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1 Introduction

Finite size effects play a central role in quantum field theory and statistical physics. Apart

from having direct relevance to statistical physics models in finite volume, describing for ex-

ample boundary critical phenomena or percolation problems, they naturally appear in the

description of systems at finite temperature. For example, two-dimensional Euclidean field

theories with a finite, periodic direction provide a framework for studying one-dimensional
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theories at finite temperature. Moreover, boundary phenomena and finite volume systems

can play an important role in the understanding of quantum quenches: in certain cases the

boundaries play the role of the initial and final states of the non-equilibrium problem [1–3].

In addition, in many cases, especially for numerical simulations, the system under consid-

eration is put in a finite volume box. In this case it is essential to understand the finite

size behaviour of various quantities.

Correlation functions are very important both at finite and infinite volume because

they encode a lot of non-trivial information about the spectrum and the interactions in

the theory. Calculating correlators is not a simple task even in integrable theories. In 1+1

dimensional integrable quantum field theories the form factor approach provides an efficient

way to calculate correlation functions at zero temperature and in infinite volume. The

essence of the method is inserting a complete set of asymptotic states into the correlators

and then making use of the explicit forms of the appearing matrix elements of the operators,

the so-called form factors, which are known in many integrable models.

However, for finite temperature or equivalently, for finite geometry the applicability of

the form factor approach at present is somewhat constrained. There has been considerable

progress in free theories (for example the quantum Ising model), where the non-interacting

nature of the theory allows for calculating correlation functions both in the finite temper-

ature setting [4] or in the presence of a boundary [5, 6]. However, interacting theories pose

technical and conceptual difficulties, which have not yet been overcome.

In the finite temperature case one particular approach was developed by LeClair and

Mussardo [7]. They proposed an integral series for correlation functions based on the exact

form factors and the Thermodynamic Bethe Ansatz equations. Their result for one-point

functions were checked in particular examples [8–10], and then a highly non-trivial check

was given by confirming it up to the third order in the low-temperature expansion using

finite volume regularisation [11]. For two-point functions, however, some counterexamples

were found where the formalism does not seem to work [8, 9] and the problem is still far

from being settled.

In this work we address the generalised problem of one-point functions in finite volume

where instead of periodic boundary conditions we consider non-trivial boundary conditions,

thus we have a strip geometry instead of a cylinder. In this sense our work can be a first

step in finding an expression similar to the LeClair-Mussardo formula in the boundary

case. Expectation values in the presence of boundaries in general depend on the position

of the operator in question.1 The exact determination of them is thus non-trivial; for

one boundary the problem has comparable difficulty to that of the two-point functions in

infinite volume; and similarly, in the presence of two boundaries the technical problems

resemble the case of a three-point function or a two-point function at finite temperature.

In the work [13] the authors considered the case of one boundary, or in other words

the problem when the operator is much closer to one of the boundaries than the volume

of the system. They developed a form factor expansion which was later used in [2, 14]

1This has to be contrasted with the problem of expectation values of boundary operators considered for

example in [12].
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to study certain problems in condensed-matter systems. In addition, the analytic results

were confronted in [13] with the numerical Truncated Conformal Space Approach (TCSA).

Our expansion reproduces and goes beyond their result, and we will show that at small

enough volume our results give a remarkable improvement. Our numerical comparison

with the TCSA results is very similar to their method. On the other hand, the theoretical

determination of the spectral series is more involved: there appear conceptual (and also

technical) difficulties, which are not present in [13]. Most importantly, one has to deal with

certain singularities of the form factors and also the divergent contributions to the partition

function. In this work we make use of a finite volume regularisation scheme, which first

was used in interacting field theory in [11, 15] and later in [16, 17].

As remarked above, integrable boundary field theory can be used to investigate quench

problems. Recent papers [2, 3] consider the time evolution of one-point functions after cer-

tain types of global quenches. As we will show, their problem and method have similarities

to ours and thus our results also have relevance to quench problems.

The outline of the paper is the following. In section 2 we introduce the finite volume

boundary states and as a first application we give a series expansion of the finite volume

ground state energy. In section 3 we turn to the problem of one-point functions. After

describing the method in detail we present the explicit calculations of the first terms in the

form factor expansion. At the end of the section we discuss the relation of our expression

with existing results in the literature and we also explain its connection to quench problems.

Section 4 is devoted to the numerical comparison between the spectral expansion and the

TCSA data for the scaling Lee-Yang model, considered as a perturbed conformal field

theory. First we collect the relevant properties and formulae of the model, then we discuss

briefly the TCSA method and how one-point functions can be obtained in this framework.

Finally we compare the form factor and TCSA results for various combinations of boundary

conditions and strip widths. Our conclusions are given in section 5. For some technical

details and for a collection of our final result the reader is referred to the appendices.

2 Boundary states and expectation values

For the sake of simplicity let us consider an integrable relativistic field theory with only

one particle species with mass m and two-particle S-matrix S(θ). We are interested in the

case where the theory lives on a finite line segment of length R with boundary conditions

at the edges that do not spoil the integrability.

If B denotes such an integrable boundary then the scattering of an incoming multi-

particle state,2

|A(θ1)A(θ2) . . . A(θn)〉B , (2.1)

is purely elastic, i.e. the set of outgoing rapidities is {−θ1,−θ2, . . . ,−θN} and the scattering

can be described by a product of one-particle reflection amplitudes which are defined as [18]

|A(θ)〉B = RB(θ)|A(−θ)〉B . (2.2)

2The subscript B indicates that the state is in the Hilbert space of the boundary theory.
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Figure 1. One-point function in the original strip geometry (a) and the finite volume regularisation

performed in the crossed channel (b). The upward arrows denote the (imaginary) time evolution

generated by the corresponding Hamiltonians.

The main objective of this paper is to evaluate the vacuum expectation value

〈O(x)〉α,βR (2.3)

in the presence of the integrable boundaries α and β where x ∈ [0, R]. Here the expectation

value is taken with respect to the vacuum state of the finite volume Hamiltonian Hα,β
R (see

figure 1(a)). In a more general setting one can also take excited states corresponding to

boundary bound states but we do not elaborate on this case here.

One can consider the same quantity (2.3) after a Euclidean rotation. In this picture

R plays the role of the Euclidean time variable and the expectation value is given by the

formal expression

〈O(x)〉α,βR =
〈Bα| e−HxO e−H(R−x)|Bβ〉

〈Bα|e−HR|Bβ〉
, (2.4)

where H is the infinite volume Hamiltonian and |Bα〉 and |Bβ〉 are the boundary states

corresponding to the boundary conditions α and β, respectively. When they do not con-

tain zero-momentum particles, they can be expanded in the asymptotic multi-particle

basis as [18]

|Bj〉 = Nj exp

(∫

dθ

4π
Kj(θ)A(−θ)A(θ)

)

|0〉 , (2.5)

where

Kj(θ) = Rj(iπ/2 − θ) , j = α, β

and A(θ) are the Faddeev-Zamolodchikov creation operators satisfying the commutation

relations

A(θ1)A(θ2) = S(θ1 − θ2)A(θ2)A(θ1) .

The integrals run from −∞ to ∞ unless otherwise stated. The amplitudes Ki(θ) satisfy

the “boundary cross-unitary equation” [18]

Kj(θ) = S(2θ)Kj(−θ) ,
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which serves as a consistency relation of (2.5). The behaviour under complex conjugation

is given by Kj(θ)
∗ = Kj(−θ).

In general there may be additional contributions to the boundary state involving zero-

momentum particles, which can be associated with a non-zero coupling of a single particle

state to the boundary in the original channel. In this case there is a corresponding pole in

the reflection factor at θ = iπ/2:

Rj(θ) ∼
i

2

(gj)
2

θ − iπ/2
,

and the boundary state is given by

|Bj〉 = Nj exp

(

ḡjA(0) +

∫

dθ

4π
Kj(θ)A(−θ)A(θ)

)

|0〉 , (2.6)

where ḡj represents the one-particle coupling to the boundary. Originally it was argued

that ḡj = gj [18], however it was found numerically in [13] that the proper normalisation is

ḡj = gj/2. This claim was later proven on general grounds in [19, 20]. The normalisation

constants Nj are infinite in the infinite volume system. However, this is not a serious

problem as they drop out from the calculation of the vacuum expectation values and one

may set them to unity.

The general strategy to evaluate (2.4) now is the following. We substitute expres-

sion (2.6) for the boundary states and expand the exponentials. The resulting multi-particle

states are eigenstates of the Hamiltonian, and the matrix elements of the local operator O

between these states are the form factors, which can be determined in principle and which

are actually known in many integrable models.

The special case for the R → ∞ limit of (2.4) with x fixed (one-point function in

the presence of only one boundary) was investigated in [13]. In this case there are no

conceptual and technical difficulties and the spectral expansion described above (valid for

gα = 0) reads

〈O(x)〉 =
∞
∑

n=0

1

2nn!

∫

dθ1
2π

. . .
dθn
2π

FO2n(−θ1, θ1, . . . ,−θn, θn)
n
∏

i=1

(

Kα(θi)e
−2m cosh θix

)

,

(2.7)

where

FOm(θ1, . . . , θm) = 〈0|O|θ1, . . . , θm〉
are the elementary form factors of O in infinite volume. In integrable models they are

meromorphic functions of the rapidities which satisfy the so-called form factor axioms

(Watson equations), which can be considered as axioms for the form factor bootstrap.

Supplied with the principles of maximum analyticity and the cluster property they contain

enough information to determine the form factors completely. In a theory with only one

particle species the form factor axioms read:

I. Lorentz invariance:

FOn (θ1 + Λ, . . . , θn + Λ) = esΛFOn (θ1, . . . , θn) , (2.8)
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where s is the Lorentz spin of the operator O. In this work we only consider scalar

operators corresponding to s = 0.

II. Exchange:

FOn (θ1, . . . , θk, θk+1, . . . , θn) = S(θk − θk+1)F
O
n (θ1, . . . , θk+1, θk, . . . , θn) . (2.9)

III. Cyclic permutation:

FOn (θ1 + 2iπ, θ2, . . . , θn) = FOn (θ2, . . . , θn, θ1) . (2.10)

IV. Kinematical singularity

− iRes
θ=θ′

FOn+2(θ + iπ, θ
′

, θ1, . . . , θn) =

(

1 −
n
∏

k=1

S(θ − θk)

)

FOn (θ1, . . . , θn) . (2.11)

V. Dynamical singularity

− iRes
θ=θ

′
FO
n+2(θ + iu, θ

′ − iu, θ1, . . . , θn) = ΓFO
n+1(θ, θ1, . . . , θn) , (2.12)

where Γ is the on-shell three-particle coupling corresponding to a bound state pole

of the S-matrix

S(θ ∼ i2u) ∼ iΓ2

θ − i2u
, θ ∼ 2iu . (2.13)

In a theory with only one particle, like the scaling Lee-Yang model the only possibility

is u = π/3.

We also note that all form factors can be expressed in terms of the elementary form

factors with the help of the crossing relation

FOmn(θ
′

1, . . . , θ
′

m|θ1, . . . , θn) = FOm−1,n+1(θ
′

1, . . . , θ
′

m−1|θ
′

m + iπ, θ1, . . . , θn)

+

n
∑

k=1

(

2πδ(θ
′

m−θk)
k−1
∏

l=1

S(θl − θk)×FOm−1,n−1(θ
′

1, . . . , θ
′

m−1|θ1, . . . , θk−1, θk+1 . . . , θn)

)

.

For an introduction to the form factor bootstrap program we refer the reader to the review

of Smirnov [21] and to papers [22–25].

In the simultaneous presence of the two boundaries the expression (2.4) is ill-defined.

There are divergent contributions both to the numerator and the denominator, which are

associated with disconnected terms of the form factors and with various contributions

to the partition function. One way to evaluate (2.4) is to introduce finite volume as a

regulator of the singular contributions. This method was successfully used in [11] to derive

a rigorous low-temperature expansion for one-point functions at finite temperature, which

in the crossed channel corresponds to vacuum expectation values in a finite volume with

periodic boundary conditions. In this sense the present work is an extension of the approach

of [11] to the more general setting of arbitrary (integrable) boundary conditions.
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We introduce a large finite volume L in the crossed channel (with periodic boundary

conditions) and consider the limit

〈O(x)〉R = lim
L→∞

〈O(x)〉LR = lim
L→∞

〈

BL
α

∣

∣

∣ e−HLxO(0, 0) e−HL(R−x)
∣

∣

∣BL
β

〉

〈

BL
α

∣

∣

∣e−HLR
∣

∣

∣BL
β

〉 , (2.14)

where HL is the finite volume Hamiltonian and
∣

∣

∣
BL
j

〉

represent the boundary states in

finite volume (see figure 1(b)). It will be the subject of the next subsection to properly

expand them in the basis of the eigenstates of HL.

