatility risk reported by
Ang et al. (2006). Overall, the fact that portfolio returns are decreasing mono-
tonically with the level of their concurrent sensitivity to changes in cross-sectional
dispersion is consistent with the existence of a negative dispersion premium. We
explore this relationship in greater depth in the next Section.

4 Controlling for Risks and Idiosyncratic Char-

acteristics

4.1 Risk-adjusted returns

In order to establish that aggregate dispersion risk is priced in the cross-section, we
need to show that the relationship between dispersion loadings and mean returns
is robust to other aggregate factors that have been commonly found to explain the
cross-section of stock returns. More specifically, it is possible that the significant
returns offered by the 1-5 spread portfolio (and, to a lesser extent, by the N-P
portfolio) could simply represent compensation for exposure to some other known
source of risk. We explore this hypothesis by regressing the time-series of portfolio
returns on a set of commonly used systematic factors, as given by equation (7)

r
p
t = αp + β

p
systFt + ǫ

p
t (7)

where rpt is the monthly return of the portfolio and Ft is a vector of aggregate risk
factors, consisting of the excess market return MKT, the two additional Fama and
French (1993) factors SMB and HML, and the Carhart (1997) momentum factor
MOM. The vector of coefficients βp

syst is intended to capture the extent to which
the returns of the portfolio can be explained by exposure to the set of systematic
factors. The results are presented in Table 2, with the first (second) column
reporting the estimated coefficients and their associated t-statistics in brackets for
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the 1-5 (N-P) portfolio. All the systematic factors represent traded portfolios and
the intercept from the time-series regression in (7) can be interpreted as mispricing
relative to the factor model. In other words, the estimated alphas are the risk-
adjusted returns of the portfolio, after accounting for its exposure to a set of
aggregate risk factors.

The results from estimating (7) confirm that the returns of the 1-5 spread
portfolio are not simply compensation for exposure to other systematic factors.
The coefficients of all factors are statistically insignificant at the 5% level, for both
the 1-5 and the N-P portfolios. More importantly, the risk-adjusted return of going
long in the lowest-beta portfolios and going short in the highest-beta ones is 0.55%.
This alpha is lower than the total return of 0.94% which was previously reported
for the 1-5 portfolio, but it is statistically significant (t-stat = 2.87), supporting
the hypothesis of dispersion risk being priced in the cross-section. The results are
weaker for the N-P portfolio, which is found to earn a statistically insignificant
risk-adjusted return of 0.10% per month (t-stat = 1.64) after accounting for its
covariance with the systematic factors.

4.2 Stock characteristics

After establishing that the 1-5 spread portfolio offers returns in excess of its ex-
posure to systematic risk factors, we examine the impact of stock characteristics.
Although aggregate dispersion risk seems to command a premium in excess of
those associated with other systematic risk factors, it could still be the case that
our results are driven by the characteristics (other than their dispersion betas) of
the specific stocks that populate our quintile portfolios. Our first test is based on
estimating cross-sectional regressions similar to those in Brennan et al. (1998) and
Goyal and Saretto (2009). We begin by running first-pass time-series regressions
of the excess returns of individual stocks against the systematic factors (MKT,
SMB, HML and MOM ), as given in equation (8). We run one regression per stock
i using the full sample of excess monthly returns rit.

rit = αi + βiFt + ǫit (8)

After obtaining the full-sample loadings of each stock to each of the four system-
atic factors from the first-pass regressions, we perform cross-sectional regressions
of risk-adjusted returns against a set of idiosyncratic stock characteristics as given
in equation (9)

ri,t − β̂iFt = γ0,t + γ′

1,tZi,t−1 + ui,t (9)

where β̂i is the vector of estimated factor loadings from the first-pass time-series
regressions, Ft is the vector of factor values and Zi,t is the vector of idiosyncratic
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characteristics of stock i at time t. The stock characteristics in Zi,t comprise our
main variable of interest β∆CSD, as well as the size (log market capitalization in
millions), an idiosyncratic momentum factor (given by the past 6-month stock re-
turn), the standard deviation, skewness and kurtosis of stock returns over the past
six months, the dispersion of analysts’ forecasts about the stock’s future earnings
normalized by the mean forecast (similar to Diether et al., 2002), a liquidity mea-
sure, the percentage of stock returns explained by systematic risk, as well as the
co-skewness and idiosyncratic volatility of stock returns.2 The vector of stock char-
acteristics is lagged by one period and we estimate one cross-sectional regression
per month. Table 3 reports the mean estimated coefficients from these monthly
cross-sectional regressions, their t-statistics (in brackets) and the mean Adjusted
R squared.

Consistent with our previous results, the stocks’ sensitivity to changes in dis-
persion is significant in explaining their subsequent risk-adjusted returns. The
mean coefficient of the dispersion beta is negative and statistically significant (t-
stat = -2.28), indicating that stocks that have higher sensitivities to changes in
dispersion tend to earn lower returns than their less sensitive counterparts, after
accounting for systematic risk factors and idiosyncratic characteristics. Further-
more, size and co-skewness are found to be the only other characteristics (apart
from β∆CSD) that seem to be significantly related to risk-adjusted stock returns
at the 5% level (t-stat = -2.54), with stocks of larger companies or stocks that ex-
hibit lower (more negative) co-skewness with the market offering on average lower
risk-adjusted returns.

