285 research outputs found

    Simultaneous microsurgical spermatic vein ligation and sclerotherapy - A combined procedure for the treatment of recurrent or persistent varicocele

    Get PDF
    Objectives: Microsurgical ligation as well as antegrade sclerotherapy have been established in varicocele treatment. The aim of this study was to evaluate whether a combination of microsurgery. and sclerotherapy can: provide a safe and effective treatment of varicocele recurrence or persistence. Methods. Nine patients with, recurrent or persistent varicoceles were operated by means of the combination method. Under microscopic control varix veins were ligated selectively preserving: lymphatics and arteries. Ectopic veins as a possible source for varicocele persistence or recurrence were also ligated. Finally, an intraoperative venography with subsequent sclerotherapy was, performed through one of the dissected veins. Results. Despite: difficult anatomical situations after previous surgical interventions, the operations were perform, ed successfully without any complications. Clinical controls showed varicocele disappearance without damage of the testis. No varicocele recurrence or persistence was observed. Conclusions. This method combines the advantages of both methods. Precision of the microsurgical technique is combined with velocity of sclerotherapy. Thus, it may represent an Interesting alternative to conventional operation methods especially in the treatment of recurrent or persistent varicoceles. Copyright (C) 2001 S. Karger AG, Basel

    Parametric X-Ray detection in UA9 experiment

    Get PDF
    Parametric X-Ray radiation (PXR) is a phenomenon due to the interaction of charged particles inside a crystal well ordered lattice. The passage of the particles inside the potential field into the crystal causes small deflections which result in radiation emissions. By this way the emission is diffracted by the crystal planes. In this work the results of the last five years of activity on PXR detection during UA9 experiment are reported. The beam provided in H8 area, protons or Pb ions, is channeled inside different crystals and PXR emission is detected

    Bragg condition for scattering into a guided optical mode

    Get PDF
    We theoretically investigate light scattering from an array of atoms into the guided modes of a waveguide. We observe that the scattering of a plane-wave laser field into the waveguide modes is dramatically enhanced for angles that deviate from the geometric Bragg angle. This modified Bragg condition arises from the dispersive interactions between the guided light and the atoms. We analytically identify various parameter regimes in which the scattering rate features a qualitatively different dependence on the atom number, such as linear, quadratic, oscillatory, or constant behavior. In combination with rigorous numerical calculations, we demonstrate that these scalings are independent of a possible asymmetry of the atom-light coupling. Finally, we show that our findings are robust against voids in the atomic array, facilitating their experimental observation and potential applications. Our work sheds light on collective light scattering and the interplay between geometry and interaction effects, with implications reaching beyond the optical domain

    Micro-endoscopy of the human vas deferens: a feasibility study of a novel device in several ex vivo models

    Get PDF
    The aim of this study was to show limitation as well as potential of micro-endoscopy techniques as an innovative diagnostic and therapeutic approach in andrology. Two kinds of custom-made micro-endoscopes (ME) were tested in ex vivo vas deferens specimen and in post-mortem whole body. The semi-rigid ME included a micro-optic (0.9mm outer diameter [OD], 10.000 pixels, 120 degrees vision angle [VE], 3-20mm field depth [FD]) and an integrated fibre-optic light source. The flexible ME was composed of a micro-optic (OD=0.6mm, 6.000 pixels, 120 degrees VE, 3-20mm FD). The ex vivo study included retrograde investigation of the vas deferens (surgical specimen n=9, radical prostatectomy n=3). The post-mortem investigation (n=4) included the inspection of the vas deferens via both approaches. The results showed that antegrade and retrograde rigid endoscopy of the vas deferens were achieved as a diagnostic tool. The working channel enabled therapeutic use including biopsies or baskets. Using the flexible ME, the orifices of the ejaculatory ducts were identified. In vivo cadaveric retrograde cannulation of the orifices was successful. Post-mortem changes of verumontanum hindered the examinations beyond. Orifices were identified shaded behind a thin transparent membrane. Antegrade vasoscopy using flexible ME was possible up to the internal inguinal ring. Further advancement was impossible because of anatomical angle and lack adequate vision guidance. The vas deferens interior was clearly visible and was documented by pictures and movies. Altogether, the described ME techniques were feasible and effective, offering the potential of innovative diagnostic and therapeutic approaches for use in the genital tract. Several innovative indications could be expected

    [female Urethral Obstruction And Bladder Neck Stenosis - Fact Or Myth - How To Proceed].

    Get PDF
    The female urethra is probably the most neglected organ in women. Female urethral stricture and primary bladder neck obstruction are rare clinical entities. Traditional and new surgical techniques have been described for the treatment of female urethral stricture. However, they are based on limited data. There is no consensus on best management. The techniques of urethroplasty all have a higher mean success rate (80-94%) than urethral dilatation (< 50%), albeit with shorter mean follow-up. Urethroplasty performed by experienced surgeons appears to be a feasible option in women who have failed urethral dilatation, although there is a lack of high-level evidence to recommend one technique over another.Primary bladder neck obstruction (PBNO) is a condition in which the bladder neck fails to open adequately during voiding. This leads to increased striated sphincter activity or obstruction of urinary flow without another anatomic cause being present, for example an obstruction caused by genitourinary prolapse in women. Watchful waiting, pharmacotherapy and surgical intervention are possible treatments.46382-38

    The promoter from SlREO, a highly-expressed, root-specific Solanum lycopersicum gene, directs expression to cortex of mature roots

    Get PDF
    Root-specific promoters are valuable tools for targeting transgene expression, but many of those already described have limitations to their general applicability. We present the expression characteristics of SlREO, a novel gene isolated from tomato (Solanum lycopersicum L.). This gene was highly expressed in roots but had a very low level of expression in aerial plant organs. A 2.4-kb region representing the SlREO promoter sequence was cloned upstream of the uidA GUS reporter gene and shown to direct expression in the root cortex. In mature, glasshouse-grown plants this strict root specificity was maintained. Furthermore, promoter activity was unaffected by dehydration or wounding stress but was somewhat suppressed by exposure to NaCl, salicylic acid and jasmonic acid. The predicted protein sequence of SlREO contains a domain found in enzymes of the 2-oxoglutarate and Fe(II)-dependent dioxygenase superfamily. The novel SlREO promoter has properties ideal for applications requiring strong and specific gene expression in the bulk of tomato root tissue growing in soil, and is also likely to be useful in other Solanaceous crop

    DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response

    Full text link
    Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2 nm into nanoscale helices. The helical structures assemble in solution in a massively parallel fashion and with near quantitative yields. As a designed optical response, we generated giant circular dichroism and optical rotary dispersion in the visible range that originates from the collective plasmon-plasmon interactions within the nanohelices. We also show that the optical response can be tuned through the visible spectrum by changing the composition of the metal nanoparticles. The observed effects are independent of the direction of the incident light and can be switched by design between left- and right-handed orientation. Our work demonstrates the production of complex bulk materials from precisely designed nanoscopic assemblies and highlights the potential of DNA self-assembly for the fabrication of plasmonic nanostructures.Comment: 5 pages, 4 figure

    Ice nucleation by water-soluble macromolecules

    Get PDF
    Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models
    • …
    corecore