2.1 Boundary states in finite volume

The boundary states can be expanded in finite volume as

∣

∣BL
j

〉

=
∑

Ψ

GΨ
j (L)|Ψ〉L , j = α, β ,

where |Ψ〉L are eigenstates of the finite volume Hamiltonian HL. In particular the function

G0
j (L) determines the large R behaviour of the partition function and can be written as

G0
j(L) = e−fjLg0

j (L) .

Here fj is the contribution of a single boundary to the ground state energy E0(R) and g0
j (L)

is the standard non-perturbative g-function3 which was introduced in critical systems by

Affleck and Ludwig [26]. In theories with only massive excitations in the bulk the g-function

decays exponentially. The exact integral series for the g-function in massive theories was

derived in [27]; for a first treatment of a non-trivial massless flow see [28].

The excited states |Ψ〉L of a finite volume Hamiltonian can be described in a large

volume as scattering states consisting of n particles with rapidities θn given by the solution

of the asymptotic Bethe-Yang equations

Qk = mL sinh θk +
∑

j 6=k

δ(θk − θj) = 2πIk , k = 1, . . . , n . (2.15)

It is convenient to define a continuous two-particle phase shift function by4

S(θ) = −eiδ(θ) , δ(−θ) = −δ(θ) .

This poses the following prescription for the momentum quantum numbers:

Ik ∈ Z for odd n , Ik ∈ Z +
1

2
for even n .

3This should not be confused with the one-particle boundary coupling gj .
4We made use of the fact that the effective statistics is fermionic, i.e. S(0) = −1. All known integrable

models possess this property, the only counter-example being the free boson. In a theory with more than

one particle species the most convenient choice for the definition of the phase shift is Sab(θ) = Sab(0)e
iδab(θ).
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The quantum numbers {I1, . . . , In} completely determine the individual scattering states,

therefore they may be used to label the sates as

|{I1 . . . In}〉L ,

where the states are normalised to unity:

L〈{I1 . . . In}|{I ′1 . . . I ′m}〉L = δnmδI1,I′1 . . . δIn,I′n .

The total energy and momentum are calculated additively as

E =

n
∑

i=1

m cosh θi + O(e−µL) , P =

n
∑

i=1

m sinh θi + O(e−µL) .

The exponential corrections are governed by the mass scale µ which is uniform in the sense

that it is determined by the analytic structure of the S-matrix and it does not depend on

the particular multi-particle state in question. For a systematic treatment of exponential

corrections to excitation energies see [29, 30] and also recent papers [31, 32]. In a massive

field theory it is expected that the leading exponential corrections of more complicated

quantities (like form factors [33] and correlation functions) are also of order e−µL.

For later use we introduce the density of states (in rapidity-space) in the n-particle

sector of the theory, which is given by the Jacobian

ρn(θ1, . . . , θn) = detJkl , Jkl =
∂Qk
∂θl

. (2.16)

Apart from normalisation issues the boundary states in finite and infinite volume

should have the same structure. Therefore, it is natural to expand the finite volume

boundary state up to the two-particle contribution as

∣

∣BL
j

〉

= G0
j (L)

(

|0〉L +
gi
2
N1(L)|{0}〉L +

∑

I>0

Kj(θ)N2(θ, L)|{−I, I}〉L + . . .

)

, (2.17)

where in the last term it is understood that the rapidities θ are the solutions of the appro-

priate Bethe-Yang equation

Q̄1(θ) = mL sinh θ + δ(2θ) = 2πI . (2.18)

Note also that the sum in (2.17) only runs over I > 0 because the states |{I,−I}〉L and

|{−I, I}〉L are identical. In (2.17) we introduced the normalisation factors N1(L) and

N2(θ, L) which are not determined by first principles. In the following we calculate them

including all finite size effects which scale as negative powers of L (only neglecting those

which decay exponentially). To this order we consider vacuum expectation values in the

R→ ∞ limit with fixed x, both in a large finite volume L and directly in the infinite system.

In infinite volume the first three contributions read [13]

〈O(x)〉α = 〈O〉 +
gα
2
FO1 e

−mx +
1

2

∫

dθ

2π
K∗
α(θ)FO2 (θ,−θ)e−2mx cosh θ + . . . . (2.19)
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The same quantity can also be evaluated in finite volume as

〈O(x)〉Lα = 〈O〉+ gα
2
N1(L)〈{0}|O|0〉Le−E0x+

∑

I>0

K∗
α(θ)N2(θ, L)〈{−I, I}|O|0〉Le−EIx+. . . ,

(2.20)

where

E0 = m+ O(e−µL) , EI = 2m cosh θ + O(e−µL) ,

and the finite volume form factors are given by [15]

〈{0}|O|0〉L =
FO1√
mL

+ O(e−µL) , 〈{−I, I}|O|0〉L =
FO2 (θ,−θ)
√

ρ2(θ,−θ)
+ O(e−µL) .

The summation in (2.20) can be replaced by an integration leading to

〈O(x)〉Lα = 〈O〉 +
gα
2

N1(L)√
mL

FO1 e
−mx+

+
1

2

∫

dθ

2π

ρ̄1(θ)N2(θ, L)
√

ρ2(θ,−θ)
K∗
α(θ)FO2 (θ,−θ)e−2mx cosh θ + O(e−3mx) + O(e−µL) ,

(2.21)

where ρ̄1(θ) is the constrained density of states given by

ρ̄1(θ) =
dQ̄1

dθ
= mL cosh θ + 2ϕ(2θ) .

In a massive theory

〈O(x)〉α − 〈O(x)〉Lα ∼ O(e−µL) .

Requiring that expressions (2.19) and (2.21) only differ by exponentially small terms for

any scalar operator yields

N1(L) =
√
mL+ O(e−µL) , N2(θ, L) =

√

ρ2(θ,−θ)
ρ̄1(θ)

+ O(e−µL) . (2.22)

Note that this argument essentially coincides with that used in [15] to determine the nor-

malisation factors of the elementary finite volume form factors.

The two-particle density satisfies

ρ2(θ,−θ) = ρ1(θ)ρ̄1(θ) ,

therefore

N2(θ, L) =

√

ρ1(θ)

ρ̄1(θ)
= 1 − ϕ(2θ)

mL cosh θ
+ O(1/L2) . (2.23)

We stress that the eqs. (2.22) include all finite volume corrections which behave as negative

powers of L, in particular there can be no additional O(1/L) corrections to N2. This will

become important in the evaluation of vacuum expectation values at finite R.
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It is straightforward to extend the argument above to higher excited states. The finite

volume boundary state is given up to the four-particle terms by

∣

∣BL
j

〉

=G0
j (L)

(

|0〉L +
gj
2

√
mL|{0}〉L +

∑

I

Kj(θ)N2(θ, L)|{I,−I}〉L

+
∑

I

gj
2
Kj(θ)N3(θ, L)|{I,−I, 0}〉L+

1

2

∑

IJ
I 6=J

Kj(θ1)Kj(θ2)N4(θ1, θ2, L)|{I,−I, J,−J}〉L

)

.

(2.24)

The three-particle sector consists of states with rapidities {−θ, 0, θ} where θ is determined

by the single quantisation condition

Q̄3(θ) = mL sinh θ + δ(θ) + δ(2θ) = 2πI . (2.25)

Therefore the normalisation of the three-particle states is given by

N3(θ) =

√

ρ3(θ, 0,−θ)
ρ̄3(θ)

,

where

ρ̄3(θ) =
dQ̄3(θ)

dθ
= mL cosh θ + ϕ(θ) + 2ϕ(2θ) .

In the four-particle case the quantisation condition for the rapidities {−θ1, θ1,−θ2, θ2}
is given by the system of equations

Q̄4,1 = mL sinh θ1 + δ(θ1 − θ2) + δ(θ1 + θ2) + δ(2θ1) = 2πI1 ,

Q̄4,2 = mL sinh θ2 + δ(θ2 − θ1) + δ(θ1 + θ2) + δ(2θ2) = 2πI2 ,

yielding the normalisation

N4(θ1, θ2) =

√

ρ4(θ1,−θ1, θ2,−θ2)
ρ̄4(θ1, θ2)

,

where

ρ̄4(θ1, θ2) = detJ with Jik =
∂Q̄4,i

∂θk
, i, k = 1, 2 .

2.2 Large volume expansion of the Casimir energy

Before turning to the evaluation of the one-point function we consider the Casimir energy

in the two-boundary setting. In [34] the exact non-perturbative value was found to be

E0(R) = −1

2

∫

dθ

2π
m cosh θ log

(

1 +K∗
α(θ)Kβ(θ)e

−ε(θ)
)

, (2.26)

where ε(θ) is the solution of the boundary TBA equation

ε(θ) = 2mR cosh θ −
∫

dθ

2π
ϕ(θ − θ′) log

(

1 +K∗
α(θ

′)Kβ(θ
′)e−ε(θ

′)
)

, (2.27)
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where ϕ(θ) = dδ(θ)/dθ. Expression (2.26) is normalised to have the asymptotics E0(R) → 0

as R→ ∞. The actual ground state energy also includes bulk and boundary contributions,

which can be calculated from the boundary TBA [35].

Equations (2.26)–(2.27) were derived in [34] for the case gα = gβ = 0 but it was

argued that they yield the correct result even in the presence of zero-momentum particles.

Although this claim was supported by several numerical checks [35], a rigorous proof is

still missing. Moreover, it turned out that there are certain cases when (2.26)–(2.27)

cannot be true.

In [19, 20, 36] it was shown that if gα 6= 0 6= gβ then the leading contribution in the

integral in (2.26) is given by

E0(R) = −m
∣

∣gαgβ
∣

∣

4
e−mR + . . . . (2.28)

On the other hand, the authors argued that the leading behaviour of the Casimir energy

is always

E0(R) = −mgαgβ
4

e−mR + . . . , (2.29)

irrespective of the sign of gαgβ . This discrepancy shows that the validity of (2.26) is

restricted to the case gαgβ > 0. On the other hand, it was shown in [19, 20, 36] that it is

possible to derive a proper analytic continuation to the region gαgβ < 0 with the correct

leading behaviour (2.29).

Here we derive a large R expansion of the Casimir energy by means of the finite volume

regularisation of the partition function. Our results will be compared to (2.26). We follow

closely the treatment of [19, 20], however we are able to extend their method to obtain the

second order terms of the Casimir energy. In order to keep the exposition simple, we only

consider the region gαgβ > 0 where the BTBA (2.26)–(2.27) is applicable.

The partition function Z(L,R) can be evaluated in two different channels. Treating L

as time variable and R as space one obtains in the large L limit

Z = e−E0(R)L
(

1 + O(e−mL)
)

,

where E0(R) is the ground-state energy in a finite volume R. It follows that

E0(R) = − lim
L→∞

logZ

L
.

Treating R as time variable (corresponding to thermal field theory with temperature T =

1/R) the partition function can be developed into a low-temperature expansion. In the

regime mLe−mR ≪ 1 it is sufficient to sum over the low-lying excitations:

Z = 1 +N2
1

gαgβ
4

e−mR +
∑

I

(

N2(θ)
)2
K∗
α(θ)Kβ(θ)e

−2mR cosh θ + O(e−3mR) . (2.30)

Note that in the expression above we did not perform a complex conjugation for gα,

although the amplitude Kα(θ) is conjugated. The motivation for this prescription is a

delicate issue. In unitary theories the one-particle couplings are always real, therefore it
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is only the non-unitary case which has to be addressed. In non-unitary theories gα is

purely imaginary, therefore complex conjugation simply results in changing the sign of the

appropriate term. On the other hand, the space of the states is not positive-definite, in

fact one-particle states can be assigned a negative norm. This additional change of sign

accounts for the correct prescription in (2.30). A different argument is provided by the

corresponding conventions in CFT, where the prescription for the inner product does not

include complex conjugation. Moreover, when comparing our form factor expansion with

TCSA results in section 4.2 we will show that this choice of the sign is the correct one.