The second test involves the construction of double-sorted portfolios. For each
of the previously mentioned characteristics (plus the market beta), we sort stocks

2We follow Pastor and Stambaugh (2003) and measure the liquidity of a given stock i as the
coefficient γi

t from the following regression

rit+1 = θit + φi
tr

i
t + γi

tsign(r
i
t)v

i
t + ǫit+1

where vit is the dollar volume of stock i at t. The proportion of stock returns explained by
systematic risk is measured by the R̄2 of the first-pass time-series regressions of excess stock
returns against the four systematic factors, as described in equation (8). We follow Harvey and
Siddique (2000) and measure the co-skewness of individual stock returns in a given month as

coskew =
E[ǫit(r

mkt
t )2]

√

E[(ǫit)
2]E[(rmkt

t )2]

where ǫit is the residual from the time-series regression of excess stock returns rit against ex-
cess market returns rmkt

t . We follow Ang et al. (2006) and measure the monthly idiosyncratic
volatility of individual stock returns in a given month as the standard deviation of the resid-
uals obtained from the first-pass time-series regressions described in equation (8). This set of
regressions is estimated per stock per month, using daily observations.
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into quintiles according to the values of that particular characteristic at the begin-
ning of a given month. Then, within each characteristic-based quintile, we further
sort stocks into quintiles according to their dispersion betas (or into the two N
and P portfolios). Finally, the monthly returns of the dispersion-based portfolios
are averaged across each of the five characteristic-based quintiles. The two-way
sorts are performed every month, resulting in a continuous time-series of monthly
returns for five portfolios that have distinct sensitivities to dispersion risk. This
double-sorting is replicated separately for each of the idiosyncratic stock charac-
teristics mentioned above.

The advantage of double-sorting is that, in contrast to the portfolios discussed
in Section 3, each double-sorted portfolio with a particular mean dispersion beta
has been populated by stocks that, by construction, vary in terms of some other
characteristic. This addresses the potential concern that the previously reported
pattern of portfolio returns declining monotonically across dispersion betas might
be driven by stocks with certain features overpopulating different portfolios. How-
ever, the main limitation of double-sorting is that we can only control for one
characteristic at a time.

Table 4 reports the mean monthly return of double-sorted 1-5 and N-P port-
folios. Each row corresponds to the specific characteristic that was used for the
first sort. The mean returns of the two spread portfolios vary across different
characteristics, for instance with mean returns for the 1-5 portfolio ranging from
0.59% (first sorted on co-skewness) to 1.10% (first sorted on size). Similarly, the
mean returns of the N-P portfolio range from 0.26% (first sorted on idiosyncratic
momentum) to 0.73% (first sorted on the dispersion of analysts’ forecasts). By
comparison, the unconditional sorts only on dispersion betas that were presented
in Section 3 were found to offer mean monthly returns of 0.94% and 0.49% for the
1-5 and N-P portfolios, respectively. Overall, even though mean portfolio returns
appear to co-vary with certain stock characteristics, this relationship is not enough
to subsume the explanatory power of dispersion betas on expected returns. This is
especially the case for the 1-5 spread portfolio, which is found to offer statistically
significant and quite large mean returns (always in excess of 0.59%) across all dou-
ble sorts. Finally, in unreported results (available from the authors upon request)
we find that the negative monotonic relationship between dispersion betas and
mean quintile returns is robust across all stock characteristics used for the double
sorts.

4.3 Robustness

In this Section we further investigate the robustness of our results. Table 5 reports
the mean returns and alphas (risk-adjusted returns, estimated as in Section 4.1)
of the 1-5 and N-P spread portfolios under a set of alternative settings. The first
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robustness check refers to the portfolio’s formation period. More specifically, the
previously reported negative monotonic relationship between mean returns and
dispersion betas has been based on using daily data over the previous month to
estimate pre-formation factor loadings β∆CSD. As can be seen from the Table,
the results become somewhat weaker when the formation period increases. For
example, if dispersion betas are estimated using the previous three months of daily
returns, then the resulting 1-5 portfolio offers a mean monthly return of 0.44% with
an alpha of 0.31%, compared to 0.94% and 0.55%, respectively, when the formation
period was one month. The results are even weaker for longer formation windows,
with a similar pattern observed for the N-P portfolio.

This finding of a weaker relationship between dispersion betas and expected
returns as the formation period increases is most likely the result of obtaining less
precise estimates of stocks’ sensitivities to changes in dispersion as more data is
used. Extending the formation period means that past returns observations that
are more distant are being added in the estimation, leading to conditional esti-
mates of stocks’ betas that are less relevant at the time when the portfolios are
constructed. Selecting the optimal formation period is an empirical issue and it
ultimately depends on the time-variation of conditional betas. However, a forma-
tion period of one month using daily data represents a typically adopted choice,
attempting to optimize the trade-off between obtaining more precise beta estimates
and decreasing turnover in the resulting portfolios (see also Ang et al., 2006).

We also replicate the analysis of 1-5 and N-P portfolio returns by dividing the
full sample into two sub-samples based on the sign of the excess market return. We
find that both spread portfolios offer higher mean returns during months of positive
market returns compared to negative ones. For instance, the 1-5 portfolio offers a
mean return of 1.20% during up-market months compared to 0.50% during down-
market months, while a similar difference is observed in terms of risk-adjusted
returns (alphas are 0.87% and 0.34% during positive and negative market returns,
respectively). This result is somewhat surprising, especially since (in unreported
results) we find that there is no discernible pattern across the quintile portfolios
in terms of their average pre-formation market betas. It should be noted however,
that mean portfolio returns and risk-adjusted returns are highly significant in both
sub-samples. Overall, these results suggest that a significant relationship between
dispersion risk and expected returns exists irrespective of the direction of the
market, although the exact strength of this relationship seems to vary with the
sign of the market return.

