37 research outputs found

    Effect of eyelid muscle action and rubbing on telemetrically obtained intraocular pressure in patients with glaucoma with an IOP sensor implant

    Get PDF
    Background Patients with glaucoma on topical glaucoma medication are often affected by dry eye symptoms and thus likely to rub or squeeze their eyelids. Here, we telemetrically measure peak intraocular pressure (IOP) during eyelid manoeuvres and eyelid rubbing. Methods Eleven patients with primary open-angle glaucoma (POAG) previously implanted with a telemetric IOP sensor (Eyemate-IO) were instructed to look straight ahead for 1 min as a baseline measurement. Next, 6 repeats of blinking on instruction with 10 s intervals in between were performed. In addition, 5 repeats of eyelid closure (n=9), eyelid squeezing and eyelid rubbing (n=7) were performed with 15 s intervals in between. IOP was recorded via an external antenna placed around the study eye. Average peak IOP increases from baseline were analysed and tested against zero (no change) with one-sample t-tests. Results For eyelid rubbing, the average peak increment IOP increase (mean +/- SEM) was 59.1 +/- 9.6 mm Hg (p</p

    Effect of eyelid muscle action and rubbing on telemetrically obtained intraocular pressure in patients with glaucoma with an IOP sensor implant

    Get PDF
    Background Patients with glaucoma on topical glaucoma medication are often affected by dry eye symptoms and thus likely to rub or squeeze their eyelids. Here, we telemetrically measure peak intraocular pressure (IOP) during eyelid manoeuvres and eyelid rubbing. Methods Eleven patients with primary open-angle glaucoma (POAG) previously implanted with a telemetric IOP sensor (Eyemate-IO) were instructed to look straight ahead for 1 min as a baseline measurement. Next, 6 repeats of blinking on instruction with 10 s intervals in between were performed. In addition, 5 repeats of eyelid closure (n=9), eyelid squeezing and eyelid rubbing (n=7) were performed with 15 s intervals in between. IOP was recorded via an external antenna placed around the study eye. Average peak IOP increases from baseline were analysed and tested against zero (no change) with one-sample t-tests. Results For eyelid rubbing, the average peak increment IOP increase (mean +/- SEM) was 59.1 +/- 9.6 mm Hg (p</p

    Implanted Microsensor Continuous IOP Telemetry Suggests Gaze and Eyelid Closure Effects on IOP-A Preliminary Study

    Get PDF
    PurposeTo explore the effect of gaze direction and eyelid closure on intraocular pressure (IOP).MethodsEleven patients with primary open-angle glaucoma previously implanted with a telemetric IOP sensor were instructed to view eight equally-spaced fixation targets each at three eccentricities (10°, 20°, and 25°). Nine patients also performed eyelid closure. IOP was recorded via an external antenna placed around the study eye. Differences of mean IOP between consecutive gaze positions were calculated. Furthermore, the effect of eyelid closure on gaze-dependent IOP was assessed.ResultsThe maximum IOP increase was observed at 25° superior gaze (mean ± SD: 4.4 ± 4.9 mm&nbsp;Hg) and maximum decrease at 25° inferonasal gaze (-1.6 ± 0.8 mm&nbsp;Hg). There was a significant interaction between gaze direction and eccentricity (P = 0.003). Post-hoc tests confirmed significant decreases inferonasally for all eccentricities (mean ± SEM: 10°: -0.7 ± 0.2, P = 0.007; 20°: -1.1 ± 0.2, P = 0.006; and 25°: -1.6 ± 0.2, P = 0.006). Eight of 11 eyes showed significant IOP differences between superior and inferonasal gaze at 25°. IOP decreased during eyelid closure, which was significantly lower than downgaze at 25° (mean ± SEM: -2.1 ± 0.3 mm&nbsp;Hg vs. -0.7 ± 0.2 mm&nbsp;Hg, P = 0.014).ConclusionsOur data suggest that IOP varies reproducibly with gaze direction, albeit with patient variability. IOP generally increased in upgaze but decreased in inferonasal gaze and on eyelid closure. Future studies should investigate the patient variability and IOP dynamics

    Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis

    Get PDF
    Background: Global and regional prevalence estimates for blindness and vision impairment are important for the development of public health policies. We aimed to provide global estimates, trends, and projections of global blindness and vision impairment. Methods: We did a systematic review and meta-analysis of population-based datasets relevant to global vision impairment and blindness that were published between 1980 and 2015. We fitted hierarchical models to estimate the prevalence (by age, country, and sex), in 2015, of mild visual impairment (presenting visual acuity worse than 6/12 to 6/18 inclusive), moderate to severe visual impairment (presenting visual acuity worse than 6/18 to 3/60 inclusive), blindness (presenting visual acuity worse than 3/60), and functional presbyopia (defined as presenting near vision worse than N6 or N8 at 40 cm when best-corrected distance visual acuity was better than 6/12). Findings: Globally, of the 7·33 billion people alive in 2015, an estimated 36·0 million (80% uncertainty interval [UI] 12·9–65·4) were blind (crude prevalence 0·48%; 80% UI 0·17–0·87; 56% female), 216·6 million (80% UI 98·5–359·1) people had moderate to severe visual impairment (2·95%, 80% UI 1·34–4·89; 55% female), and 188·5 million (80% UI 64·5–350·2) had mild visual impairment (2·57%, 80% UI 0·88–4·77; 54% female). Functional presbyopia affected an estimated 1094·7 million (80% UI 581·1–1686·5) people aged 35 years and older, with 666·7 million (80% UI 364·9–997·6) being aged 50 years or older. The estimated number of blind people increased by 17·6%, from 30·6 million (80% UI 9·9–57·3) in 1990 to 36·0 million (80% UI 12·9–65·4) in 2015. This change was attributable to three factors, namely an increase because of population growth (38·4%), population ageing after accounting for population growth (34·6%), and reduction in age-specific prevalence (–36·7%). The number of people with moderate and severe visual impairment also increased, from 159·9 million (80% UI 68·3–270·0) in 1990 to 216·6 million (80% UI 98·5–359·1) in 2015. Interpretation: There is an ongoing reduction in the age-standardised prevalence of blindness and visual impairment, yet the growth and ageing of the world’s population is causing a substantial increase in number of people affected. These observations, plus a very large contribution from uncorrected presbyopia, highlight the need to scale up vision impairment alleviation efforts at all levels

    Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis

    Get PDF
    Background: Contemporary data on causes of vision impairment and blindness form an important basis for recommendations in public health policies. Refreshment of the Global Vision Database with recently published data sources permitted modeling of cause of vision loss data from 1990 to 2015, further disaggregation by cause, and forecasts to 2020. Methods: Published and unpublished population-based data on the causes of vision impairment and blindness from 1980 to 2015 were systematically analysed. A series of regression models were fit to estimate the proportion of moderate and severe vision impairment (MSVI; defined as presenting visual acuity <6/18 but ≥3/60 in the better eye) and blindness (presenting visual acuity <3/60 in the better eye) by cause by age, region, and year. Findings: Among the projected global population with MSVI (216.6 million; 80% uncertainty intervals [UI] 98.5-359.1), in 2015 the leading causes thereof are uncorrected refractive error (116.3 million; UI 49.4-202.1), cataract (52.6 million; UI 18.2-109.6), age-related macular degeneration (AMD; 8.4 million; UI 0.9-29.5), glaucoma (4.0 million; UI 0.6-13.3) and diabetic retinopathy (2.6 million; UI 0.2-9.9). In 2015, the leading global causes of blindness were cataract (12.6 million; UI 3.4-28.7) followed by uncorrected refractive error (7.4 million; UI 2.4-14.8) and glaucoma (2.9 million; UI 0.4-9.9), while by 2020, these numbers affected are anticipated to rise to 13.4 million, 8.0 million and 3.2 million, respectively. Cataract and uncorrected refractive error combined contributed to 55% of blindness and 77% of MSVI in adults aged 50 years and older in 2015. World regions varied markedly in the causes of blindness, with a relatively low prevalence of cataract and a relatively high prevalence of AMD as causes for vision loss in the High-income subregions. Blindness due to cataract and diabetic retinopathy was more common among women, while blindness due to glaucoma and corneal opacity was more common among men, with no gender difference related to AMD. Conclusions: The numbers of people affected by the common causes of vision loss have increased substantially as the population increases and ages. Preventable vision loss due to cataract and refractive error (reversible with surgery and spectacle correction respectively), continue to cause the majority of blindness and MSVI in adults aged 50+ years. A massive scale up of eye care provision to cope with the increasing numbers is needed if one is to address avoidable vision loss

    Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study

    Get PDF
    Background: Many causes of vision impairment can be prevented or treated. With an ageing global population, the demands for eye health services are increasing. We estimated the prevalence and relative contribution of avoidable causes of blindness and vision impairment globally from 1990 to 2020. We aimed to compare the results with the World Health Assembly Global Action Plan (WHA GAP) target of a 25% global reduction from 2010 to 2019 in avoidable vision impairment, defined as cataract and undercorrected refractive error. Methods: We did a systematic review and meta-analysis of population-based surveys of eye disease from January, 1980, to October, 2018. We fitted hierarchical models to estimate prevalence (with 95% uncertainty intervals [UIs]) of moderate and severe vision impairment (MSVI; presenting visual acuity from <6/18 to 3/60) and blindness (<3/60 or less than 10° visual field around central fixation) by cause, age, region, and year. Because of data sparsity at younger ages, our analysis focused on adults aged 50 years and older. Findings: Global crude prevalence of avoidable vision impairment and blindness in adults aged 50 years and older did not change between 2010 and 2019 (percentage change −0·2% [95% UI −1·5 to 1·0]; 2019 prevalence 9·58 cases per 1000 people [95% IU 8·51 to 10·8], 2010 prevalence 96·0 cases per 1000 people [86·0 to 107·0]). Age-standardised prevalence of avoidable blindness decreased by −15·4% [–16·8 to −14·3], while avoidable MSVI showed no change (0·5% [–0·8 to 1·6]). However, the number of cases increased for both avoidable blindness (10·8% [8·9 to 12·4]) and MSVI (31·5% [30·0 to 33·1]). The leading global causes of blindness in those aged 50 years and older in 2020 were cataract (15·2 million cases [9% IU 12·7–18·0]), followed by glaucoma (3·6 million cases [2·8–4·4]), undercorrected refractive error (2·3 million cases [1·8–2·8]), age-related macular degeneration (1·8 million cases [1·3–2·4]), and diabetic retinopathy (0·86 million cases [0·59–1·23]). Leading causes of MSVI were undercorrected refractive error (86·1 million cases [74·2–101·0]) and cataract (78·8 million cases [67·2–91·4]). Interpretation: Results suggest eye care services contributed to the observed reduction of age-standardised rates of avoidable blindness but not of MSVI, and that the target in an ageing global population was not reached. Funding: Brien Holden Vision Institute, Fondation Théa, The Fred Hollows Foundation, Bill & Melinda Gates Foundation, Lions Clubs International Foundation, Sightsavers International, and University of Heidelberg

    Optical Microangiography and Progressive Ganglion Cell-Inner Plexiform Layer Loss in Primary Open-Angle Glaucoma

    No full text
    PURPOSE: To evaluate the association between optical microangiography (OMAG) measurements and progressive ganglion cell-inner plexiform layer (GCIPL) loss in patients with primary open-angle glaucoma (POAG). DESIGN: Prospective case series. METHODS: Sixty-three eyes of 38 patients with POAG were studied for ≥2 years and with ≥ 3 optical coherence tomography examinations. Only those hemifields with mild to moderate functional damage at baseline (106 hemifields) were included in the analysis. OMAG imaging was performed at the baseline visit. The effects of clinical parameters (age, gender, central corneal thickness, presence of disc hemorrhage, and mean and fluctuation of intraocular pressure), baseline mean deviation, retinal nerve fiber layer, and GCIPL thickness and baseline OMAG measurements (peripapillary and macular perfusion density [PD] and vessel density [VD]) on the rate of change of GCIPL thickness were evaluated using linear mixed models. RESULTS: Average (± standard deviation) mean deviation, quadrant retinal nerve fiber layer, and sector GCIPL thickness of the analyzed hemifields respectively at baseline were -5.2 ± 2.8 dB, 94.5 ± 20.0 µm, and 72.4 ± 8.7 µm, respectively. Peripapillary PD and VD in the quadrant were 43.1% ± 7.0% and 17.0 ± 2.6 mm/mm2, respectively. Macular PD and VD in the quadrant were 37.2% ± 6.9% and 15.1 ± 2.6 mm/mm2, respectively. Rate of sector GCIPL change was -0.97 ± 0.15 µm per year. Multivariate mixed models showed that lower peripapillary PD (coefficient 0.04, P = .01) and VD (coefficient 0.09, P = .05) were significantly associated with a faster rate of GCIPL loss. CONCLUSIONS: Lower baseline peripapillary OMAG measurements were significantly associated with a faster rate of GCIPL loss in patients with mild to moderate POAG
    corecore