If mL ≫ 1 one can safely substitute the normalisations (2.22) into (2.30). The loga-

rithm of the partition function is then written as

logZ

L
= m

gαgβ
4

e−mR +
∑

I

m cosh θ

ρ̄1(θ)
K∗
α(θ)Kβ(θ)e

−2mR cosh θ

− 1

2
m2L

(gαgβ
4

e−mR
)2

+ O(e−µL) + O(e−3mR) . (2.31)

The first term is already in complete accordance with (2.29); in the following we also

evaluate the second order terms. First of all note that the summation over I is divergent

because of the double pole

K∗
α(θ)Kβ(θ) ≈

g2
αg

2
β

4

1

θ2
, θ ≈ 0 .

In order to determine the leading singularity it suffices to use the lowest order approxima-

tion in (2.15)

θI =
2πI

mL
, I =

1

2
,
3

2
,
5

2
, . . . .

The divergent part of the summation in (2.31) can then be expressed as

e−2mR
∑

I

g2
αg

2
β

4L

(

mL

2πI

)2

= m2Le−2mR
g2
αg

2
β

32
,

where we used the identity

(

1

2

)2

+

(

3

2

)2

+

(

5

2

)2

+ · · · =
π2

2
.

Therefore the O(Le−2mR) terms cancel exactly in (2.31), as needed to obtain a meaningful

L→ ∞ limit. Note that this result provides new evidence for the normalisation condition

ḡj = gj/2, because the L→ ∞ limit would not exist with a different choice of ḡj .

In the following we also evaluate the finite left-over piece of the O(e−2mR) terms

in (2.31). In order to make calculations as transparent as possible we first introduce the

following theorem:

Theorem 1 Let θI be the solutions of the quantisation condition

Q̄1(θ) = mL sinh θ + δ(2θ) = 2πI
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and let f(θ) be a symmetric function which apart from a double pole at θ = 0 is analytic

in a neighbourhood of the real axis:

f(θ) ≈ G

θ2
as θ → 0 .

Then the expression

S(L) =

(

∑

I

f(θI)

ρ̄1(θI)

)

− G

8
mL

has a regular behaviour at large L with the L→ ∞ limit given by

lim
L→∞

S(L) = If +Kf ,

where

If =

∫ ∞

−∞

dθ

4π

(

f(θ)−G
cosh θ

sinh2 θ

)

and Kf =
G

4
ϕ(0) .

The proof can be extracted from the appendix B of [37]. In addition, we also present a

different derivation in appendix A. In the present case Theorem 1 can be applied with the

substitutions

f(θ) = cosh θKα(−θ)Kβ(θ)e
−2mR cosh θ , G =

g2
αg

2
β

4
e−2mR .

Here we made use of the identity K∗
α(θ) = Kα(−θ). It is easy to see that with this choice

f(θ) is indeed symmetric and it is analytic apart from the prescribed double pole at θ = 0.

The results of Theorem 1 for the Casimir energy yields

E0(R) = −m
gαgβ

4
e−mR −m

g2
αg

2
β

4
e−2mRϕ(0)

4

− 1

2

∫

dθ

2π
m cosh θ

(

Kα(−θ)Kβ(θ)e
−2mR cosh θ −

g2
αg

2
β

4 sinh2 θ
e−2mR

)

+ O(e−3mR) .

(2.32)

In order to compare this result to the BTBA equations it is necessary to derive a large

R expansion of (2.26). First of all we regularise the integral along the lines of [19]:

E(R) = −mgαgβ
4

√

e−ε(0) − 1

2

∫

dθ

2π
m cosh θ log





1 +Kα(−θ)Kβ(θ)e
−ε(θ)

1 +
g2αg

2
β

4 sinh2 θ
e−ε(0)



 . (2.33)

Using the same trick for the integral in (2.27) it is possible to derive the leading correction

to the pseudo-energy:

ε(θ) = 2mR cosh θ − gαgβ
2

ϕ(θ)e−mR cosh θ + O(e−2mR) , (2.34)

and in particular
√

e−ε(0) = e−mR
(

1 +
gαgβ

4
ϕ(0)e−mR + . . .

)

. (2.35)
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The second term in (2.33) can be expanded as

log



1 +
Kα(−θ)Kβ(θ)e

−ε(θ) − g2αg
2
β

4 sinh2 θ
e−ε(0)

1 +
g2αg

2
β

4 sinh2 θ
e−ε(0)



 =

=
Kα(−θ)Kβ(θ)e

−ε(θ) − g2αg
2
β

4 sinh2 θ
e−ε(0)

1 +
g2αg

2
β

4 sinh2 θ
e−ε(0)

≈
(

Kα(−θ)Kβ(θ)e
−ε(θ) −

g2
αg

2
β

4 sinh2 θ
e−ε(0)

)

.

(2.36)

In the last step we used the fact that the extra term in the denominator only makes a

difference for θ ∼ e−mR, therefore it only contributes to the higher order terms. In the last

expression we may finally substitute the zeroth order approximation ε(θ) ≈ 2mR cosh θ.

Putting everything together we arrive at

E0(R) = −m
gαgβ

4
e−mR −m

g2
αg

2
β

16
ϕ(0)e−2mR

− 1

2

∫

dθ

2π
m cosh θ

(

Kα(−θ)Kβ(θ)e
−2mR cosh(θ) −

g2
αg

2
β

4 sinh2 θ
e−2mR

)

+ O(e−3mR) .

(2.37)

This is in complete accordance with (2.32) and can be regarded as a strong confirmation

of the consistency of our calculations. Apart from checking the identity ḡj = gj/2 and also

the validity of the BTBA equations, we also confirmed the normalisation factor N2(θ, L).

In particular, a different O(1/L) term in N2(θ, L) would yield a different pre-factor for the

term ϕ(0)e−2mR.

Finally we note that our finite volume regularisation scheme is not sensitive to the sign

of gαgβ , in particular one arrives at the same result (2.37) also for gαgβ < 0. On the other

hand, in this regime one has to use the modified BTBA equations given by eq. (2.7) of [20].

We leave it as an exercise to show that a careful large R expansion of this modified BTBA

indeed reproduces (2.37).

2.3 Connection between boundary states and form factors

As a remark to this section we would like to point out an interesting similarity between

the elementary finite volume form factors 〈0|O|Ψ〉L and the amplitudes gΨ
j (L) defined by

〈BL
j |Ψ〉

L
= e−fjLgΨ

j (L) , j = α, β ,

where fj is the contribution of a single boundary to the ground state energy on a strip. Both

quantities measure the overlap of a normalised eigenstate |Ψ〉L with a non-normalisable

extended state, namely the boundary state
∣

∣

∣BL
j

〉

and the state O|0〉L created by acting

with a local operator on the vacuum. To demonstrate the analogy we compare the main

results in the case of the specific two-particle state |Ψ〉L = |{I,−I}〉L. We have seen that

gΨ
j (L) = Kj(θ)N2(θ, L)g0

j (L) + O(e−µL) .
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The vacuum amplitude g0
j (L) only include exponentially small corrections (see below),

therefore the excited state amplitude can be written as

gΨ
j (L) = Kj(θ)N2(θ, L) + O(e−µL) .

On the other hand, the finite volume form factor was shown in [15] to be given by

〈0|O|Ψ〉L =
FO2 (θ,−θ)
√

ρ2(θ,−θ)
+ O(e−µL) .

We observe that apart from the exponential corrections both objects are determined by

the corresponding infinite volume quantity and a normalisation factor which only depends

on the finite volume density of states. In the following we make some comments about the

possible structure of the exponential corrections.

First of all it is instructive to recall the known results in the case of |Ψ〉L = |0〉L, which

corresponds to the exact non-perturbative g-function and to the finite volume vacuum

expectation value 〈O〉L, respectively. In the case of the non-perturbative g-function the

final result was expressed in [27] as

2 log g0
j (L) =

1

2

∫

dθ

2π

(

Φj(θ) − δ(θ) − 2ϕ(2θ)
)

log
(

1 + e−ε(θ)
)

+

∞
∑

i=1

1

n

∫

dθ1
2π

. . .

∫

dθn
2π

(

n
∏

i=1

1

1+eε(θi)

)

ϕ(θ1+θ2)ϕ(θ2−θ3) . . . ϕ(θn − θ1) ,

(2.38)

where Φj(θ) = −i ddθ log(Rj(θ)) and ε(θ) is the solution of the periodic-boundary-conditions

TBA equation

ε(θ) = mL cosh θ −
∫

dθ

2π
ϕ(θ − θ′) log

(

1 + e−ε(θ
′)
)

.

In the case of the vacuum expectation value the relevant exact result is the LeClair-

Mussardo series [7]

〈O〉periodic
L =

∞
∑

n=0

1

n!

∫

dθ1
2π

. . .

∫

dθn
2π

(

n
∏

i=1

1

1 + eε(θi)

)

FO
2n,c(θ1, . . . , θn) ,

where ε(θ) is the same pseudo-energy function as above. There is a striking structural

similarity between the two series, most importantly the weight functions appearing in the

integrals are exactly the same.

Based on these similarities we conjecture that the structure of exponential corrections

to the excited state quantities 〈0|O|Ψ〉L and gΨ
j (L) will be similar to each other as well. It

was remarked in [28] that the exact series for the amplitudes gΨ
j (L) probably involves the

solution of the corresponding excited state TBA. The appearance of the excited state TBA

was also observed in preliminary studies of exponential corrections to form factors [38]. The

exact result for gΨ
j (L) will probably involve an integral series similar to (2.38) normalised

by a “dressed” form of N2(θ, L).
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3 Evaluation of the vacuum expectation value

In this section we develop a large R expansion of the vacuum expectation value (v.e.v.)

〈O〉α,βR . We use the finite volume regularisation scheme described in the previous section

and express the expectation value as

〈O〉LR =

〈

BL
α

∣

∣

∣
e−HLxO e−HL(R−x)

∣

∣

∣
BL
β

〉

〈

BL
α

∣

∣

∣
e−HLR

∣

∣

∣
BL
β

〉 . (3.1)

We will calculate explicitly the v.e.v. with the boundary states truncated to contributions

with up to four particles. In order to simplify notations we define

∣

∣BL
j

〉

=

4
∑

n=0

∣

∣BL
j

〉(n)
, j = α, β ,

where

∣

∣BL
j

〉(0)
= |0〉L ,

∣

∣BL
j

〉(1)
=
gj
2
N1(L)|{0}〉L ,

∣

∣BL
j

〉(2)
=
∑

I

Kj(θ)N2(θ, L)|{I,−I}〉L ,

∣

∣BL
j

〉(3)
=
∑

I

gj
2
Kj(θ)N3(θ, L)|{I,−I, 0}〉L ,

∣

∣BL
j

〉(4)
=

1

2

∑

IJ
I 6=J

Kj(θ1)Kj(θ2)N4(θ1, θ2, L)|{I,−I, J,−J}〉L .

(3.2)

We also define

Cnm = (n)
〈

BL
α

∣

∣e−HLxO(x)e−HL(R−x)
∣

∣BL
β

〉(m)
.

In the following we perform a double expansion of (3.1) with expansion parameters

e−mx and e−m(R−x). In order to keep track of the various terms let us introduce two

auxiliary variables u and v. They are use to count orders of e−mx and e−m(R−x) and at

the end of the calculations both are set to 1. Then the v.e.v. takes the form

〈O〉LR =
1

Z

∑

unvmCnm =
∑

unvmD̃nm . (3.3)

We define

Z =
∑

n

(uv)nZn ,

where the first terms are given by

Z0 = 1 , Z1 =
gαgβ

4
mLe−mR , (3.4)

and

Z2 =
∑

I

e−2m cosh θRK∗
α(θ)Kβ(θ)N2(θ, L)2 . (3.5)
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The inverse of the partition function is expanded as

Z−1 =
∑

n

(uv)nZ̄n ,

where the first few terms read

Z̄0 = 1 , Z̄1 = −Z1 , Z̄2 = Z2
1 − Z2 .

Putting this together we obtain

D̃nm =
∑

l

Cn−l,m−lZ̄l , (3.6)

where the first few non-trivial terms are given by

D̃1m = C1m − Z1C0,m−1 , m = 1, 2, . . . ,

D̃2m = C2m − Z1C1,m−1 + (Z2
1 − Z2)C0,m−2 , m = 2, 3, . . . .

We expect that the quantities D̃nm have a regular behaviour as L → ∞ and for the

actual limit we define

Dnm = lim
L→∞

D̃nm . (3.7)

The vacuum expectation value is then expressed as

〈O〉α,βR =
∑

n,m

Dnm .