We observe a similar pattern for the 1-5 portfolio when we split the sample
according to the sign of the main variable ∆CSD. Going long in the lowest-beta
stocks and short in the highest-beta ones is found to offer higher returns on average
during months of positive changes in dispersion (1.22% versus 0.77%), with alphas
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also being higher during months with positive dispersion changes compared to
negative ones (0.75% vs 0.38%). This stronger performance of the 1-5 portfolio
during months with positive dispersion changes is not completely independent
from the previous finding of the portfolio returns being higher during months of
positive market returns, since the two conditioning variables MKT and ∆CSD

are positively correlated. However, the opposite pattern is observed for the N-
P portfolio, the returns of which are actually higher during months with negative
changes in dispersion, although the difference between mean returns was not found
to be statistically significant.

As was mentioned in Section 3, we use the first difference of the cross-sectional
dispersion series as our aggregate risk factor because the level variable CSD is
highly serially correlated. We investigate the robustness of this choice by com-
puting changes in dispersion as the innovations from a simple AR(1) model fitted
on CSD. The AR model is fitted at every point in time t using all available data
on dispersion up to t− 1, so no contemporaneous or forward-looking information
is used when we form AR-based expectations of dispersion at t. When the inno-
vations from the AR model are used as an aggregate risk factor, the results are
very similar to those previously reported. The 1-5 portfolio earns a mean total
and risk-adjusted return of 0.91% and 0.77% per month, respectively, which are
comparable to those reported in Table 1. The results for the N-P portfolio are also
similar to, and even slightly stronger than, those previously reported using first
differences of CSD.

Our main findings are also robust to industry groupings. Unreported results
suggest the absence of any obvious over-concentration of any particular industry
group across our quintile portfolios. We also re-estimate the returns of the two
spread portfolios by eliminating one industry group in turn from the sample. The
results are virtually identical to those reported in the full sample, suggesting that
the significant returns stemming from a dispersion premium are not driven by any
specific industry group.

5 The Price of Aggregate Dispersion Risk

5.1 Constructing a dispersion mimicking factor

Table 1 shows that stocks with lower past loadings on aggregate dispersion risk tend
to offer higher returns than stocks with higher loadings. Moreover, this relationship
cannot be explained by a set of systematic factors (Table 2) or by the stocks’
idiosyncratic characteristics (Tables 3 and 4). The monotonic relationship between
expected returns and past sensitivities to changes in dispersion points towards a
significant negative premium for bearing aggregate dispersion risk. Given these

16



findings, we proceed to measure the cross-sectional price of dispersion risk.
In order to compute the price of aggregate dispersion risk in the cross-section,

we want to create an investible portfolio that can capture the time variation of
changes in dispersion. We follow Breeden et al., (1989), Lamont (2001) and Ang et
al. (2006) to compute a dispersion mimicking factor. More specifically, we create
the mimicking factor FCSD by running a time-series regression of our variable of
interest ∆CSD against the returns of a set of base assets, namely the five quintile
portfolios discussed in the previous sections, as follows

∆CSDt = c+ b′Pt + ǫt (10)

where Pt refers to the returns of the five dispersion-based portfolios. The vector
of slope coefficients b′ reflects the sensitivity of each base asset to changes in dis-
persion. We estimate the regression in (10) every month using daily data, and we
then use the estimated b coefficients to compute the value of the mimicking factor
for that month as b̂′Pt. In other words, the factor FCSD that mimics changes
in cross-sectional dispersion is given by the returns of a portfolio that consists of
positions in the five quintile portfolios in proportion to their past sensitivity to
dispersion changes.

We also construct an alternative mimicking factor by following the standard
factor-forming technique introduced by Fama and French (1993). On each month,
we sort all stocks into two groups based on their market capitalization. We then
sort stocks, independently of the first sort, into three groups according to their
dispersion betas. The intersection of these two sorts produces six portfolios that
differ in terms of size and sensitivity to dispersion. The mimicking factor is, then,
given as the value-weighted average return of the two low-beta portfolios minus
the value-weighted average return of the two high-beta portfolios (see also Bali et
al., 2015). The results from this alternative dispersion factor are similar to using
FCSD and are, thus, not reported for brevity.

5.2 Estimating the market price of dispersion risk

We employ the standard Fama-MacBeth (1973) two-pass methodology to extract
the risk premium of aggregate dispersion risk from the cross-section of stock re-
turns. First, we construct a set of assets that are reasonably different in terms
of their sensitivity to changes in dispersion. The test assets are double-sorted on
market beta and dispersion beta as follows. At the beginning of each month, we
run univariate regressions of excess stock returns against the excess returns of the
market using daily data over the previous month. We use the estimated market
betas βMKT to sort the stocks into quintiles. We also run bivariate regressions
of excess stock returns against excess market returns and the dispersion factor,
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constructed as the mimicking portfolio discussed above, again using daily data
over the previous month. Then, within each βMKT -based quintile, we further sort
stocks into quintiles according to their dispersion betas βFCSD. Overall, we obtain
the time-series of monthly returns of 25 double-sorted investible portfolios.

