584 research outputs found

    On Form Factors in nested Bethe Ansatz systems

    Full text link
    We investigate form factors of local operators in the multi-component Quantum Non-linear Schr\"odinger model, a prototype theory solvable by the so-called nested Bethe Ansatz. We determine the analytic properties of the infinite volume form factors using the coordinate Bethe Ansatz solution and we establish a connection with the finite volume matrix elements. In the two-component models we derive a set of recursion relations for the "magnonic form factors", which are the matrix elements on the nested Bethe Ansatz states. In certain simple cases (involving states with only one spin-impurity) we obtain explicit solutions for the recursion relations.Comment: 34 pages, v2 (minor modifications

    One-point functions in massive integrable QFT with boundaries

    Get PDF
    We consider the expectation value of a local operator on a strip with non-trivial boundaries in 1+1 dimensional massive integrable QFT. Using finite volume regularisation in the crossed channel and extending the boundary state formalism to the finite volume case we give a series expansion for the one-point function in terms of the exact form factors of the theory. The truncated series is compared with the numerical results of the truncated conformal space approach in the scaling Lee-Yang model. We discuss the relevance of our results to quantum quench problems.Comment: 43 pages, 20 figures, v2: typos correcte

    Bulk flows in Virasoro minimal models with boundaries

    Full text link
    The behaviour of boundary conditions under relevant bulk perturbations is studied for the Virasoro minimal models. In particular, we consider the bulk deformation by the least relevant bulk field which interpolates between the mth and (m-1)st unitary minimal model. In the presence of a boundary this bulk flow induces an RG flow on the boundary, which ensures that the resulting boundary condition is conformal in the (m-1)st model. By combining perturbative RG techniques with insights from defects and results about non-perturbative boundary flows, we determine the endpoint of the flow, i.e. the boundary condition to which an arbitrary boundary condition of the mth theory flows to.Comment: 34 pages, 6 figures. v4: Typo in fig. 2 correcte

    Form factor expansion for thermal correlators

    Get PDF
    We consider finite temperature correlation functions in massive integrable Quantum Field Theory. Using a regularization by putting the system in finite volume, we develop a novel approach (based on multi-dimensional residues) to the form factor expansion for thermal correlators. The first few terms are obtained explicitly in theories with diagonal scattering. We also discuss the validity of the LeClair-Mussardo proposal.Comment: 41 pages; v2: minor corrections, v3: minor correction

    Acoustic geometry for general relativistic barotropic irrotational fluid flow

    Full text link
    "Acoustic spacetimes", in which techniques of differential geometry are used to investigate sound propagation in moving fluids, have attracted considerable attention over the last few decades. Most of the models currently considered in the literature are based on non-relativistic barotropic irrotational fluids, defined in a flat Newtonian background. The extension, first to special relativistic barotropic fluid flow, and then to general relativistic barotropic fluid flow in an arbitrary background, is less straightforward than it might at first appear. In this article we provide a pedagogical and simple derivation of the general relativistic "acoustic spacetime" in an arbitrary (d+1) dimensional curved-space background.Comment: V1: 23 pages, zero figures; V2: now 24 pages, some clarifications, 2 references added. This version accepted for publication in the New Journal of Physics. (Special issue on "Classical and Quantum Analogues for Gravitational Phenomena and Related Effects"

    Fermi super-Tonks-Girardeau state for attractive Fermi gases in an optical lattice

    Full text link
    We demonstrate that a kind of highly excited state of strongly attractive Hubbard model, named of Fermi super-Tonks-Girardeau state, can be realized in the spin-1/2 Fermi optical lattice system by a sudden switch of interaction from the strongly repulsive regime to the strongly attractive regime. In contrast to the ground state of the attractive Hubbard model, such a state is the lowest scattering state with no pairing between attractive fermions. With the aid of Bethe-ansatz method, we calculate energies of both the Fermi Tonks-Girardeau gas and the Fermi super-Tonks-Girardeau state of spin-1/2 ultracold fermions and show that both energies approach to the same limit as the strength of the interaction goes to infinity. By exactly solving the quench dynamics of the Hubbard model, we demonstrate that the Fermi super-Tonks-Girardeau state can be transferred from the initial repulsive ground state very efficiently. This allows the experimental study of properties of Fermi super-Tonks-Girardeau gas in optical lattices.Comment: 7 pages, 7 figure

    CLINICAL DECISION SUPPORT SYSTEM FOR OPTIMAL VAD WEANING

    Full text link

    Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory

    Get PDF
    We report results from a combined analysis of solar neutrino data from all phases of the Sudbury Neutrino Observatory. By exploiting particle identification information obtained from the proportional counters installed during the third phase, this analysis improved background rejection in that phase of the experiment. The combined analysis resulted in a total flux of active neutrino flavors from 8B decays in the Sun of (5.25 \pm 0.16(stat.)+0.11-0.13(syst.))\times10^6 cm^{-2}s^{-1}. A two-flavor neutrino oscillation analysis yielded \Deltam^2_{21} = (5.6^{+1.9}_{-1.4})\times10^{-5} eV^2 and tan^2{\theta}_{12}= 0.427^{+0.033}_{-0.029}. A three-flavor neutrino oscillation analysis combining this result with results of all other solar neutrino experiments and the KamLAND experiment yielded \Deltam^2_{21} = (7.41^{+0.21}_{-0.19})\times10^{-5} eV^2, tan^2{\theta}_{12} = 0.446^{+0.030}_{-0.029}, and sin^2{\theta}_{13} = (2.5^{+1.8}_{-1.5})\times10^{-2}. This implied an upper bound of sin^2{\theta}_{13} < 0.053 at the 95% confidence level (C.L.)

    Entanglement Dynamics after a Quench in Ising Field Theory: A Branch Point Twist Field Approach

    Get PDF
    We extend the branch point twist field approach for the calculation of entanglement entropies to time-dependent problems in 1+1-dimensional massive quantum field theories. We focus on the simplest example: a mass quench in the Ising field theory from initial mass m0 to final mass m. The main analytical results are obtained from a perturbative expansion of the twist field one-point function in the post-quench quasi-particle basis. The expected linear growth of the Rényi entropies at large times mt ≫ 1 emerges from a perturbative calculation at second order. We also show that the Rényi and von Neumann entropies, in infinite volume, contain subleading oscillatory contributions of frequency 2m and amplitude proportional to (mt)−3/2. The oscillatory terms are correctly predicted by an alternative perturbation series, in the pre-quench quasi-particle basis, which we also discuss. A comparison to lattice numerical calculations carried out on an Ising chain in the scaling limit shows very good agreement with the quantum field theory predictions. We also find evidence of clustering of twist field correlators which implies that the entanglement entropies are proportional to the number of subsystem boundary points
    • …
    corecore