Note that the individual terms contributing to D̃nm may contain divergent pieces which

scale with positive powers of L. The most singular terms in the n particle sector carry a

factor of (mLe−mR)n, therefore the expansion is valid in the regime

1 ≪ mL≪ emR .

The L→ ∞ limit of the complete series (3.3) is to be understood as an analytic continuation.

The evaluation of the individual Cnm is built on the knowledge of the finite volume

form factors. In the general case they are given by [15]

〈{I1, . . . , In}|O|{J1, . . . , Jm}〉L =
FOn+m(θ1 + iπ, . . . , θn + iπ, θ′1, . . . , θ

′
m)

√

ρn(θ1, . . . , θn)ρm(θ′1, . . . , θ
′
m)

+ O(e−µL) ,

(3.8)

where it is understood that the rapidities {θ1, . . . , θn} and {θ′1, . . . , θ′m} are solutions to the

corresponding Bethe-Yang equations. Formula (3.8) is valid whenever there are no coincid-

ing rapidities in the two scattering states. In [15] it was shown that the only two situations

when coinciding rapidities occur are the case of diagonal form factors and matrix elements

between parity-symmetric states containing zero-momentum particles. The general rule

for evaluating disconnected contributions can be found in [11]; in the present work we will

cite the necessary results whenever they are needed.
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Before turning to the actual calculations we have to address a very important question

concerning the phase of the form factors. Note that equation (3.8) is to be understood up to

a phase factor; in particular the order of the rapidities is not determined by first principles.

In fact, an additional phase factor corresponds to a redefinition of the basis vectors, and this

phase drops out from the calculation of some physical quantities, for example correlation

functions in infinite volume. However, phase factors are utterly relevant in the present

case because they do affect the final result for the v.e.v. A guideline can be established

from the known results in infinite volume, where the correct phase is fixed by consistency

arguments. First of all, the two-particle contributions to the boundary state are written as

Kj(θ)A(−θ)A(θ) .

This expression is symmetric in θ as required by consistency. When it comes to the

evaluation of the v.e.v. in the presence of a single boundary, the above definition yields

the expressions

. . . Kβ(θ)F
O
n (−θ, θ, . . . ) and . . . K∗

α(θ)F
O
n (θ + iπ,−θ + iπ, . . . ) ,

where the dots stand for possible additional rapidities and amplitudes. Observe that both

expressions above are symmetric in θ, therefore we apply the following rule: whenever there

appear the amplitudes Kβ(θi) and K∗
α(θi) with some θi, the explicit form and order of the

rapidities substituted into the relevant form factor is given by (−θi, θi) and (θi+iπ,−θi+iπ),

respectively. The exchange of two pairs of rapidities does not make a difference, therefore

the phase of the form factors is completely fixed by the above rule.

The complex conjugation of the amplitude Kα can be avoided by means of the identity

K∗
α(θi) = Kα(−θi) .

An additional change of variables θi → −θi then amounts to the convention

. . . Kα(θ)FOn (−θ + iπ,+θ + iπ, . . . ) .

Note also that the presence of zero-momentum particles does not produce any additional

ambiguities, because it is only the expressions

Kj(θ)F
O
n (−θ, θ, 0, . . . ) = Kj(θ)F

O
n (0,−θ, θ, . . . )

which are symmetric in θ, i.e. the zero-momentum particle cannot be placed between the

particles A(θ) and A(−θ).
In the following we evaluate allDnm with n+m ≤ 4. We put forward that all our results

are collected in appendix C together with a pictorial representation of the individual terms.

– 18 –



J
H
E
P
0
4
(
2
0
1
0
)
1
1
2

The contributions Dn0 and D0m with n,m = 1 . . . 4 only depend on one of the bound-

aries and they are the same as obtained in [13]:

D10 =
gα
2
FO1 e

−mx ,

D20 =
1

2

∫

dθ

2π
Kα(θ)F

O
2 (−θ, θ)e−2m cosh θ x ,

D30 =
1

2

∫

dθ

2π
Kα(θ)

gα
2
FO3 (−θ, θ, 0)e−m(2 cosh θ+1) x ,

D40 =
1

8

∫

dθ1
2π

dθ2
2π

Kα(θ1)Kα(θ2)F
O
4 (−θ1, θ1,−θ2, θ2)e−2m(cosh θ1+cosh θ2) x ,

D01 =
gβ
2
FO1 e

−m(R−x) ,

D02 =
1

2

∫

dθ

2π
Kβ(θ)F

O
2 (−θ, θ)e−2m cosh θ (R−x) ,

D03 =
1

2

∫

dθ

2π
Kβ(θ)

gβ
2
FO3 (−θ, θ, 0)e−m(2 cosh θ+1) (R−x) ,

D04 =
1

8

∫

dθ1
2π

dθ2
2π

Kβ(θ1)Kβ(θ2)F
O
4 (−θ1, θ1,−θ2, θ2)e−2m(cosh θ1+cosh θ2) (R−x) .

Note that these integrals remain well-defined even if there are poles in the amplitudes

Kj(θ), because the form factors possess the appropriate number of zeros at θi = 0 as a

consequence of the exchange axiom (2.9).

The first contribution to contain a divergent piece is D11 which is given by

D11 = lim
L→∞

(

C11 − Z1C00

)

, (3.9)

where

C11 =
gαgβ

4
mL 〈{0}|O|{0}〉L e−mR . (3.10)

The diagonal one-particle form factor for a generic I is given by [11]

〈{I}|O|{I}〉L =
FO2 (iπ + θ, θ)

ρ1(θ)
+ 〈O〉 . (3.11)

The two-particle form factor appearing in the expression above is free of divergences and

by Lorentz-invariance it does not depend on θ. In the following it will be denoted by FO2,s.

Specifying (3.11) to I = 0 one finds

D11 = lim
L→∞

(

C11 − Z1C00

)

=
gαgβ

4
FO2,se

−mR . (3.12)

3.1 Evaluation of D21 and D12

We first consider

D21 = lim
L→∞

(

C21 − Z1C10

)

(3.13)

with

C21 =
gβ
2

∑

I

FO3 (−θ + iπ, θ + iπ, 0)

ρ̄1(θ)
e−EIx−m(R−x)Kα(θ) , (3.14)
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where it is understood that the rapidities θ are solutions of the corresponding

Bethe-Yang equations

mL sinh θ + δ(θ) + δ(2θ) = 2πI ,

and the constrained density is

ρ̄1(θ) = mL cosh θ + 2ϕ(2θ) .

Note also that we have already made use of the relations (2.22). Naively one would take

the L→ ∞ limit simply by replacing the summation with and integration leading to

1

2

gβ
2

∫

dθ

2π
FO3 (−θ + iπ, θ + iπ, 0)e−2m cosh θx−m(R−x)Kα(θ) . (3.15)

However, the expression above is ill-defined at θ = 0 due to the poles of F3 and Kα. Not

surprisingly, this divergence gets cancelled by Z1C10 as we will show shortly.

It follows from the form factor axioms (2.9) and (2.11) that near θ1,2 = 0

FO3 (θ1 + iπ, θ2 + iπ, 0) ≈ 2i FO1

(

1

θ2
− 1

θ1

)

(3.16)

and therefore

FO3 (−θ + iπ, θ + iπ, 0) ≈ 4i FO1
1

θ
+ . . . . (3.17)

The singular behaviour of the sum (3.14) is determined by the states near θ = 0. We

use the approximation of section 2.2 to determine the leading divergence as

4
FO1
mL

(gα)2gβ
4

(

mL

2π

)2

e−m(x+R)
∑

I

(

1

I

)2

= 4
FO1
mL

(gα)2gβ
4

(

mL

2π

)2

e−m(x+R) π
2

2
. (3.18)

This coincides with Z1C10 therefore (3.13) has a finite L→ ∞ limit indeed.

Similarly to the calculations of section 2.2 we use Theorem 1 to obtain the finite-left

over piece in (3.13). We apply the substitutions

f(θ) = FO3 (−θ+ iπ, θ+ iπ, 0)e−2m cosh θx−m(R−x)Kα(θ) , G = 2(gα)2FO1 e
−m(x+R) .

It is easy to see that f(θ) is indeed a symmetric function, therefore its only singularity near

the real axis is a double pole at θ = 0. The net result is then expressed as

D21 =
gβ
4

∫

dθ

2π

(

FO3 (−θ+iπ, θ+iπ, 0)Kα(θ)e−2m cosh θx−m(R−x)− 2(gα)2FO1 cosh θ

sinh2 θ
e−m(R+x)

)

+ e−m(x+R)gβ(gα)2FO1
ϕ(0)

4
. (3.19)

A similar calculation with the roles of the two boundaries exchanged yields

D12 =
gα
4

∫

dθ

2π

(

FO3 (iπ,−θ, θ)Kβ(θ)e
−2m cosh θ(R−x)−mx − 2(gβ)

2FO1 cosh θ

sinh2 θ
e−m(2R−x)

)

+ e−m(2R−x)gα(gβ)
2FO1

ϕ(0)

4
. (3.20)
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3.2 Evaluation of D13 and D31

We first consider D31 = limL→∞(C31 − Z1C20) where

C31 − Z1C20 =
∑

I

N3(θ)
√
mL

gαgβ
4

K∗
α(θ) 〈{I,−I, 0}|O|{0}〉L e−mR−2m cosh θ x−

− gαgβ
4

mLe−mR
∑

J

N2(θ)〈{J,−J}|O|0〉Le−EIxK∗
α(θ) .

The three-particle normalisation is given by

N3(θ) =

√

ρ3(θ,−θ, 0)
ρ̄3(θ)

.

The four-particle matrix element above includes a disconnected term due to the zero-

momentum particles which is given by [11]

〈{I,−I, 0}|O|{0}〉L =
FO4 (θ + iπ,−θ + iπ, iπ, 0) +mLFO2 (θ,−θ)

√

ρ3(θ,−θ, 0)mL
,

while the connected part of C31 can be transformed into the integral

gαgβ
8

e−mR
∫

dθ

2π
Kα(θ)FO4 (−θ + iπ, θ + iπ, iπ, 0)e−2m cosh θ x . (3.21)

It follows from the form factor axioms that FO4 (−θ + iπ, θ + iπ, iπ, 0) is well-defined [11]

and has a regular behaviour as a function of θ. Therefore we can apply the exchange

axiom (2.9) to show that

lim
θ→0

FO4 (−θ + iπ, θ + iπ, iπ, 0) = 0 , (3.22)

therefore the integral (3.21) is regular even at θ = 0.

The divergent pieces of D31 are given by

gαgβ
4

e−mRmL

(

∑

I

FO2 (−θ, θ)
ρ̄3(θ)

Kα(θ)e−2m cosh θ x −
∑

J

FO2 (−θ, θ)
ρ̄1(θ)

Kα(θ)e−2m cosh θ x

)

.

Note the summations over I and J run over the solutions of the different quantisation con-

ditions (2.18) and (2.25), respectively. However, the density factors are the corresponding

ones in both sum, therefore it is allowed to replace the summation with an integration in

both terms. Doing this we make errors of order e−µL because both integrands are regular,

therefore the above expression vanishes in the L→ ∞ limit and the net result is

D31 =
gαgβ

8
e−mR

∫

dθ

2π
Kα(θ)FO4 (−θ + iπ, θ + iπ, iπ, 0)e−2m cosh θ x , (3.23)

and similarly,

D13 =
gαgβ

8
e−mR

∫

dθ

2π
Kβ(θ)F

O
4 (−θ + iπ, θ + iπ, iπ, 0)e−2m cosh θ (R−x) .
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3.3 Evaluation of D22

Here we consider

D22 = lim
L→∞

(

C22 − Z2 〈O〉 − Z1C11 + (Z1)
2 〈O〉

)

. (3.24)

Evaluating C22 one has to treat the diagonal and off-diagonal matrix elements separately:

C22 =
∑

I 6=J

N2(θ1)N2(θ2)〈{I,−I}|O|{J,−J}〉Le−EIx−EJ (R−x)Kα(−θ1)Kβ(θ2)+

+
∑

I

N2(θ)
2〈{I,−I}|O|{I,−I}〉LKα(−θ)Kβ(θ)e

−EIR . (3.25)

Here it is understood that the rapidities θ1 and θ2 solve the quantisation condition (2.18)

with momentum quantum numbers I and J , respectively (including the diagonal case with

θ1 = θ2 and I = J). In the off-diagonal case one has

N2(θ1)N2(θ2)〈{I,−I}|O|{J,−J}〉L =
FO4 (θ1 + iπ,−θ1 + iπ,−θ2, θ2)

ρ̄1(θ1)ρ̄1(θ2)
. (3.26)

It would be desirable to convert the sum over these matrix elements into an integral.