In the first stage, we regress the excess returns of each of the 25 test portfolios
against a set of systematic factors in the full sample, as in equation (7). The
second stage involves estimating a cross-sectional regression of mean portfolio ex-
cess returns against the betas that were obtained from the first-pass time-series
regressions. The vector λ′ of estimated coefficients from the second-pass cross-
sectional regression (11) represents the unconditional prices of risk for the set of
aggregate risk factors. Table 6 reports the estimated coefficients, t-statistics (in
brackets) and Adjusted R squared of the second-pass regression. Overall, we test
for a number of different factor sets in order to better understand the robustness
of our results.

r̄p = λ0 + λ′β
p
syst + up (11)

The first column of the Table (Regression I) presents the results from esti-
mating a model that consists of the 3 Fama-French (1993) factors (MKT, SMB,
HML), the Carhart (1997) momentum factor (MOM ) and our dispersion factor
(FCSD). The MKT and SMB factors are found to earn a positive and statistically
significant premium, as is the MOM factor. However, the estimated risk premium
of the HML factor is, albeit positive, statistically indistinguishable from zero, pos-
sibly due to the mixed performance of the value effect during our sample period.
More importantly, the estimated λ of FCSD confirms the prediction of a negative
premium for bearing dispersion risk. The price of dispersion risk is found to be
-0.10% per month, which is statistically significant at the 5% level, supporting the
hypothesis that exposure to aggregate dispersion risk commands a premium in the
cross-section of stock returns.

Regression II is augmented by the Pastor and Stambaugh (2003) aggregate liq-
uidity factor FLIQ. Consistent with existing evidence from the literature, aggregate
liquidity is found to be priced in the cross-section, as reflected by a significantly
positive risk premium. Furthermore, the premium associated with aggregate dis-
persion risk remains negative (-0.10%) and statistically significant.

5.3 Controlling for related measures

We find cross-sectional dispersion to be associated with a significantly negative
risk premium. However, in order to conclude that dispersion is in fact a priced
risk factor, we need to show that its explanatory power over the cross-section of
stock returns cannot be accounted for by covariation with other systematic factors.
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Although FCSD was found to have explanatory power in excess of the standard
MKT, SMB, HML, MOM and FLIQ factors, it could still be the case that disper-
sion proxies for some other source of aggregate risk. Given that the dispersion of
stock returns, as computed in equation (1), is a measure of heterogeneity of beliefs
about the future performance of stocks in the market, we look at measures of be-
liefs’ heterogeneity or, alternatively, uncertainty as systematic factors that could
potentially subsume the informational content of FCSD. Table 6 reports the re-
sults of two-pass estimations of pricing models with these additional factors, while
Table 7 reports the pairwise correlations between factors. All factors have been
computed as the returns of mimicking portfolios, similarly to the FCSD factor.

We begin by exploring the effect of market volatility. We use the implied
volatility VIX index as a measure of aggregate volatility risk and we incorporate
the mimicking portfolio FVIX (based on monthly changes ∆V IX) as an additional
factor in Regression III. Ang et al. (2006) also use the VIX as a proxy of aggregate
volatility risk and they document a significantly negative premium for volatility
risk in the cross-section of stock returns. In our sample, the two factors (FCSD
and FVIX ) exhibit a relatively strong positive correlation (0.43), which is also
consistent with our finding of a negative dispersion risk premium and the finding
by Ang et al. (2006) of a negative volatility risk premium. We confirm the presence
of a negative premium for aggregate volatility risk (-0.12% per month) which is,
however, statistically insignificant. More importantly, the estimated premium for
aggregate dispersion risk is still found to be negative, at a similar level to the one
previously reported (-0.10% per month) and statistically significant, even after
controlling for volatility risk.

Next, we consider the effect of another measure of dispersion of beliefs by
focusing on the mean dispersion of analysts’ forecasts. We volume-weigh the stock-
specific deviations of analysts’ forecasts of future earnings (normalized by the mean
forecast to address the effect of different scales) in order to construct an aggregate
measure of dispersion of beliefs about the future earnings of stocks in the market
(FDISP). We then use the first difference of this measure to create the mimicking
portfolio FFDISP which is used as an additional factor in Regression IV. We would
expect this new factor (FFDISP) to be highly positively correlated with our initial
dispersion factor (FCSD), in the sense that both measures reflect changes in the
level of the markets consensus (or lack of) regarding the future performance of
the equity market. Somewhat surprisingly, the correlation coefficient between the
two factors is only slightly larger than zero (0.03) and statistically insignificant.
Consistent with our intuition, we find a negative, and marginally significant, risk
premium for exposure to aggregate forecast dispersion risk. Moreover, the risk
premium of our original factor of cross-sectional dispersion in stock returns is still
found to be negative (-0.11%) and statistically significant (t-stat = -2.48).
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We also consider the stock variance SVAR, which is computed as the sum of
squared returns for each stock, averaged across all stocks. Guo (2006) documents
a significant risk premium associated with SVAR, while Welch and Goyal (2009)
find that this premium is insignificant in a longer sample period. We use its first
difference ∆SV AR to construct the mimicking portfolio FSVAR that is used as
an additional factor in Regression V. As expected, FSVAR is strongly positively
correlated with FCSD (correlation coefficient is 0.34) and it is associated with a
negative premium (-0.03% per month). However, the FSVAR premium is statis-
tically insignificant at any meaningful level. Furthermore, FCSD is still found to
have explanatory power over the cross-section of stock returns, with the dispersion
risk premium being at a similar level as in the previous estimations (-0.11% per
month) and statistically significant (t-stat is -2.55).