However, one has to be careful because of the ambiguity of the form factors near θ1 = θ2
and the possible poles of the integrand at θ1 = θ2 = 0. As a first step we write

∑

I 6=J

FO4 (θ1 + iπ,−θ1 + iπ,−θ2, θ2)
ρ̄1(θ1)ρ̄1(θ2)

Kα(−θ1)Kβ(θ2)e
−2m cosh θ1x−2m cosh θ2(R−x) =

=
1

4

∫

dθ1
2π

∫

dθ2
2π

Kα(−θ1)Kβ(θ2)F
O
4 (θ1 + iπ,−θ1 + iπ,−θ2, θ2)e−2m cosh θ1x−2m cosh θ2(R−x)

−
∑

I

F̄O4 (θ + iπ,−θ + iπ,−θ, θ)
ρ̄1(θ)2

Kα(−θ)Kβ(θ)e
−EIR + O(e−µL) , (3.27)

where F̄O4 (θ + iπ,−θ + iπ,−θ, θ) is the continuation of the function FO4 (θ1 + iπ,−θ1 +

iπ,−θ2, θ2) to θ1 = θ2 = θ. At first sight there seems to be a double kinematic pole, however

this is not quite true. In [11] it was shown that diagonal form factors may be assigned a

finite value, although the diagonal limit will depend on the particular evaluation method

used. In the following we restate the results of [11] which are needed to evaluate (3.27).

Consider the quantity

FO2n(θ1 + ε1 + iπ, . . . , θn + εn + iπ, θn, . . . , θ1) , (3.28)

where the singularities have been shifted off by the infinitesimal quantities εi. It was

proven in [11] that there exists a finite limit when all εi go to zero simultaneously with

their ratios fixed. Moreover, there are two special evaluation schemes which respect the

physical requirement that diagonal form factors should not depend on the order of the

rapidities. First of all, one can consider the symmetric limit with ε1 = ε2 = · · · = ε:

FO2n,s(θ1, . . . , θn) ≡ lim
ε→0

FO2n(θ1 + ε+ iπ, . . . , θn + ε+ iπ, θn, . . . , θ1) . (3.29)
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On the other hand, one can also consider the connected part of the diagonal form factor

which is defined to be the contribution to (3.28) which does not contain any singular factors

of the form εi/εj and products thereof:

FO2n,c(θ1, . . . , θn) ≡ (finite part of) FO2n(θ1 + ε1 + iπ, . . . , θn + εn + iπ, θn, . . . , θ1) .

The general structure of the singularities in (3.28) together with the relation between

the symmetric and connected evaluation schemes was worked out in [11]. Here we only need

the formula relevant to the two-particle states, which states that given two infinitesimal

numbers ε1 and ε2 one has

FO4 (θ1 + ε1 + iπ,−θ2 + ε2 + iπ,−θ2, θ1) = FO4,c(θ1, θ2) +

(

ε1
ε2

+
ε2
ε1

)

ϕ(θ1 − θ2)F
O
2,s . (3.30)

In particular, the symmetric evaluation with ε1 = ε2 is given by

FO4,s(θ1, θ2) = FO4,c(θ1, θ2) + 2ϕ(θ1 − θ2)F
O
2,s . (3.31)

In the present case we need to evaluate FO4 (θ1 + iπ,−θ1 + iπ,−θ2, θ2) near θ1 = θ2 = θ

which corresponds to an ”antisymmetric evaluation” with ε2 = −ε1:

F̄O4 (θ + iπ,−θ + iπ,−θ, θ) ≡ lim
ε→0

FO4 (θ + ε+ iπ,−θ − ε+ iπ,−θ, θ)

= FO4,c(θ,−θ)− 2ϕ(2θ)FO2,s .
(3.32)

Note that the integral in (3.27) is well-defined even if there are poles in the factors

Kα(−θ)Kβ(θ) because FO4 (θ1 + iπ,−θ1 + iπ,−θ2, θ2) possesses a double zero at θ1 = θ2 = 0

(for a proof see appendix B).

In order to evaluate C22 we also need the diagonal finite volume form factors. A generic

diagonal four-particle matrix element reads [11]

〈{I1, I2}|O|{I1, I2}〉L =
FO4,s(θ1, θ2) + (ρ1(θ1) + ρ1(θ2))F

O
2,s

ρ2(θ1, θ2)
+ 〈O〉 . (3.33)

Specifying the above formula to the present case one obtains

〈{−I, I}|O|{−I, I}〉L =
FO4,s(θ,−θ) + 2ρ1(θ)F

O
2,s

ρ2(θ,−θ)
+ 〈O〉 . (3.34)

Substituting the results of (3.27), (3.32) and (3.34) into (3.25) we obtain
(

C22 − Z2 〈O〉 − Z1C11 + (Z1)
2 〈O〉

)

=

=
1

4

∫

dθ1
2π

∫

dθ2
2π

Kα(−θ1)Kβ(θ2)F
O
4 (θ1+iπ,−θ1+iπ,−θ2, θ2)e−2m cosh θ1x−2m cosh θ2(R−x)

+ FO2,s

(

∑

I

2

ρ̄1(θ)
Kα(−θ)Kβ(θ)e

−2m cosh θR − (gαgβ)
2

16
mLe−2mR

)

+ O(e−µL) , (3.35)

where we applied the normalisation given by (2.22) and we also made use of the rela-

tion (3.31) and the identity

ρ̄1(θ) = ρ(θ) + 2ϕ(2θ) . (3.36)
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The summation in the third line of (3.35) still contains a divergent O(L) piece. How-

ever, it can be proven along the lines of the previous subsections, that this divergence gets

exactly cancelled. One can use Theorem 1 with the substitutions

f(θ) = 2Kα(−θ)Kβ(θ)e
−2m cosh θR , G =

(gαgβ)
2

2
e−2mR

to obtain the finite left-over piece. The net result reads

D22 = lim
L→∞

(

C22 − Z2 〈O〉 − Z1C11 + (Z1)
2 〈O〉

)

= I22 + J22 ,

where

I22 =
1

4

∫

dθ1
2π

dθ2
2π

Kα(θ1)Kβ(θ2)F
O
4 (−θ1 + iπ, θ1 + iπ,−θ2, θ2)e−2m cosh θ1x−2m cosh θ2(R−x)

(3.37)

and

J22 =FO2,s

∫

dθ

2π

(

Kα(−θ)Kβ(θ)e
−2m cosh θR− (gαgβ)

2 cosh θ

4 sinh2 θ
e−2mR

)

+FO2,s
(gαgβ)

2

8
e−2mRϕ(0).

(3.38)

With this we have finished the calculation of the terms in (3.3) with n + m ≤ 4.

The reader can find the various terms collected in appendix C together with a pictorial

representation of them.

3.4 Connections to other problems

In this subsection we compare our results to those obtained in previous works. Also, we

establish a connection to the problem of finite temperature correlation functions.

3.4.1 Comparison with a proposal of LeClair et al.

The first result in the literature to deal with expectation values on a strip appeared in [4].

In appendix C the authors conjecture the general result to be

〈O(x)〉R =

∞
∑

n=0

∑

εi=±

1

n!
I(n)
ε1,...,εn

, (3.39)

where

I(n)
ε1,...,εn

=

n
∏

i=1

{
∫ ∞

−∞

dθi
4π

gεi
(θi)

}

FO2n(θ1,−θ1, . . . , θn,−θn)ε1,...,εn . (3.40)

The weight functions above are defined by

g+(θ) =
e−2mx cosh θKα(−θ)

1 +Kα(−θ)Kβ(θ)e−2mR cosh θ
, g−(θ) =

e−2m(R−x) cosh θKβ(θ)

1 +Kα(−θ)Kβ(θ)e−2mR cosh θ
,

(3.41)

and the form factors are given by

FO2n(θ1,−θ1, . . . , θn,−θn)ε1,...,εn ≡ FO2n(θ1 + iσ̄1,−θ1 + iσ̄1, . . . , θn + iσ̄n,−θn + iσ̄n)

with σ̄i = π(1 + εi)/2. It is assumed that gα = gβ = 0.
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It is easy to see that some of our results are reproduced by the above series. However,

there is also a serious discrepancy: (3.39) does not include the diagonal contribution J22

given by (3.38). This can be proven by putting x = R/2 and considering the large R

limit of (3.39). In this case the nth term behaves as O(e−mnR) while J22 is of order

e−2mR. Therefore J22 can only appear in the terms n ≤ 2. On the other hand these

contributions yield

I
(1)
+ = D20 + O(e−3mR) , I

(1)
− = D02 + O(e−3mR) ,

I
(2)
++ = D40 + O(e−4mR) , I

(2)
−− = D04 + O(e−4mR) ,

I
(2)
+− = I

(2)
−+ = I22 + O(e−4mR) .

All the above terms are well-defined and finite, thus it follows that J22 is not

included in (3.39).

We will demonstrate in section 4.2 with the help of non-perturbative numerical results

that the term J22 must be included in the expansion, thus the series (3.39) can not be

complete in the general case.

3.4.2 Relation to quench problems

In recent papers [2, 3] the integrable QFT approach was applied to quench problems. In

particular, they considered the time evolution of expectation values of local operators after

a sudden global quench which changes the Hamiltonian from H0 to H, where H (possibly

also H0) is considered to be integrable. The main assumption is that the initial state of

the system (which is the ground state of H0) can be expanded in the multi-particle basis

of the integrable Hamiltonian H as a boundary state. In the simplest case with only one

particle type in the spectrum the corresponding expression is

|B〉 = exp

(
∫

dθ

4π
K(θ)A(−θ)A(θ)

)

|0〉 ,

where K(θ) is an arbitrary function satisfying K(θ) = S(2θ)K(−θ). The time evolution of

an expectation value is then given by

〈O(0, t)〉 = 〈B|eiHtO(0, 0)e−iHt|B〉 .

It is straightforward to establish a connection between the real-time evolution of the ex-

pectation value 〈O(0, t)〉 and the static (Euclidean) quantity 〈O(x)〉αβR considered in this

work. In fact, the quench problem above corresponds to the choice

Kα(θ) = Kβ(θ) = K(θ) ,

and the expectation value 〈O(0, t)〉 is obtained by the analytic continuation

R = 2τ0 , x = τ0 − it ,

where τ0 is a constant which is analogous to the extrapolation length introduced in the

field theory approach to boundary critical phenomena [1, 3].5

5Keeping a finite (non-zero) τ0 is necessary to normalise the boundary states properly, otherwise the

spectral series will not be convergent.
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The results of [2] can be reproduced by our expansion with the analytic continuation

explained above. The main difference between [2] and the present work is that [2] concerns

the sine-Gordon model which is a non-diagonal scattering theory. However, the authors

calculate contributions only from low-lying breather states which possess diagonal scatter-

ing. Therefore our methods directly apply to the situation in [2]. Moreover, our expansion

includes higher order terms which were not considered in [2].

In the following we also compare our results to those of [3], which considers the

t → ∞ limit of the expectation value 〈O(0, t)〉. For this quantity the authors obtain

the series expansion

〈O〉 =

∞
∑

n=0

1

n!

∏

i

{∫

dθi
2π

|G(θi)|2
1 + |G(θi)|2

}

FO2n,c(θ1, . . . , θn) , (3.42)

where the weight function is given by

G(θ) = e−2mτ0 cosh θK(θ) .

The key idea of [3] is that in the t→ ∞ limit only those contributions survive which do not

depend on t. In our Euclidean setting this means, that the relevant terms do not depend on

x. If we were able to derive the complete spectral expansion for 〈O(x)〉αβR , then in principle

it would be possible to reproduce (3.42) by collecting those terms which are completely

independent of x. However, we can already make a definite statement about the n = 1

term in (3.42). It is easy to see that up to higher order contributions this term is equal to

our J22 given by (3.38), which is indeed independent of x. This way we have established

the first rigorous support for the series (3.42).6 However, at present we can not make any

statements about the higher order terms. In particular only a detailed study of the higher

order terms in 〈O(x)〉αβR can decide whether some kind of a “dressing” of G(θ) is needed

to obtain the correct result, as it was suggested in [3].

3.4.3 Relation to finite temperature correlation functions

There is a way to connect the vacuum expectation values considered in this work to the

evaluation of thermal correlation functions. The relation is not physical in the sense that

it can be established only on a formal level. However, it is certainly worthwhile to explore

this correspondence. For simplicity we suppose gα = gβ = 0. Let us define a (non-local)

operator B by specifying its form factors:

〈θ1, θ2, . . . , θ2n−1, θ2n|B
∣

∣θ′1, θ
′
2, . . . , θ

′
2m−1, θ

′
2m

〉

≡
≡
(

δ(θ1 + θ2)Kα(−θ1)
)

. . .
(

δ(θ2n−1 + θ2n)Kα(−θ2n−1)
)

×
(

δ(θ′1 + θ′2)Kβ(θ
′
1)
)

. . .
(

δ(θ′2m−1 + θ′2m)Kβ(θ
′
2m−1)

)

+
(

. . .
)

.

where the dots in parentheses stand for disconnected terms which appear if two pairs

(θ2i−1, θ2i) and (θ′2j−1, θ
′
2j) coincide for some i = 1, . . . , n and j = 1, . . . ,m. The form

6From a different point of view, the presence of the term J22 in (3.42) supports our claim that the

series (3.39) (which does not include J22) can not be complete.
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factors with an odd number of particles on either sides are identically zero. Note that this

definition of B incorporates information about both boundaries; actually the operator itself

can be visualized by gluing the two boundaries together, thus forming a cylinder.

With this definition of B the vacuum expectation value 〈O(x)〉αβR can be expressed on

a formal level as a two-point function at finite temperature T = 1/R:

〈O(x)〉αβR ≡ 〈B(0)O(x)〉periodic
R .

This correspondence implies, that higher order terms in the v.e.v. (Dij with i+ j > 4) will

present technical difficulties which are very similar to those encountered in the evaluation

of the thermal two-point function [7, 9, 17]. However, the exact relation between the two

objects can only be established if the disconnected terms in the form factors of B are

properly defined,7 which is out of the scope of the present work.

4 Comparison with TCSA

In this section we compare for various cases our spectral expansion (3.3) computed in the

previous section with the numerical results of the truncated conformal space approach

(TCSA). We choose the scaling Lee-Yang model, because despite being one of the sim-

plest integrable models it already features many properties that we have discussed so far:

it contains a single massive particle, it has tunable integrable boundary conditions with

different gj values and all the form factors of its elementary field are known. Moreover,

the TCSA is quite convergent for this model, which together with the properties listed

above makes it an ideal testing ground for our method. In the first subsection we define

the model and collect the relevant formulae which we will use to make the comparison in

the second subsection.

4.1 The boundary scaling Lee-Yang model

In this section we summarise the relevant properties of the scaling Lee-Yang model de-

scribed as a perturbed conformal field theory. We follow closely the treatment and nota-

tions of [13].

4.1.1 The critical Lee-Yang model as a minimal conformal field theory

The Lee-Yang model [39] is the simplest example of a non-unitary conformal field theory.

It corresponds to the M2,5 minimal model with central charge −22/5 and effective central

charge 2/5. It has only two highest weight representations of the Virasoro algebra of

weights 0 and −1/5, so there are only two bulk primary fields, the identity 11 of weight 0

and ϕ of weight −2/5.

The conformal bounary conditions of the model were classified by Cardy in [40] and

the field content on each of these is given by solving the consistency conditions writ-

ten in [41, 42]. The model has only two conformally invariant boundary conditions, de-

noted by 11 and Φ. There is only one non-trivial boundary operator φ ≡ φ
(Φ,Φ)
−1/5 that can

7A naive substitution of the form factors of B without any disconnected terms results in a series similar

to (3.39). This way one misses the diagonal contributions like J22.
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live on the Φ boundary and there are two boundary changing operators, ψ ≡ φ
(11,Φ)
−1/5 and

ψ† ≡ φ
(Φ,11)
−1/5 , which interpolate between the boundary conditions 11 and Φ. These three

boundary fields all have weight hφ = hψ = 1/5.

For the sake of completeness we list all the operator product expansions (OPEs) and

structure constants of the theory. The bulk OPE is

ϕ(z, z̄) ϕ(w, w̄) = Cϕϕ
11 |z − w|4/5 + Cϕϕ

ϕ |z − w|2/5 ϕ(w, w̄) + . . . ,

the boundary OPEs are

φ(z) φ(w) = Cφφ
11 |z −w|2/5 + Cφφ

φ |z − w|1/5 φ(w) + . . . ,

ψ(z) φ(w) = Cψφ
ψ|z − w|1/5 ψ(w) + . . . ,

φ(z) ψ†(w) = Cφψ†
ψ† |z − w|1/5 ψ†(w) + . . . ,

ψ(z) ψ†(w) = Cψψ†
11|z − w|2/5 + . . . ,

ψ†(z) ψ(w) = Cψ†ψ
11|z − w|2/5 q; + Cψ†ψ

φ|z − w|1/5 φ(w) + . . . ,

and the two bulk-boundary OPEs read

ϕ(z) |11 = (11)B11
ϕ |2(z − w)|2/5 + . . . ,

ϕ(z) |Φ = (Φ)B11
ϕ |2(z −w)|2/5 + (Φ)Bφ

ϕ |2(z − w)|1/5 φ(w) + . . . .

The structure constants can be chosen as [43]

Cϕϕ
11 = Cφφ

11 = −1 , Cψψ†
11 = 1 , Cψ†ψ

11 = −1 +
√

5

2
,

Cϕϕ
ϕ = −

∣

∣

∣

∣

2

1 +
√

5

∣

∣

∣

∣

1/2

· α2 , (11)B11
ϕ = −

∣

∣

∣

∣

2

1 +
√

5

∣

∣

∣

∣

1/2

,

Cψ†ψ
φ = Cφφ

φ = −
∣

∣

∣

∣

∣

1 +
√

5

2

∣

∣

∣

∣

∣

1/2

· α , (Φ)B11
ϕ =

∣

∣

∣

∣

∣

1 +
√

5

2

∣

∣

∣

∣

∣

3/2

, (4.1)

Cφψ†
ψ†

= Cψφ
ψ = −

∣

∣

∣

∣

2

1 +
√

5

∣

∣

∣

∣

1/2

· α , (Φ)Bφ

ϕ =

∣

∣

∣

∣

∣

5 +
√

5

2

∣

∣

∣

∣

∣

1/2

· α ,

α =

∣

∣

∣

∣

Γ(1/5) Γ(6/5)

Γ(3/5) Γ(4/5)

∣

∣

∣

∣

1/2

.

We will need the conformal expectation value of the bulk field ϕ across the strip of

width R with various combinations of boundary conditions: (11, 11), (Φ, 11) and (Φ,Φ).

Our coordinates are 0 ≤ x ≤ R across the strip and y running along the strip, and we

normalise all our correlation functions so that the expectation value of the identity operator

is always one.

The correlation functions on the strip with boundary conditions α and β can be de-

termined by mapping the strip to the unit disc or the upper half plane and inserting the

appropriate boundary fields φαβ
−1/5. Under the exponential map z = exp(iπ(x − iy)/R the

strip can be mapped to the upper half plane where the boundaries are mapped onto the

negative and positive real axis. The boundaries meet at the origin (and at infinity) where
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boundary operators are inserted according to the boundary conditions. Through radial

quantisation the Hilbert space of the theory is built on the representations corresponding

to the boundary operators at the origin.8 It follows that for the (11, 11) boundaries the

Hilbert space consists of the 11 module, in the (11,Φ) case of the Φ module and for (Φ,Φ)

both modules are present with the ground state corresponding to φ.

If at least one of the boundaries is the Φ then the boundary field φ(y) may exist on it.

For these cases the boundary one-point functions are

〈φ(y)〉(Φ,11) =

(

R

π

)1/5

Cψφ
ψ , 〈φ(y)〉(Φ,Φ) =

(

R

π

)1/5

Cφφ
φ . (4.2)

The one-point functions of the bulk field ϕ(x) on the strip correspond in general to

chiral three-point functions on the upper half plane, and by the doubling trick they can

be thought of as four-point functions on the full complex plane. Since the representation

φ has a null-vector at the second level, the correlation functions satisfy certain differen-

tial equations, the solutions of which can be expressed in terms of the four strip chiral

block functions

f1(ϑ) =

(

2 sinϑ

cos2ϑ

)2/5

2F1

(

4

10
,

9

10
;
11

10
;− tan2ϑ

)

,

f2(ϑ) =

(

2 sinϑ

cos3ϑ

)1/5

2F1

(

3

10
,

8

10
;

9

10
;− tan2ϑ

)

,

f3(ϑ) = (2 sinϑ)2/5 ,

f4(ϑ) = (2 sinϑ)1/5 ,

(4.3)

where ϑ = xπ/R. The particular solutions are fixed by the boundary conditions, that is

the corresponding bulk-boundary OPEs:

〈ϕ(x, y)〉(11,11) =

(

R

π

)2/5
(11)B11

ϕ f3

(πx

R

)

; = (11)B11
ϕ

(

2R

π
sin

πx

R

)2/5

,

〈ϕ(x, y)〉(Φ,Φ) =

(

R

π

)2/5
(

(Φ)B11
ϕ f1

(πx

R

)

+ (Φ)Bφ

ϕ Cφφ
φ f2

(πx

R

) )

,

〈ϕ(x, y)〉(Φ,11) =

(

R

π

)2/5











(Φ)B11
ϕ f1

(πx

R

)

+ (Φ)Bφ

ϕ Cψφ
ψ f2(

πx

R
) , x ≤ R

2
,

(11)B11
ϕ f1

(πx

R

)

, x >
R

2
.

(4.4)

The latter is the unique combination of the chiral blocks with the proper asymptotic be-

haviour near the boundaries, for ϑ→ 0 and ϑ→ π.

Since for the (Φ,Φ) boundary conditions both representations are present in the Hilbert

8Thus the states on the strip, unlike the bulk case, are characterised by their behaviour under one copy

of the Virasoro algebra.
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space, we will need also the non-diagonal matrix elements

〈φ|ϕ(x, y)|11〉 =

(

R

π

)1/5
(Φ)Bφ

ϕ f4

(πx

R

)

= (Φ)Bφ

ϕ

(

2R

π
sin

πx

R

)1/5

, (4.5)

〈11|ϕ(x, y)|φ〉 = −
(

R

π

)1/5
(Φ)Bφ

ϕ f3

(πx

R

)

= −(Φ)Bφ

ϕ

(

2R

π
sin

πx

R

)2/5

. (4.6)

Due to translational invariance in the “time” direction none of the expectation values

depends on y.

4.1.2 The scaling Lee-Yang model

The scaling Lee-Yang (SLY) model can be defined as a bulk perturbation of the critical

Lee-Yang model by the term

λ

∫

dx

∫

dy ϕ(x, y) . (4.7)

The resulting theory is an integrable massive scattering theory, containing a single particle

with two-particle S-matrix [44]

S(θ) = −(1)(2) , (x) =
sinh

(

θ
2 + iπx

6

)

sinh
(

θ
2 − iπx

6

) . (4.8)

The mass M of the particle is related to the strength λ of the perturbation by [45, 46]

M = κλ5/12 , κ = 219/12√π (Γ(3/5)Γ(4/5))5/12

55/16Γ(2/3)Γ(5/6)
= 2.642944 . . . . (4.9)

The form factors of the bulk field ϕ were first computed in [47, 48], but following [13]

we use the conventions of [49], with the difference that for us ϕ(x) is a real field. The

function Fn can be parametrised as

Fn(θ1, . . . , θn) = HnQn(x1, . . . , xn)

n
∏

i<j

f(θi − θj)

xi + xj
, (4.10)

where xi = eθi . The various terms in (4.10) are

f(θ) =
cosh θ − 1

cosh θ + 1/2
v(iπ − θ) v(−iπ + θ) , (4.11)

where v is given by9

v(θ) =
N
∏

n=1

[

(

θ
2πi + n+ 1/2

) (

θ
2πi + n− 1/6

) (

θ
2πi + n− 1/3

)

(

θ
2πi + n− 1/2

) (

θ
2πi + n+ 1/6

) (

θ
2πi + n+ 1/3

)

]n

× exp

(

2

∫ ∞

0
dt

sinh(t/2) sinh(t/3) sinh(t/6)

t sinh2(t)
(N + 1 −Ne−2t) e−2Nt+iθt/π

)

,

v(0) = 1.111544045 . . . , (4.12)

9This form with the finite product in front improves the convergence of the integral [49].
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and the normalisation factor is [50]

Hn = ψ

(

− i 31/4

√
2v(0)

)n

. (4.13)

Here ψ is the expectation value 〈ϕ〉 in the bulk:

ψ =
−3

9
10 Γ(1

3)
36
5 M− 2

5

(2π)
14
5 5

1
4 Γ(1

5) Γ(2
5 )

= (−1.239394325 . . . )M−2/5 . (4.14)

The symmetric polynomials Qn(x1, . . . , xn) have degree n(n − 1)/2 and partial degree

n− 1. They can be neatly expressed as a determinant of a matrix in symmetric polynomi-

als [47–49]. Here we will need only the explicit form of the first few:

Q0 = 1 , Q1 = 1 , Q2 = σ
(2)
1 , Q3 = σ

(3)
2 σ

(3)
1 , Q4 = σ

(4)
3 σ

(4)
2 σ

(4)
1 , (4.15)

where the elementary symmetric polynomials in n variables σ
(n)
r are defined by

n
∏

i=1

(1 + p xi) =

n
∑

k=0

pkσ
(n)
k .