We also augment the specification by introducing the Bali et al. (2015) index of
macroeconomic uncertainty. This uncertainty index UNC is constructed by using
the dispersion of analysts’ forecasts with respect to a set of seven key macroeco-
nomic variables (see Bali et al., 2015, for more details). The forecasts are drawn
from the Survey of Professional Forecasters, and the UNC index represents an ex-
ante measure of dispersion of expectations regarding the general macroeconomic
environment. We include the mimicking factor FUNC as an additional regressor
in Regression VI. The factor based on the dispersion in the cross-section of stock
returns FCSD is found to be slightly negatively correlated with the factor on the
dispersion in macroeconomic forecasts FUNC (correlation coefficient is -0.12). We
find that macroeconomic uncertainty is associated with a significantly negative
risk premium in the cross-section (-0.61% per month), consistent with the findings
reported by Bali et al. (2015). Moreover, the dispersion risk premium remains
statistically significant and at the same level, after accounting for the effect of
macroeconomic uncertainty.

The final factor that we consider represents a potentially more direct alter-
native proxy for aggregate idiosyncratic risk, measured as the mean idiosyncratic
stock volatility. More specifically, we follow the common approach of measuring
idiosyncratic volatility of stock returns as the standard deviation of the residuals
from regressing returns against systematic factors (see, for instance, Fu, 2009). At
the end of each month, we regress the daily excess returns of a given stock against
the 3 Fama and French (1993) factors, the Carhart (1997) momentum factor, our
dispersion factor FCSAD and the Pastor and Stambaugh (2003) liquidity factor
FLIQ . We run one time-series regression per stock per month, as long as a given
stock has at least 15 observations in that month. The standard deviation of the
regression’s daily residuals for each stock-month (multiplied with the square root
of the number of daily observations in that month in order to express it in monthly
terms) represents the idiosyncratic volatility of that stock during that month. We

20



then use the cross-sectional mean of individual stocks’ idiosyncratic volatilities for
a given month as a measure of idiosyncratic volatility at the aggregate level during
that month.

After converting the time-series of cross-sectional means to a mimicking portfo-
lio (FIDVOL), we include this aggregate idiosyncratic volatility factor in the aug-
mented Regression VII. As can be seen from the Table, the idiosyncratic volatility
factor FIDVOL is associated with a negative risk premium in the cross-section
of stock returns (-0.18% per month), which is to be expected for a variable that
proxies for aggregate idiosyncratic risk. Nevertheless, with a t-statistic of -1.49,
this risk-premium is statistically insignificant. Somewhat surprisingly, we also find
that the idiosyncratic volatility factor FIDVOL is only weakly correlated with our
dispersion factor FCSD (correlation is 0.03). More importantly, though, the risk-
premium of the dispersion factor is still found to be statistically significant and at
a similar level (approximately -0.10%) even after including the aggregate idiosyn-
cratic volatility as an additional regressor. Overall, our empirical results suggest
that the cross-sectional dispersion of stock returns is associated with a significant
risk-premium in the cross-section of expected stock returns, and one that is distinct
from premia associated with a relatively large set of commonly used systematic
factors.

6 Conclusion

This study proposes a new state variable that appears to be priced in the cross-
section of stock returns. This new variable is measured as the cross-sectional
dispersion of stock returns around the market return, and it has been attracting
increasing attention in the literature in relation to idiosyncratic risk. Given that
dispersion reflects aggregate idiosyncratic risk at the market level, we hypothesize
that it should be priced in the cross-section and we discuss why it is expected to be
associated with a negative risk premium. Our empirical results strongly support
this hypothesis.

More specifically, stocks are found to offer expected returns that vary according
to their sensitivity to changes in dispersion. Stocks with higher “dispersion” betas
offer lower mean returns compared to stocks with lower betas. Furthermore, a zero-
cost spread portfolio that is long in low-beta stocks and short in high-beta ones
is found to offer a return of 11.3% per annum. Based on a Fama-French-Carhart
alpha of 6.3% per annum, a significant portion of this portfolio’s performance
cannot be explained by common systematic factors. We estimate the price of risk
for this state variable to be -0.11% per month (-1.3% per annum) in the cross-
section of stock returns, which is statistically significant and economically large
when compared to the prices of other risk factors that have been examined in
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previous studies.
Finally, we show that these results are robust to a wide set of systematic fac-

tors, idiosyncratic characteristics, and methodological variations. The results from
two-pass regressions of individual stock returns and from double-sorted portfolios
demonstrate that the reported negative relationship between returns and sensitiv-
ity to dispersion holds after accounting for several stock-specific characteristics.
More importantly, we show that the reported dispersion premium is distinct from
premia that have been previously found to be offered by other systematic factors
which are related to uncertainty or heterogeneity, such as volatility, dispersion of
analysts’ earnings forecasts, mean stock variance, macroeconomic uncertainty and
the mean idiosyncratic volatility of stock returns.

Overall, our results suggest that the cross-sectional dispersion of stock returns
is negatively associated with the investment and consumption opportunity set. A
likely explanation for this could be that, since dispersion is driven by stocks’ id-
iosyncratic shocks, it acts as a proxy for aggregate idiosyncratic risk. This source
of risk is expected to affect investors who do not hold diversified portfolios (as has
been previously argued by Goyal and Santa-Clara, 2003), and they would bid up
the prices of stocks that can serve as hedges by offering returns that vary positively
with dispersion, resulting in a negative dispersion premium. Another related ex-
planation could be that dispersion is negatively associated with the effectiveness
of cross-hedges. When the returns of individual stocks are more dispersed around
the market return, cross-hedging using index futures becomes less effective. Con-
sequently, investors who would like to hedge their non-diversified portfolios would
be willing to pay a premium to hold assets that pay their highest returns when
dispersion increases and their ability to cross-hedge decreases.

22



References

[1] Ang, A., Hodrick, R., Xing, Y. and X. Zhang, 2006. The cross-section of
volatility and expected returns. Journal of Finance 61, 259-299

[2] Angelidis, T., Sakkas, A. and N. Tessaromatis, 2015. Stock market disper-
sion, the business cycle and expected factor returns. Journal of Banking and
Finance 59, 265-279

[3] Bali, T., Brown, S. and Y. Tang, 2015. Macroeconomic uncertainty and ex-
pected stock returns. Working Paper

[4] Bali, T., Cakici, N., Yan, X. and Z. Zhang, 2005. Does idiosyncratic risk really
matter?. Journal of Finance 60, 905-929

[5] Bessembinder, H., 1992. Systematic risk, hedging pressure, and risk premiums
in futures markets. Review of Financial Studies 5, 637-677

[6] Bhootra, A., 2011. Are momentum profits driven by the cross-sectional dis-
persion I expected stock returns?. Journal of Financial Markets 14, 494-513

[7] Breeden, D., Gibbons, M. and R. Litzenberger, 1989. Empirical tests of the
consumption-oriented CAPM. Journal of Finance 44, 231-262

[8] Brennan, M., Chordia, T. and A. Subrahmanyam, 1998. Alternative factor
specifications, security characteristics, and the cross-section of expected re-
turns. Journal of Financial Economics 49, 345-373

[9] Carhart, M., 1997. On persistence in mutual fund performance. Journal of
Finance 52, 57-82

[10] Chen, J. Kannan, P., Loungani, P. and B. Trehan, 2011. New evidence on
cyclical and structural sources of unemployment. IMF working paper

[11] Chen, Z. and R. Petkova, 2012. Does idiosyncratic risk proxy for risk expo-
sure?. Review of Financial Studies 25, 2745-2787

[12] Connolly, R. and C. Stivers, 2003. Momentum and reversals in equity-index
returns during periods of abnormal turnover and return dispersion. Journal
of Finance 58, 1521-1555

[13] Diether, K. Malloy, C. and A. Scherbina, 2002. Differences of opinion and the
cross-section of stock returns. Journal of Finance 57, 2113-2141

23



[14] Fama, E. and K. French, 1993. Common risk factors in the returns of stocks
and bonds. Journal of Financial Economics 33, 3-56

[15] Fama, E. and J. Macbeth, 1973. Risk, return, and equilibrium: Empirical
tests. Journal of Political Economy 71, 607-636

[16] Fu, F., 2009. Idiosyncratic risk and the cross-section of stock returns. Journal
of Financial Economics 91, 24-37

[17] Garcia, R., Mantilla-Garcia, D. and L. Martellini, 2014. A model-free measure
of aggregate idiosyncratic volatility and the prediction of market returns.
Journal of Financial and Quantitative Analysis 49, 1133-1165

[18] Goyal, A. and P. Santa-Clara, 2003. Idiosyncratic risk matters!. Journal of
Finance 58, 975-1008

[19] Goyal, A. and A. Saretto, 2009. Cross-section of option returns and volatility.
Journal of Financial Economics 94, 310-326

[20] Guo, H., 2006. On the out-of-sample predictability of stock market returns.
Journal of Business 79, 645-670

[21] Guo, H. and R. Savickas, 2008. Average idiosyncratic volatility in G7 coun-
tries. Review of Financial Studies 21, 1259-1296

[22] Harvey, C. and A Siddique, 2000. Conditional skewness in asset pricing tests.
Journal of Finance 55, 1263-1295

[23] Lamont, O., 2001. Economic tracking portfolios. Journal of Econometrics 105,
161-184

[24] Levy, H., 1978. Equilibrium in an imperfect market: A constraint on the
number of securities in the portfolio. American Economic Review 68, 643-658

[25] Maio, P., 2016. Stock return dispersion and momentum. Working Paper

[26] Maio, P., 2015. Cross-sectional return dispersion and the equity premium.
Journal of Financial Markets, forthcoming

[27] Malkiel, B. and Y. Xu, 1997. Risk and return revisited. Journal of Portfolio
Management 23, 9-14

[28] Malkiel, B. and Y. Xu, 2005. Idiosyncratic risk and security returns. Working
Paper

24



[29] Merton, R., 1987. A simple model of capital market equilibrium with incom-
plete information. Journal of Finance 42, 483-510

[30] Pastor, L. and R. Stambaugh, 2003. Liquidity risk and expected stock returns.
Journal of Political Economy 111, 642-685

[31] Pollet, J. and M. Wilson, 2010. Average correlation and stock market returns.
Journal of Financial Economics 96, 364-380

[32] Stivers, C. and L. Sun, 2010. Cross-sectional return dispersion and time varia-
tion in value and momentum premiums. Journal of Financial and Quantitative
Analysis 45, 987-1014

[33] Wei, I. and C. Zhang, 2005. Idiosyncratic risk does not matter: A re-
examination of the relationship between average returns and average volatil-
ities. Journal of Banking and Finance 29, 603-621

[34] Welch, I. and A. Goyal, 2008. A comprehensive look at the empirical perfor-
mance of equity premium prediction. Review of Financial Studies 21, 1455-
1508

25



Figure 1: Time-series of CSD

Notes: This Figure plots the daily time-series of cross-sectional dispersion of stock returns. The
sample period is January 1996 to December 2012.
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Table 1: Returns of sorted and spread portfolios

Mean St.Dev. Pre-
formation
β∆CSD

Post-
formation
β∆CSD

Mkt Share
(%)