Let us turn now to the boundary conditions for the SLY model which were analysed in

detail in [35]. The integrable boundary conditions are the 11 conformal boundary condition

and the perturbation of the conformal Φ boundary by

h

∫

φ(x) dx (4.16)

which we will denote by Φ(h). The exact reflection factors for these two boundary condi-

tions are

RΦ(h)(θ) = Rb(θ) , R11(θ) = R0(θ) , (4.17)

where

Rb(θ) =

(

1

2

)(

3

2

)(

4

2

)−1(

S

(

θ + iπ
b+ 3

6

)

S

(

θ − iπ
b+ 3

6

))−1

. (4.18)

The relation between b and h is given by [35]

h(b) = − |ĥc| sin(π(b+ 1/2)/5) . (4.19)

For numerical calculations it is more suitable to use instead the dimensionless quantity

ĥcrit = ĥcM
−6/5 ,

which was determined in [51]:

ĥcrit = −π3/5 24/5 51/4 sin 2π
5

(Γ(3
5)Γ(4

5 ))1/2

(

Γ(2
3)

Γ(1
6)

)6/5

= −0.68528998399118 . . . . (4.20)
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Finally, let us consider the boundary-particle couplings gα for the various boundary

conditions. We recall that these quantities are defined via the residue of the reflection

factor Rα(θ) at the rapidity θ = iπ/2

Rα(θ) ∼ i

2

(gα)2

θ − iπ/2
. (4.21)

In the SLY model we have

g11 = −i 2
√

2
√

3 − 3 (4.22)

for the 11 boundary, and

gΦ(b) =
tan((b+ 2)π/12)

tan((b− 2)π/12)
g11 (4.23)

for the Φ(h(b)) boundary. Notice that although the reflection factors for the boundaries 11

and Φ(h(0)) are identical, the corresponding boundary-particle couplings differ by a sign.

This means that the boundary states for these two boundary conditions differ only in the

sign of the contributions from states of odd particle number.

4.2 The comparison

4.2.1 Expectation values in the truncated conformal space approach

The TCSA method allows for calculating the spectrum and other physical quantities of a

perturbed conformal field theory. The approach was developed in [52] for the bulk scaling

Lee-Yang model itself and later it was generalised to systems with boundary [35, 51]. The

idea of the method is very simple: using the conformal field theory techniques one can

calculate in the conformal basis all the matrix elements of the perturbing operator(s) and

eventually of the perturbed Hamiltonian. If the conformal Hilbert space is truncated at

some energy (or at some conformal level), the space of states becomes finite dimensional and

the calculation of the spectrum and of the eigenvectors of the perturbed Hamiltonian boils

down to the diagonalisation of a finite numerical matrix. This approach can be regarded

as a close relative of the standard variational method, and although the errors caused by

the truncation can not be easily controlled, it is generally believed, and checked of course,

that they decrease with increasing the cut. We refer the reader interested in the details of

the behaviour of TCSA to [53, 54].

The Hamiltonian of the boundary scaling Lee-Yang model reads

H(R;λ, hl, hr) = H0 + λ

∫ R

0
ϕ(x, y) dx+ hlφ(x=0) + hrφ(x=R) , (4.24)

where H0 is the conformal Hamiltonian and we have allowed for boundary perturbations

at the edges of the strip (they can be present only for Φ boundaries). The matrix elements

of the Hamiltonian, calculated by mapping the strip on the upper half plane are given by

hij =
π

r

((

hi−
c

24

)

δij+κ
′
( r

π

)12/5
(G−1B)ij+χl

( r

π

)6/5
(G−1Bl)ij+χr

( r

π

)6/5
(G−1Br)ij

)

,

(4.25)
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(a) (Φ(−2), Φ(−2)) at r = 0.5

0.1 0.2 0.3 0.4 0.5

-1.4

-1.3

-1.2

-1.1

(b) (Φ(−1/2), Φ(−2)) at r = 0.5

Figure 2.
〈

M2/5ϕ(x)
〉

vs. ξ ∈ (0 . . . r). The dots are TCSA results with cut N = 10 (48 states),

the green dot-dashed and the solid black line is our result (4.31) up to the 3rd and 4th orders,

respectively. The dotted red line is (4.33) and the violet dot-dot-dashed line is (4.31) without the

term J22. The horizontal axes are positioned at the conformal 〈ϕ〉
0
.

where

(Bl)ij = 〈i|φ(1)|j〉 , (Br)ij = 〈i|φ(−1)|j〉 , (4.26)

(B)ij = 〈i|
∫ π

0
dϑϕ(eiϑ)|j〉 , (4.27)

and the conformal metric G defined as Gij = 〈i|j〉 is needed because the basis vectors

are not orthonormal. Here every operator is understood to be on the upper half plane,

ϑ = πx/R and we expressed everything in dimensionless form:

r = MR , κ′ = κ12/5 = 0.097048456298 . . . , (4.28)

χl = sin(π(bl + 1/2)/5) ĥcrit , χr = sin(π(br + 1/2)/5) ĥcrit , (4.29)

implying that the energy eigenvalues are also measured in the units of M .

Once the spectrum is known the expectation value of ϕ can be estimated by

〈

M2/5ϕ(x)
〉

∼
( r

π

)2/5 〈Ω | ϕ ( exp(iπξ/r) ) |Ω 〉
〈Ω |Ω 〉 , (4.30)

where ξ = Mx is the dimensionless position of the operator on the strip and |Ω 〉 is the

ground state eigenvector. If we know the matrix elements of ϕ(ϑ) on the upper half plane,

the calculation of the v.e.v. amounts to matrix-vector multiplication.

An efficient way to calculate the matrix elements is given in the appendix of [55].

4.2.2 Comparing the form factor expansion with TCSA

Let us recall our main result that we will compare with the TCSA data:

〈O(x)〉αβR = 〈O〉 +
∑

i+j≤4

Dij + . . . . (4.31)

In the following we will refer to terms Dij with i+ j = n as nth order terms.
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0.5 1.0 1.5 2.0 2.5 3.0
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-1.4

-1.0

-0.8

-0.6

-0.4

(a) (11, Φ(0)) at r = 3

0.5 1.0 1.5 2.0

-1.6

-1.5

-1.4

-1.3

(b) (Φ(−1/2), Φ(−1/2)) at r = 2

Figure 3.
〈

M2/5ϕ(x)
〉

vs. ξ ∈ (0 . . . r). The dots are TCSA results with cut N = 12 (45 states) in

(a) and N = 10 (48 states) in (b), the blue dashed, the green dot-dashed and the solid black line

is our result (4.31) up to the 2nd, 3rd and 4th orders, respectively. The dotted red line is (4.33)

and the violet dot-dot-dashed line is (4.31) with the sign of the term D11 flipped. The horizontal

axes are positioned at the conformal 〈ϕ〉
0
.

The work [13] addressed the calculation of the vacuum expectation value in large

volume when the operator is close to one of the boundaries. With this setup they could

neglect the effect of the other boundary and they worked up to the third order, so their

formula in our notations is

〈O〉 +D10 +D20 +D30 . (4.32)

One can try to improve this result for finite strips by considering also the analogous terms

coming from the other boundary:

〈O〉 +
3
∑

i=1

(Di0 +D0i) . (4.33)

In order to show that our formula means a great improvement we will compare this ex-

pression with our result (4.31).

Figure 2(a) shows the TCSA data with cut N = 10 (48 states) together with our

results for
〈

M2/5ϕ(ξ)
〉

for the boundary conditions (Φ(b = −2),Φ(b = −2)). In this case

gα = gβ = 0 and only the even orders are non-zero. In particular, in this special case

formula (4.33) coincides with our second order result. In figure 2(b) we plot the case of the

boundaries (Φ(b = −1/2),Φ(b = −2)). The TCSA has already converged, since changing

the cut from N = 9 (38 states) to N = 10 (48 states) the maximum change in the v.e.v.

is ≈ 0.0005. The plots clearly show that our formula gives much better results than (4.33)

throughout the strip. We also plotted our result without the term J22 (violet dot-dot-

dashed lines) in order to show that this non-trivial term is indeed present in the expansion

(see the discussion in section 3.4.1).

Figure 3 shows the v.e.v. for other pairs of boundary conditions. For the second pair

changing the TCSA cut from N = 9 to N = 10 resuls in a change of order 10−5 in the

v.e.v. For the (11,Φ(0)) boundaries raising the cut from N = 8 (18 states) to N = 12 (45

states) the change in the v.e.v. is only ≈ 0.05.
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In order to show that the conventions for the complex conjugation of the g factors are

correct we plot also the result with the sign of the term D11 reversed (violet dashed lines).

In figure 3(b) we show also the second order result to show the convergence of the form

factor expansion. It is clearly seen in both plots that adding the fourth order terms hardly

changes the result, thus in these cases the form factor series is almost saturated by its first

four orders.

In figure 4 we plot the one-point function for the (11, 11) boundaries for different strip

widths. The TCSA is very convergent also in this case: a change in the cut from N = 8 (12

states) to N = 12 (29 states) causes a shift of order 10−5 in the v.e.v. The convergence of

the form factor expansion is again obvious, however, for r = 2 our formula starts to deviate

from the TCSA values, as a clear sign of the need for higher order terms. Our result is

closer to the real values than the formula (4.33), but what is surprising is that the result

of [13], expression (4.32), performs very well in the vicinity of the boundary. This can be

understood by looking at the leading behaviour of the expectation value near the different

boundaries [13]:

〈

M2/5ϕ(x)
〉

Φ(0)
= (2ξ)1/5 (Φ)Bφ

ϕ 〈φ〉Φ(0) + (2ξ)2/5 (Φ)B11
ϕ 〈11〉Φ(0) + O(ξ12/5) , (4.34a)

〈

M2/5ϕ(x)
〉

11
= (2ξ)2/5 (11)B11

ϕ 〈11〉11 + O(ξ12/5) . (4.34b)

We have to check what happens when x is fixed and the volume R is changed. We know

that the corrections to (4.32) are of the form exp(−MR), thus rescaling R is equivalent to a

rescaling of M . Equation (4.34b) remains unchanged under such a rescaling in the leading

order (and the next term is two orders higher in ξ). In other words, the x-dependence of

the v.e.v. agrees with the behaviour under a conformal rescaling, which means that for

the 11 boundary the expectation value will not change much when the width of the strip

changes. Obviously this is not true for (4.34a).10

Since our truncation of the form factor series is truly consistent only at x = R/2, in

figure 5 we plot the deviation of the v.e.v. from the TCSA values at the middle of the strip

for different volumes R. It is clearly seen on the logarithmic plot that for large enough

volume (r & 2) the errors decrease exponentially with the volume and the exponents for

the error of the consecutive orders are approximately even-spaced. In particular, the sum

of all four orders has the smallest and most rapidly decreasing error. A similar behaviour

can be observed for other boundary conditions.