Panel A: Sorted Portfolios
1 0.0137 0.0739 -6.85 -0.03 0.14
2 0.0118 0.0752 -2.19 0.06 0.22
3 0.0076 0.0464 0.06 0.10 0.25
4 0.0065 0.0496 2.30 0.19 0.24
5 0.0043 0.0649 6.71 0.22 0.15

Panel B: Spread Portfolios
1-5 0.0094

(2.82)
N-P 0.0049

(2.28)

Notes: This Table reports the monthly returns of portfolios that have been formed according
to their exposure to ∆CSD risk. For every month, we run the following time-series regression
for every stock using daily returns over the previous month

rit = α+ βi
MKTMKTt + βi

∆CSD∆CSD + ǫit
We sort stocks into quintiles according to their β∆CSD, from lowest (quintile 1) to highest
(quintile 5), and we compute value-weighted monthly total (not excess) returns of each quintile
portfolio in Panel A. Pre-formation betas refer to the value-weighted β∆CSD within each
quintile portfolio at the beginning of the month. Post-formation betas are estimated from
running the same time-series regression using daily portfolio returns during the same month.
We also sort stocks into two groups labelled P and N, corresponding to positive and negative
dispersion betas, respectively. Panel B reports the mean return and t-statistic of two spread
portfolios. The first spread portfolio goes long in the first quintile portfolio and short in the
last quintile portfolio from Panel A. The second spread portfolio goes long in stocks with
negative betas and short in stocks with positive ones.
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Table 2: Risk-adjusted returns of spread portfolios

1-5 N-P
constant 0.0055 0.001

(2.87) (1.64)
MKT 0.1003 0.1039

(1.21) (1.37)
SMB -0.2441 -0.2021

(-1.75) (-1.70)
HML -0.0819 -0.0649

(-0.46) (-0.65)
MOM 0.133 0.0978

(1.30) (1.18)
Adj.R2 0.05 0.07

Notes: This Table reports the results from regressing the monthly returns of two spread
portfolios (constructed as described in Table 1) against a set of systematic factors.

r
p
t = αp + β

p
systFt + ǫ

p
t

where Ft is the vector of systematic factors comprising the Fama and French (1993) three
factors (MKT , SMB and HML) and the Carhart (1997) momentum factor (MOM). We
report the estimated coefficients and their t-statistics (in brackets) using Newey and West
(1987) standard errors. The last row reports the Adjusted R squared.
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Table 3: Risk-adjusted stock returns controlling for stock characteristics: Two-pass
regressions

constant 0.0077
(2.14)

β∆CSD -0.0001
(-2.28)

size 0.0000
(-2.54)

rMOM 0.0009
(0.47)

std.dev. 0.0420
(0.36)

skewnes -0.0001
(-0.96)

kurtosis 0.0000
(-0.22)

forecast dispersion 0.0001
(1.18)

liquidity -5.6118
(-0.87)

systematic risk % 0.0189
(1.90)

co-skewness -0.0022
(-2.47)

idiosyncratic volatility -0.0143
(-0.50)

Adj.R2 0.26

Notes: This Table reports the results from cross-sectional regressions of monthly risk-adjusted
stock returns on a set of stock characteristics

ri,t − β̂iFt = γ0,t + γ′

1,tZi,t−1 + ui,t

The betas are obtained from time-series regressions of stock returns on a set of systematic
factors

rit = αi + βiFt + ǫit
The systematic factors are the Fama and French (1993) three factors (MKT , SMB and
HML) and the Carhart (1997) momentum factor (MOM). The vector βi refers to the
factor loadings obtained from a single full-sample time-series regression per stock. The stock
characteristics are the beta of cross-sectional dispersion (β∆CSD, computed as described in
Table 1), size (market capitalization in billion), a stock-specific momentum factor (rmom, given
as the stock return over the previous 6 months), the standard deviation, skewness and kurtosis
of stock returns over the previous 6 months, the dispersion of analysts’ forecasts (normalized),
the Pastor and Stambaugh (2003) liquidity measure, the percentage of stock returns explained
by systematic risk (given as the Adj.R2 of the first-stage time-series regressions), the co-
skewness of stock returns with market returns, and the idiosyncratic volatility of stock returns.
We run one cross-sectional regression per month. The table reports the mean estimated
coefficients and their t-statistics (in brackets) based on Newey and West (1987) standard
errors, as well as the mean Adjusted R squared.
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Table 4: Stock returns controlling for stock characteristics: Double-sorted portfo-
lios

1-5 N-P
βMKT 0.0086 0.0053
size 0.0110 0.0060

rMOM 0.0076 0.0026
std.dev 0.0078 0.0056
skewness 0.0064 0.0033
kurtosis 0.0101 0.0051

forecast dispersion 0.0109 0.0073
liquidity 0.0103 0.0029

systematic risk % 0.0070 0.0037
co-skewness 0.0059 0.0029

idiosyncratic volatility 0.0084 0.0034

Notes: This Table reports the mean returns of double-sorted portfolios. On each month,
we first sort all stocks into quintiles according to a particular characteristic (as presented in
Table 3). Then, stocks in each characteristic-based quintile are further sorted into quintiles
according to their dispersion betas and into two portfolios according to the betas’ sign (as
described in Table 1). The dispersion-based portfolios are averaged across each of the five
characteristic-based portfolios, resulting in a set of continuous time-series of monthly returns.
The first column reports the time-series mean returns of a portfolio going long in the lowest
beta stocks and short in the highest beta ones. The second column reports the time-series
mean of a portfolio going long in stocks with negative betas and short in stocks with positive
ones. Each row corresponds to a specific characteristic used for the first sort.
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Table 5: Robustness
1-5 N-P

mean alpha mean alpha
formation window

3 months 0.0044 0.0031 0.0044 0.0005
6 months 0.0025 0.0011 0.0042 0.0001
12 months 0.0027 0.0019 0.0028 0.0003