5 Conclusions

In this paper we considered vacuum expectation values of local operators in the presence of

two integrable boundaries. We developed a consistent finite volume regularisation scheme

to handle the various types of disconnected terms. The method presented in this work

can be considered as a generalisation of the approach of [11] which dealt with expectation

values with periodic boundary conditions. The key ingredients of our approach are the

10We would like to thank Gérard Watts for discussing this question.
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(a) (11, 11) at r = 3
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(b) (11, 11) at r = 2

Figure 4.
〈

M2/5ϕ(x)
〉

vs ξ ∈ (0 . . . r). The dots are TCSA results with cut N = 12 (29 states),

the blue dashed, green dot-dashed and the solid black line is our result (4.31) up to the 2nd, 3rd

and 4th orders, respectively. The dotted red line is (4.33) and the asymmetric violet dot-dot-dashed

line in (b) is (4.32). The horizontal axes are positioned at the conformal 〈ϕ〉
0
.
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(a) linear scale
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(b) log scale

Figure 5.
〈

M2/5ϕ(x = R
2
)
〉

−
〈

M2/5ϕ(R
2
)
〉

TCSA
for b.c. (11, 11) with TCSA cut N = 12 (29 states)

as a function of r. The violet dot-dot-dashed, the blue dashed, the green dot-dashed and the black

solid line is our result (4.31) up to the 1st, 2nd, 3rd and 4th order, respectively. The red dotted

line is formula (4.33). For r & 2 the errors decrease exponentially with r.

proper normalisation of the boundary state in a finite volume and the knowledge of the

finite volume form factors.

Apart from the task of evaluating disconnected terms of the form factors the two-

boundary setting poses additional difficulties for gαgβ 6= 0. In this case the boundary

states include zero-momentum particles corresponding to the poles of the amplitudes Kj(θ)

at θ = 0. We showed that our finite volume evaluation scheme automatically provides a

regularisation of the resulting singularities. We developed a new method to extract the

finite parts (see Theorem 1 in section 2.2) which can be applied also in other cases, e.g.

two-point functions at finite temperature.

As a by-product of our formalism we were able to extract the second order terms

of the ground state energy on the strip (subsection 2.2). This way we confirmed the
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boundary Thermodynamic Bethe Ansatz (BTBA) equations and we showed that they

yield the correct second order terms even in the presence of zero-momentum particles

(gαgβ 6= 0), for which no rigorous derivation of the BTBA is known. Also, we gave further

independent support for the normalisation condition ḡj = gj/2, which was proven by other

means in [19, 20].

It is possible to compute higher order terms of the vacuum expectation value 〈O(x)〉αβR
using the methods laid out in this work; in particular the finite volume normalisation

of higher multi-particle contributions to the boundary state follows in a straightforward

manner. However, the evaluation of the L → ∞ limit poses technical difficulties already

at the next orders (Dij with i+ j > 4). There will appear new types of singularities which

are very similar to those encountered in the evaluation of thermal correlation functions

(see subsection 3.4.3). These difficulties call for new summation schemes to separate the

divergent and finite parts of the relevant finite volume series. Alternatively, it would

be interesting to develop a general infinite volume regularisation scheme along the lines

of [6, 17], which could be compared to the results of the present approach.

There is plenty of room for future extensions of this work. First of all, one can consider

expectation values with respect to a boundary excited state. In this case one has to develop

an appropriate modification of the finite volume boundary state formalism. A further

interesting problem is the evaluation of (space and time dependent) correlation functions

on the strip, which can be performed along the lines of the present paper. Future work

is needed to generalise our methods to non-diagonal scattering theories which are relevant

to a number of condensed matter problems [56]. Also, it needs to be clarified whether

some of the present results also apply to massless scattering theories. In the absence of a

mass gap the convergence of the spectral series is not guaranteed anymore and one does

not have control over residual finite size corrections to form factors. However, in some

cases it is possible to apply a modified version of the form factor program to massless

theories [57, 58]. The study of a finite volume regularisation scheme for massless theories

is left as an open problem.
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A Regularisation of the divergent sums

For a given L let us denote by θI the solutions of the quantisation condition

Q(θ) = mL sinh θ + δ(2θ) = 2πI , I ∈ N +
1

2
. (A.1)
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where δ(θ) is the elastic phase shift defined by

S(θ) = −eiδ(θ), δ(−θ) = −δ(θ) .

We also introduce the density of states

ρ̄1(θ) =
dQ(θ)

dθ
= mL cosh θ + 2ϕ(2θ) ,

where ϕ(θ) = δ′(θ).

Theorem 1: Let f(θ) be a symmetric function which apart from a double pole at θ = 0

is analytic in a neighbourhood of the real axis:

f(θ) ≈ G

θ2
as θ → 0 .

Then the expression

S(L) =

(

∑

I

f(θI)

ρ̄1(θI)

)

− G

8
mL

has a regular behaviour at large L with the L→ ∞ limit given by

lim
L→∞

S(L) = If +Kf ,

where

If =

∫ ∞

−∞

dθ

4π

(

f(θ)−G
cosh θ

sinh2 θ

)

and Kf =
G

4
ϕ(0) .

Proof. We express the sum in the form of a complex integral for a finite L and perform

the L→ ∞ limit afterwards. First of all, the summation over the rapidities can be replaced

by a sum over contour integrals around the solutions of eiQ + 1 = 0:

− 1

2

∑

∮

1

2π

f(θ)

eiQ + 1
, (A.2)

where now the summation is over I ∈ Z+1/2. The integration contours can be transformed

into two distinct curves:

• the first starting from θ = ∞+ iε running to ε+ iε, crossing the real axis between 0

and the first solution of (A.1), then running from θ = ε− iε to θ = ∞− iε;

• and a similar curve around the negative real axis, with the same counter-clockwise

orientation.

These two curves can be joined to form a single contour encircling the whole real axis. In

doing this, one picks up the residue at θ = 0, which is given by

1

2
Res
θ=0

f(θ)

eiQ(θ) + 1
= −iG

8
ρ̄1(0) = −iG

8
(mL+ 2ϕ(0)) .
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Therefore the O(L) terms cancel and we obtain

S(L) =

(
∫ ∞+iε

−∞+iε
−
∫ ∞−iε

−∞−iε

)

1

4π

f(θ)

eiQ + 1
+
G

4
ϕ(0) .

Note that in the two integrals the L dependence is only contained inQ(θ). We may now

perform the L → ∞ limit for a fixed ε > 0. To do this first of all note that the integrand

has become bounded (we stay away from the real axis) therefore one may exchange the

limit L→ ∞ with the integration. Also, observe that

lim
L→∞

1

eiQ(θ+iε) + 1
= 1 , lim

L→∞

1

eiQ(θ−iε) + 1
= 0 .

Putting everything together one obtains

∫ ∞+iε

−∞+iε

1

4π
f(θ) +

G

4
ϕ(0) . (A.3)

The integral above can be pulled back to the real axis after an appropriate regularisation.

We use the identity

0 =

∫ ∞+iε

−∞+iε

1

4π
G

cosh θ

sinh2 θ
(A.4)

which can be proven by deforming the contour to Imθ = iπ/2. Moreover, the function

above has exactly the same singularity structure around θ = 0 as the integrand in (A.3).

One may therefore subtract (A.4) from (A.3) and pull back the integration contour to the

real axis. The final result is thus given by

lim
L→∞

S(L) =

∫ ∞

−∞

dθ

4π

(

f(θ)−G
cosh θ

sinh2 θ

)

+
G

4
ϕ(0) .

B Properties of the four-particle form factor

In this appendix we consider the behaviour of the function

FO4 (θ1 + iπ,−θ1 + iπ,−θ2, θ2) (B.1)

near θ1, θ2 = 0. It follows from the form factor axioms that for infinitesimal θ1,2 the function

above is antisymmetric in both variables and disappears whenever one of the rapidities goes

to zero whith the other one being kept fixed. Therefore the only allowed singularity is of

the form
1

θ1θ2
.

However, it is easy to see that this pole does not appear. Setting

θ1 = θ + ε , θ2 = θ , (B.2)

and taking ε→ 0 results in [11]

lim
ε→0

FO4 (θ + ε+ iπ,−θ − ε+ iπ,−θ, θ) =
(

FO4c(θ,−θ)− 2ϕ(2θ)FO2c
)

, (B.3)
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which is well-defined for every θ. Therefore a pole of 1
θ1θ2

cannot appear and it follows that

lim
θ1,θ2→0

FO4 (θ1 + iπ,−θ1 + iπ,−θ2, θ2) = lim
θ→0

(

FO4c(θ,−θ)− 2ϕ(2θ)FO2c
)

= 0 .

Moreover, the first term of its Taylor expansion is proportional to θ1θ2, as required in (3.37)

to cancel the double pole of Kα(−θ)Kβ(θ).

C Summary of our results

In this appendix we collected the results of section 3. The vacuum expectation value is

given by

〈O(x)〉αβR =
∑

i,j

Dij . (C.1)

We calculated the terms with i+ j ≤ 4. The relative magnitudes of the individual contri-

butions depend on x. However, a consistent ordering can be achieved by putting x = R/2.

This way Dij behaves in the large R limit as O(e−(i+j)mR/2). A pictorial representation of

the individual contributions can be found in figures 6 and 7.

Terms of order e
−mR/2

D10 =
gα
2
FO1 e

−mx

D01 =
gβ
2
FO1 e

−m(R−x)

Terms of order e
−mR

D20 =
1

2

∫

dθ

2π
Kα(θ)F

O
2 (−θ, θ)e−2m cosh θ x

D02 =
1

2

∫

dθ

2π
Kβ(θ)F

O
2 (−θ, θ)e−2m cosh θ (R−x)

D11 =
gαgβ

4
FO2 (iπ, 0)e−mR

Terms of order e
−3mR/2

D30 =
1

2

∫

dθ

2π
Kα(θ)

gα
2
FO3 (−θ, θ, 0)e−m(2 cosh θ+1) x

D03 =
1

2

∫

dθ

2π
Kβ(θ)

gβ
2
FO3 (−θ, θ, 0)e−m(2 cosh θ+1) (R−x)

D21 =
gβ
4

∫

dθ

2π

(

FO3 (−θ+iπ, θ+iπ, 0)Kα(θ)e−2m cosh θx−m(R−x)− 2(gα)2FO1 cosh θ

sinh2 θ
e−m(R+x)

)

+e−m(x+R)gβ(gα)2FO1
ϕ(0)

4

D12 =
gα
4

∫

dθ

2π

(

FO3 (iπ,−θ, θ)Kβ(θ)e
−2m cosh θ(R−x)−mx − 2(gβ)

2FO1 cosh θ

sinh2 θ
e−m(2R−x)

)

+e−m(2R−x)gα(gβ)
2FO1

ϕ(0)

4
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Terms of order e
−2mR

D40 =
1

8

∫

dθ1
2π

dθ2
2π

Kα(θ1)Kα(θ2)F
O
4 (−θ1, θ1,−θ2, θ2)e−2m(cosh θ1+cosh θ2) x

D04 =
1

8

∫

dθ1
2π

dθ2
2π

Kβ(θ1)Kβ(θ2)F
O
4 (−θ1, θ1,−θ2, θ2)e−2m(cosh θ1+cosh θ2) (R−x)

D31 =
gαgβ

8
e−mR

∫

dθ

2π
Kα(θ)F

O
4 (−θ + iπ, θ + iπ, iπ, 0)e−2m cosh θ x

D13 =
gαgβ

8
e−mR

∫

dθ

2π
Kβ(θ)F

O
4 (−θ + iπ, θ + iπ, iπ, 0)e−2m cosh θ (R−x)

D22 = I22 + J22 , where

I22 =
1

4

∫

dθ1
2π

∫

dθ2
2π

Kα(θ1)Kβ(θ2)F
O
4 (−θ1+iπ, θ1 + iπ,−θ2, θ2)e−2m cosh θ1x−2m cosh θ2(R−x)

and

J22 =FO2 (iπ, 0)

{
∫

dθ

2π

(

Kα(−θ)Kβ(θ)e
−2m cosh θR− (gαgβ)

2 cosh θ

4 sinh2 θ
e−2mR

)

+
(gαgβ)

2

8
e−2mRϕ(0)

}
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(a) D10 (b) D20

(c) D30 (d) D40

(e) D11 (f) D31 (g) I22

Figure 6. Diagrams representing the different contributions to the v.e.v. Solid lines correspond

to pairs of particles with opposite momenta. Dashed lines correspond to the propagation of zero-

momentum particles. The diagrams depicting the termsDij with j > i can be obtained by switching

the roles of the two boundaries.
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(a) J22

(b) D12

(c) D21

Figure 7. Diagrams representing contributions with singular pieces. Solid lines correspond to

pairs of particles with opposite momentum. Dashed lines correspond to the propagation of zero-

momentum particles.
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