MKT sign
negative 0.005 0.0034 0.0021 0.0005
positive 0.012 0.0087 0.0065 0.0045

∆CSD sign
negative 0.0077 0.0038 0.0056 0.0017
positive 0.0122 0.0075 0.0039 0.0008

∆CSD measure
AR(1) 0.0091 0.0077 0.0054 0.0041

Notes: This Table reports the mean monthly returns and risk-adjusted returns (alphas) of two
spread portfolios under a set of robustness checks. The spread portfolios are constructed as
described in Table 1, and alphas are computed as described in Table 2. The first panel reports
portfolio returns under three alternative windows for computing pre-formation betas (β∆CSD)
when sorting stocks into portfolios. The second panel reports portfolio returns conditional on
the sign of excess market returns. The third panel reports portfolio returns conditional on
the sign of changes in cross-sectional dispersion. The fourth panel reports portfolio returns
when changes in dispersion have been computed as the innovations from an AR(1) model.
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Table 6: The price of cross-sectional dispersion risk

I II III IV V VI VII
constant -0.111 -0.182 -0.178 -0.089 -0.161 -0.244 -0.080

(-0.55) (-1.36) (-1.39) (-0.56) (-1.17) (-1.24) (-1.46)
MKT 1.407 1.536 1.529 1.234 1.490 1.661 1.509

(4.35) (5.30) (5.88) (3.30) (4.79) (3.97) (4.54))
SMB 1.352 1.286 1.294 0.882 1.303 1.315 1.003

(2.24) (3.86) (3.03) (2.02) (3.87) (4.01) (4.00)
HML 0.324 -0.088 -0.096 -0.508 -0.073 -0.027 -0.012

(0.68) (-0.26) (-0.30) (-1.23) (-0.23) (-0.07) (-0.47)
MOM 2.863 2.541 2.556 2.374 2.633 2.419 2.011

(2.92) (4.53) (3.83) (3.98) (3.88) (3.94) (3.54)
FCSD -0.097 -0.095 -0.091 -0.107 -0.105 -0.106 -0.097

(-2.44) (-2.45) (-2.68) (-2.48) (-2.55) (-2.38) (-2.79)
FLIQ 0.001 0.001 0.009 0.001 0.001 0.001

(2.24) (1.14) (1.79) (1.81) (1.01) (1.05)
FV IX -0.122

(-1.47)
FFDISP -0.176

(-1.94)
FSV AR -0.033

(-0.88)
FUNC -0.610

(-2.91)
FIDV OL -0.180

(-1.49)
Adj.R2 0.84 0.90 0.91 0.91 0.90 0.90 0.87

Notes: This Table reports the Fama-MacBeth (1973) factor premia on 25 equity portfolios,
which have been sorted first on their βMKT and then on their β∆CSD. The factors com-
prise the excess market return MKT , the two additional Fama-French (1993) factors SMB

and HML, the Carhart (1997) momentum factor MOM , the Pastor and Stambaugh (2003)
aggregate liquidity measure FLIQ, changes in the cross-sectional returns dispersion FCSD,
monthly changes in the implied volatility index FV IX, changes in the aggregate forecast
dispersion FFDISP , changes in the mean variance of individual stocks FSV AR, changes in
the Bali et al. (2015) macroeconomic uncertainty index FUNC, and changes in the aggregate
idiosyncratic stock volatility FIDV OL. The table presents the loadings obtained from the
second-pass cross-sectional regression, with t-statistics based on Newey-West (1987) standard
errors reported in brackets. Each loading is reported as the coefficient times 100, so that it
can be interpreted as the monthly percentage return. The last row reports the Adjusted R
squared.
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Table 7: Factor Correlations
FCSD FVIX FFDISP FSVAR FUNC FIDVOL MKT SMB HML MOM FLIQ

FCSD 1.00 0.43 0.03 0.34 -0.12 0.03 -0.40 -0.08 0.09 0.40 0.02
FVIX 0.43 1.00 0.02 0.31 -0.17 -0.04 -0.57 -0.21 0.15 0.28 0.02
FFDISP 0.03 0.02 1.00 0.02 -0.05 -0.06 0.01 0.03 0.06 -0.02 -0.05
FSVAR 0.34 0.31 0.02 1.00 -0.12 0.01 -0.15 -0.02 0.03 0.14 0.04
FUNC -0.12 -0.17 -0.05 -0.12 1.00 0.23 0.17 0.09 0.01 -0.24 -0.06
FIDVOL 0.03 -0.04 -0.06 0.01 0.23 1.00 -0.07 0.03 -0.09 -0.08 0.62

Notes: This Table reports the correlations between monthly values of a set of pricing factors. The factors comprise the changes in
cross-sectional returns dispersion FCSD, monthly changes in the implied volatility index FVIX, changes in the aggregate forecast
dispersion FFDISP, changes in the mean variance of individual stocks FSVAR, changes in the Bali et al. (2015) macroeconomic
uncertainty index FUNC, changes in the aggregate idiosycratic stock volatility FIDVOL, the excess market return MKT, the two
additional Fama-French factors SMB and HML, the Carhart (1997) momentum factor MOM , and the Pastor and Stambaugh (2003)
aggregate liquidity measure FLIQ.
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